1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
"""Read .res4 files."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import os.path as op
import numpy as np
from ...utils import logger
from .constants import CTF
def _make_ctf_name(directory, extra, raise_error=True):
"""Make a CTF name."""
fname = op.join(directory, op.basename(directory)[:-3] + "." + extra)
found = True
if not op.isfile(fname):
if raise_error:
raise OSError(f"Standard file {fname} not found")
found = False
return fname, found
def _read_double(fid, n=1):
"""Read a double."""
return np.fromfile(fid, ">f8", n)
def _read_string(fid, n_bytes, decode=True):
"""Read string."""
s0 = fid.read(n_bytes)
s = s0.split(b"\x00")[0]
return s.decode("utf-8") if decode else s
def _read_ustring(fid, n_bytes):
"""Read unsigned character string."""
return np.fromfile(fid, ">B", n_bytes)
def _read_int2(fid):
"""Read int from short."""
return _auto_cast(np.fromfile(fid, ">i2", 1)[0])
def _read_int(fid):
"""Read a 32-bit integer."""
return np.fromfile(fid, ">i4", 1)[0]
def _move_to_next(fid, byte=8):
"""Move to next byte boundary."""
now = fid.tell()
if now % byte != 0:
now = now - (now % byte) + byte
fid.seek(now, 0)
def _read_filter(fid):
"""Read filter information."""
f = dict()
f["freq"] = _read_double(fid)[0]
f["class"] = _read_int(fid)
f["type"] = _read_int(fid)
f["npar"] = _read_int2(fid)
f["pars"] = _read_double(fid, f["npar"])
return f
def _read_comp_coeff(fid, d):
"""Read compensation coefficients."""
# Read the coefficients and initialize
d["ncomp"] = _read_int2(fid)
d["comp"] = list()
# Read each record
dt = np.dtype(
[
("sensor_name", "S32"),
("coeff_type", ">i4"),
("d0", ">i4"),
("ncoeff", ">i2"),
("sensors", f"S{CTF.CTFV_SENSOR_LABEL}", CTF.CTFV_MAX_BALANCING),
("coeffs", ">f8", CTF.CTFV_MAX_BALANCING),
]
)
comps = np.fromfile(fid, dt, d["ncomp"])
for k in range(d["ncomp"]):
comp = dict()
d["comp"].append(comp)
comp["sensor_name"] = comps["sensor_name"][k].split(b"\x00")[0].decode("utf-8")
comp["coeff_type"] = comps["coeff_type"][k].item()
comp["ncoeff"] = comps["ncoeff"][k].item()
comp["sensors"] = [
s.split(b"\x00")[0].decode("utf-8")
for s in comps["sensors"][k][: comp["ncoeff"]]
]
comp["coeffs"] = comps["coeffs"][k][: comp["ncoeff"]]
comp["scanno"] = d["ch_names"].index(comp["sensor_name"])
def _read_res4(dsdir):
"""Read the magical res4 file."""
# adapted from read_res4.c
name, _ = _make_ctf_name(dsdir, "res4")
res = dict()
with open(name, "rb") as fid:
# Read the fields
res["head"] = _read_string(fid, 8)
res["appname"] = _read_string(fid, 256)
res["origin"] = _read_string(fid, 256)
res["desc"] = _read_string(fid, 256)
res["nave"] = _read_int2(fid)
res["data_time"] = _read_string(fid, 255)
res["data_date"] = _read_string(fid, 255)
# Seems that date and time can be swapped
# (are they entered manually?!)
if "/" in res["data_time"] and ":" in res["data_date"]:
data_date = res["data_date"]
res["data_date"] = res["data_time"]
res["data_time"] = data_date
res["nsamp"] = _read_int(fid)
res["nchan"] = _read_int2(fid)
_move_to_next(fid, 8)
res["sfreq"] = _read_double(fid)[0]
res["epoch_time"] = _read_double(fid)[0]
res["no_trials"] = _read_int2(fid)
_move_to_next(fid, 4)
res["pre_trig_pts"] = _read_int(fid)
res["no_trials_done"] = _read_int2(fid)
res["no_trials_bst_message_windowlay"] = _read_int2(fid)
_move_to_next(fid, 4)
res["save_trials"] = _read_int(fid)
res["primary_trigger"] = fid.read(1)
res["secondary_trigger"] = [
fid.read(1) for k in range(CTF.CTFV_MAX_AVERAGE_BINS)
]
res["trigger_polarity_mask"] = fid.read(1)
res["trigger_mode"] = _read_int2(fid)
_move_to_next(fid, 4)
res["accept_reject"] = _read_int(fid)
res["run_time_bst_message_windowlay"] = _read_int2(fid)
_move_to_next(fid, 4)
res["zero_head"] = _read_int(fid)
_move_to_next(fid, 4)
res["artifact_mode"] = _read_int(fid)
_read_int(fid) # padding
res["nf_run_name"] = _read_string(fid, 32)
res["nf_run_title"] = _read_string(fid, 256)
res["nf_instruments"] = _read_string(fid, 32)
res["nf_collect_descriptor"] = _read_string(fid, 32)
res["nf_subject_id"] = _read_string(fid, 32)
res["nf_operator"] = _read_string(fid, 32)
if len(res["nf_operator"]) == 0:
res["nf_operator"] = None
res["nf_sensor_file_name"] = _read_ustring(fid, 60