1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|
"""Conversion tool from Neuroscan CNT to FIF."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from os import path
import numpy as np
from ..._fiff._digitization import _make_dig_points
from ..._fiff.constants import FIFF
from ..._fiff.meas_info import _empty_info
from ..._fiff.utils import _create_chs, _find_channels, _mult_cal_one, read_str
from ...annotations import Annotations
from ...channels.layout import _topo_to_sphere
from ...utils import _check_option, _explain_exception, _validate_type, fill_doc, warn
from ..base import BaseRaw
from ._utils import (
CNTEventType3,
_compute_robust_event_table_position,
_get_event_parser,
_read_teeg,
_session_date_2_meas_date,
)
def _read_annotations_cnt(fname, data_format="int16"):
"""CNT Annotation File Reader.
This method opens the .cnt files, searches all the metadata to construct
the annotations and parses the event table. Notice that CNT files, can
point to a different file containing the events. This case when the
event table is separated from the main .cnt is not supported.
Parameters
----------
fname: path-like
Path to CNT file containing the annotations.
data_format : 'int16' | 'int32'
Defines the data format the data is read in.
Returns
-------
annot : instance of Annotations
The annotations.
"""
# Offsets from SETUP structure in http://paulbourke.net/dataformats/eeg/
SETUP_NCHANNELS_OFFSET = 370
SETUP_RATE_OFFSET = 376
def _accept_reject_function(keypad_accept):
accept_list = []
for code in keypad_accept:
if "xd0" in str(code):
accept_list.append("good")
elif "xc0" in str(code):
accept_list.append("bad")
else:
accept_list.append("NA")
return np.array(accept_list)
def _translating_function(offset, n_channels, event_type, data_format=data_format):
n_bytes = 2 if data_format == "int16" else 4
if event_type == CNTEventType3:
offset *= n_bytes * n_channels
event_time = offset - 900 - (75 * n_channels)
event_time //= n_channels * n_bytes
event_time = event_time - 1
# Prevent negative event times
np.clip(event_time, 0, None, out=event_time)
return event_time
def _update_bad_span_onset(accept_reject, onset, duration, description):
accept_reject = accept_reject.tolist()
onset = onset.tolist()
duration = duration.tolist()
description = description.tolist()
# If there are no bad spans, return original parameters
if "bad" not in accept_reject:
return np.array(onset), np.array(duration), np.array(description)
# Create lists of bad and good span markers and onset
bad_good_span_markers = [i for i in accept_reject if i in ["bad", "good"]]
bad_good_onset = [
onset[i]
for i, value in enumerate(accept_reject)
if value in ["bad", "good"]
]
# Calculate duration of bad span
first_bad_index = bad_good_span_markers.index("bad")
duration_list = [
bad_good_onset[i + 1] - bad_good_onset[i]
for i in range(first_bad_index, len(bad_good_span_markers), 2)
]
# Add bad event marker duration and description
duration_list_index = 0
for i in range(len(onset)):
if accept_reject[i] == "bad":
duration[i] = duration_list[duration_list_index]
description[i] = "BAD_" + description[i]
duration_list_index += 1
# Remove good span markers
final_onset, final_duration, final_description = [], [], []
for i in range(len(accept_reject)):
if accept_reject[i] != "good":
final_onset.append(onset[i])
final_duration.append(duration[i])
final_description.append(description[i])
return (
np.array(final_onset),
np.array(final_duration),
np.array(final_description),
)
with open(fname, "rb") as fid:
fid.seek(SETUP_NCHANNELS_OFFSET)
(n_channels,) = np.frombuffer(fid.read(2), dtype="<u2")
fid.seek(SETUP_RATE_OFFSET)
(sfreq,) = np.frombuffer(fid.read(2), dtype="<u2")
event_table_pos = _compute_robust_event_table_position(
fid=fid, data_format=data_format
)
with open(fname, "rb") as fid:
teeg = _read_teeg(fid, teeg_offset=event_table_pos)
event_parser = _get_event_parser(event_type=teeg.event_type)
with open(fname, "rb") as fid:
fid.seek(event_table_pos + 9) # the real table stats at +9
buffer = fid.read(teeg.total_length)
my_events = list(event_parser(buffer))
if not my_events:
return Annotations(list(), list(), list(), None)
else:
onset = _translating_function(
np.array([e.Offset for e in my_events], dtype=float),
n_channels=n_channels,
event_type=type(my_events[0]),
data_format=data_format,
)
# There is a Latency field but it's not useful for durations, see
# https://github.com/mne-tools/mne-python/pull/11828
duration = np.zeros(len(my_events), dtype=float)
accept_reject = _accept_reject_function(
np.array([e.KeyPad_Accept for e in my_events])
)
# Check to see if there are any button presses
description = []
for event in my_events:
# Extract the 4-bit fields
# Upper nibble (4 bits) currently not used
# accept = (event.KeyPad_Accept[0] & 0xF0) >> 4
# Lower nibble (4 bits) keypad button press
keypad = event.KeyPad_Accept[0] & 0x0F
if str(keypad) != "0":
description.append(f"KeyPad Response {keypad}")
elif event.KeyBoard != 0:
description.append(f"Keyboard Response {event.KeyBoard}")
else:
description.append(str(event.StimType))
description = np.array(description)
onset, duration, description = _update_bad_span_onset(
accept_reject, onset / sfreq, duration, description
)
return Annotations(
onset=onset, duration=duration, description=description, orig_time=None
)
@fill_doc
def read_raw_cnt(
input_fname,
eog=(),
misc=(),
ecg=(),
emg=(),
data_format="auto",
date_format="mm/dd/yy",
*,
header="auto",
preload=False,
verbose=None,
) -> "RawCNT":
"""Read CNT data as raw object.
.. Note::
2d spatial coordinates (x, y) for EEG channels are read from the file
header and fit to a sphere to compute corresponding z-coordinates.
If channels assigned as EEG channels have locations
far away from the head (i.e. x and y coordinates don't fit to a
sphere), all the channel locations will be distorted
(all channels that are not assigned with keywords ``eog``, ``ecg``,
``emg`` and ``misc`` are assigned as EEG channels). If you are not
sure that the channel locations in the header are correct, it is
probably safer to replace them with :meth:`mne.io.Raw.set_montage`.
Montages can be created/imported with:
- Standard montages with :func:`mne.channels.make_standard_montage`
- Montages for `Compumedics systems
<https://compumedicsneuroscan.com>`__ with
:func:`mne.channels.read_dig_dat`
- Other reader functions are listed under *See Also* at
:class:`mne.channels.DigMontage`
Parameters
----------
input_fname : path-like
Path to the data file.
eog : list | tuple | ``'auto'`` | ``'header'``
Names of channels or list of indices that should be designated
EOG channels. If 'header', VEOG and HEOG channels assigned in the file
header are used. If ``'auto'``, channel names containing ``'EOG'`` are
used. Defaults to empty tuple.
misc : list | tuple
Names of channels or list of indices that should be designated
MISC channels. Defaults to empty tuple.
ecg : list | tuple | ``'auto'``
Names of channels or list of indices that should be designated
ECG channels. If ``'auto'``, the channel names containing ``'ECG'`` are
used. Defaults to empty tuple.
emg : list | tuple
Names of channels or list of indices that should be designated
EMG channels. If 'auto', the channel names containing 'EMG' are used.
Defaults to empty tuple.
data_format : ``'auto'`` | ``'int16'`` | ``'int32'``
Defines the data format the data is read in. If ``'auto'``, it is
determined from the file header using ``numsamples`` field.
Defaults to ``'auto'``.
date_format : ``'mm/dd/yy'`` | ``'dd/mm/yy'``
Format of date in the header. Defaults to ``'mm/dd/yy'``.
header : ``'auto'`` | ``'new'`` | ``'old'``
Defines the header format. Used to describe how bad channels
are formatted. If auto, reads using old and new header and
if either contain a bad channel make channel bad.
Defaults to ``'auto'``.
.. versionadded:: 1.6
%(preload)s
%(verbose)s
Returns
-------
raw : instance of RawCNT.
The raw data.
See :class:`mne.io.Raw` for documentation of attributes and methods.
See Also
--------
mne.io.Raw : Documentation of attributes and methods of RawCNT.
Notes
-----
.. versionadded:: 0.12
"""
return RawCNT(
input_fname,
eog=eog,
misc=misc,
ecg=ecg,
emg=emg,
data_format=data_format,
date_format=date_format,
header=header,
preload=preload,
verbose=verbose,
)
def _get_cnt_info(input_fname, eog, ecg, emg, misc, data_format, date_format, header):
"""Read the cnt header."""
data_offset = 900 # Size of the 'SETUP' header.
cnt_info = dict()
# Reading only the fields of interest. Structure of the whole header at
# http://paulbourke.net/dataformats/eeg/
with open(input_fname, "rb", buffering=0) as fid:
fid.seek(21)
patient_id = read_str(fid, 20)
patient_id = int(patient_id) if patient_id.isdigit() else 0
fid.seek(121)
patient_name = read_str(fid, 20).split()
last_name = patient_name[0] if len(patient_name) > 0 else ""
first_name = patient_name[-1] if len(patient_name) > 0 else ""
fid.seek(2, 1)
sex = read_str(fid, 1)
if sex == "M":
sex = FIFF.FIFFV_SUBJ_SEX_MALE
elif sex == "F":
sex = FIFF.FIFFV_SUBJ_SEX_FEMALE
else: # can be 'U'
sex = FIFF.FIFFV_SUBJ_SEX_UNKNOWN
hand = read_str(fid, 1)
if hand == "R":
hand = FIFF.FIFFV_SUBJ_HAND_RIGHT
elif hand == "L":
hand = FIFF.FIFFV_SUBJ_HAND_LEFT
else: # can be 'M' for mixed or 'U'
hand = None
fid.seek(205)
session_label = read_str(fid, 20)
session_date = f"{read_str(fid, 10)} {read_str(fid, 12)}"
meas_date = _session_date_2_meas_date(session_date, date_format)
fid.seek(370)
n_channels = np.fromfile(fid, dtype="<u2", count=1).item()
fid.seek(376)
sfreq = np.fromfile(fid, dtype="<u2", count=1).item()
if eog == "header":
fid.seek(402)
eog = [idx for idx in np.fromfile(fid, dtype="i2", count=2) if idx >= 0]
fid.seek(438)
lowpass_toggle = np.fromfile(fid, "i1", count=1).item()
highpass_toggle = np.fromfile(fid, "i1", count=1).item()
# Header has a field for number of samples, but it does not seem to be
# too reliable. That's why we have option for setting n_bytes manually.
fid.seek(864)
n_samples = np.fromfile(fid, dtype="<u4", count=1).item()
n_samples_header = n_samples
fid.seek(869)
lowcutoff = np.fromfile(fid, dtype="f4", count=1).item()
fid.seek(2, 1)
highcutoff = np.fromfile(fid, dtype="f4", count=1).item()
event_offset = _compute_robust_event_table_position(
fid=fid, data_format=data_format
)
fid.seek(890)
cnt_info["continuous_seconds"] = np.fromfile(fid, dtype="<f4", count=1).item()
if event_offset < data_offset: # no events
data_size = n_samples * n_channels
else:
data_size = event_offset - (data_offset + 75 * n_channels)
_check_option("data_format", data_format, ["auto", "int16", "int32"])
if data_format == "auto":
if n_samples == 0 or data_size // (n_samples * n_channels) not in [2, 4]:
warn(
"Could not define the number of bytes automatically. "
"Defaulting to 2."
)
n_bytes = 2
n_samples = data_size // (n_bytes * n_channels)
# See: PR #12393
annotations = _read_annotations_cnt(input_fname, data_format="int16")
# See: PR #12986
if len(annotations) and annotations.onset[-1] * sfreq > n_samples:
n_bytes = 4
n_samples = n_samples_header
warn(
"Annotations are outside data range. "
"Changing data format to 'int32'."
)
else:
n_bytes = data_size // (n_samples * n_channels)
else:
n_bytes = 2 if data_format == "int16" else 4
n_samples = data_size // (n_bytes * n_channels)
# See PR #12393
if n_samples_header != 0:
n_samples = n_samples_header
# Channel offset refers to the size of blocks per channel in the file.
cnt_info["channel_offset"] = np.fromfile(fid, dtype="<i4", count=1).item()
if cnt_info["channel_offset"] > 1:
cnt_info["channel_offset"] //= n_bytes
else:
cnt_info["channel_offset"] = 1
ch_names, cals, baselines, chs, pos = (list(), list(), list(), list(), list())
bads = list()
_validate_type(header, str, "header")
_check_option("header", header, ("auto", "new", "old"))
for ch_idx in range(n_channels): # ELECTLOC fields
fid.seek(data_offset + 75 * ch_idx)
ch_name = read_str(fid, 10)
ch_names.append(ch_name)
# Some files have bad channels marked differently in the header.
if header in ("new", "auto"):
fid.seek(data_offset + 75 * ch_idx + 14)
if np.fromfile(fid, dtype="u1", count=1).item():
bads.append(ch_name)
if header in ("old", "auto"):
fid.seek(data_offset + 75 * ch_idx + 4)
if np.fromfile(fid, dtype="u1", count=1).item():
bads.append(ch_name)
fid.seek(data_offset + 75 * ch_idx + 19)
xy = np.fromfile(fid, dtype="f4", count=2)
xy[1] *= -1 # invert y-axis
pos.append(xy)
fid.seek(data_offset + 75 * ch_idx + 47)
# Baselines are subtracted before scaling the data.
baselines.append(np.fromfile(fid, dtype="i2", count=1).item())
fid.seek(data_offset + 75 * ch_idx + 59)
sensitivity = np.fromfile(fid, dtype="f4", count=1).item()
fid.seek(data_offset + 75 * ch_idx + 71)
cal = np.fromfile(fid, dtype="f4", count=1).item()
cals.append(cal * sensitivity * 1e-6 / 204.8)
info = _empty_info(sfreq)
if lowpass_toggle == 1:
info["lowpass"] = highcutoff
if highpass_toggle == 1:
info["highpass"] = lowcutoff
subject_info = {
"hand": hand,
"id": patient_id,
"sex": sex,
"first_name": first_name,
"last_name": last_name,
}
subject_info = {key: val for key, val in subject_info.items() if val is not None}
if eog == "auto":
eog = _find_channels(ch_names, "EOG")
if ecg == "auto":
ecg = _find_channels(ch_names, "ECG")
if emg == "auto":
emg = _find_channels(ch_names, "EMG")
chs = _create_chs(
ch_names, cals, FIFF.FIFFV_COIL_EEG, FIFF.FIFFV_EEG_CH, eog, ecg, emg, misc
)
eegs = [idx for idx, ch in enumerate(chs) if ch["coil_type"] == FIFF.FIFFV_COIL_EEG]
coords = _topo_to_sphere(pos, eegs)
locs = np.full((len(chs), 12), np.nan)
locs[:, :3] = coords
dig = _make_dig_points(
dig_ch_pos=dict(zip(ch_names, coords)),
coord_frame="head",
add_missing_fiducials=True,
)
for ch, loc in zip(chs, locs):
ch.update(loc=loc)
cnt_info.update(baselines=np.array(baselines), n_samples=n_samples, n_bytes=n_bytes)
session_label = None if str(session_label) == "" else str(session_label)
info.update(
meas_date=meas_date,
dig=dig,
description=session_label,
subject_info=subject_info,
chs=chs,
)
info._unlocked = False
info._update_redundant()
info["bads"] = bads
return info, cnt_info
@fill_doc
class RawCNT(BaseRaw):
"""Raw object from Neuroscan CNT file.
.. note::
The channel positions are read from the file header. Channels that are
not assigned with keywords ``eog``, ``ecg``, ``emg`` and ``misc`` are
assigned as eeg channels. All the eeg channel locations are fit to a
sphere when computing the z-coordinates for the channels. If channels
assigned as eeg channels have locations far away from the head (i.e.
x and y coordinates don't fit to a sphere), all the channel locations
will be distorted. If you are not sure that the channel locations in
the header are correct, it is probably safer to use a (standard)
montage. See :func:`mne.channels.make_standard_montage`
.. note::
A CNT file can also come from the EEG manufacturer ANT Neuro, in which case the
function :func:`mne.io.read_raw_ant` should be used.
Parameters
----------
input_fname : path-like
Path to the Neuroscan CNT file.
eog : list | tuple
Names of channels or list of indices that should be designated
EOG channels. If ``'auto'``, the channel names beginning with
``EOG`` are used. Defaults to empty tuple.
misc : list | tuple
Names of channels or list of indices that should be designated
MISC channels. Defaults to empty tuple.
ecg : list | tuple
Names of channels or list of indices that should be designated
ECG channels. If ``'auto'``, the channel names beginning with
``ECG`` are used. Defaults to empty tuple.
emg : list | tuple
Names of channels or list of indices that should be designated
EMG channels. If ``'auto'``, the channel names beginning with
``EMG`` are used. Defaults to empty tuple.
data_format : ``'auto'`` | ``'int16'`` | ``'int32'``
Defines the data format the data is read in. If ``'auto'``, it is
determined from the file header using ``numsamples`` field.
Defaults to ``'auto'``.
date_format : ``'mm/dd/yy'`` | ``'dd/mm/yy'``
Format of date in the header. Defaults to ``'mm/dd/yy'``.
header : ``'auto'`` | ``'new'`` | ``'old'``
Defines the header format. Used to describe how bad channels
are formatted. If auto, reads using old and new header and
if either contain a bad channel make channel bad.
Defaults to ``'auto'``.
%(preload)s
%(verbose)s
See Also
--------
mne.io.Raw : Documentation of attributes and methods.
"""
def __init__(
self,
input_fname,
eog=(),
misc=(),
ecg=(),
emg=(),
data_format="auto",
date_format="mm/dd/yy",
*,
header="auto",
preload=False,
verbose=None,
):
_check_option("date_format", date_format, ["mm/dd/yy", "dd/mm/yy"])
if date_format == "dd/mm/yy":
_date_format = "%d/%m/%y %H:%M:%S"
else:
_date_format = "%m/%d/%y %H:%M:%S"
input_fname = path.abspath(input_fname)
try:
info, cnt_info = _get_cnt_info(
input_fname, eog, ecg, emg, misc, data_format, _date_format, header
)
except Exception:
raise RuntimeError(
f"{_explain_exception()}\n"
"WARNING: mne.io.read_raw_cnt "
"supports Neuroscan CNT files only. If this file is an ANT Neuro CNT, "
"please use mne.io.read_raw_ant instead."
)
last_samps = [cnt_info["n_samples"] - 1]
super().__init__(
info,
preload,
filenames=[input_fname],
raw_extras=[cnt_info],
last_samps=last_samps,
orig_format="int",
verbose=verbose,
)
data_format = "int32" if cnt_info["n_bytes"] == 4 else "int16"
self.set_annotations(
_read_annotations_cnt(input_fname, data_format=data_format)
)
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Take a chunk of raw data, multiply by mult or cals, and store."""
n_channels = self._raw_extras[fi]["orig_nchan"]
if "stim_channel" in self._raw_extras[fi]:
f_channels = n_channels - 1 # Stim channel already read.
stim_ch = self._raw_extras[fi]["stim_channel"]
else:
f_channels = n_channels
stim_ch = None
channel_offset = self._raw_extras[fi]["channel_offset"]
baselines = self._raw_extras[fi]["baselines"]
n_bytes = self._raw_extras[fi]["n_bytes"]
n_samples = self._raw_extras[fi]["n_samples"]
dtype = "<i4" if n_bytes == 4 else "<i2"
chunk_size = channel_offset * f_channels # Size of chunks in file.
# The data is divided into blocks of samples / channel.
# channel_offset determines the amount of successive samples.
# Here we use sample offset to align the data because start can be in
# the middle of these blocks.
data_left = (stop - start) * f_channels
# Read up to 100 MB of data at a time, block_size is in data samples
block_size = ((int(100e6) // n_bytes) // chunk_size) * chunk_size
block_size = min(data_left, block_size)
s_offset = start % channel_offset
with open(self.filenames[fi], "rb", buffering=0) as fid:
fid.seek(900 + f_channels * (75 + (start - s_offset) * n_bytes))
for sample_start in np.arange(0, data_left, block_size) // f_channels:
# Earlier comment says n_samples is unreliable, but I think it
# is because it needed to be changed to unsigned int
# See: PR #12393
sample_stop = sample_start + min(
(
n_samples,
block_size // f_channels,
data_left // f_channels - sample_start,
)
)
n_samps = sample_stop - sample_start
one = np.zeros((n_channels, n_samps))
# In case channel offset and start time do not align perfectly,
# extra sample sets are read here to cover the desired time
# window. The whole (up to 100 MB) block is read at once and
# then reshaped to (n_channels, n_samples).
extra_samps = (
chunk_size
if (s_offset != 0 or n_samps % channel_offset != 0)
else 0
)
if s_offset >= (channel_offset / 2): # Extend at the end.
extra_samps += chunk_size
count = n_samps // channel_offset * chunk_size + extra_samps
n_chunks = count // chunk_size
samps = np.fromfile(fid, dtype=dtype, count=count)
samps = samps.reshape((n_chunks, f_channels, channel_offset), order="C")
# Intermediate shaping to chunk sizes.
block = np.zeros((n_channels, channel_offset * n_chunks))
for set_idx, row in enumerate(samps): # Final shape.
block_slice = slice(
set_idx * channel_offset, (set_idx + 1) * channel_offset
)
block[:f_channels, block_slice] = row
if "stim_channel" in self._raw_extras[fi]:
_data_start = start + sample_start
_data_stop = start + sample_stop
block[-1] = stim_ch[_data_start:_data_stop]
one[idx] = block[idx, s_offset : n_samps + s_offset]
one[idx] -= baselines[idx][:, None]
_mult_cal_one(data[:, sample_start:sample_stop], one, idx, cals, mult)
|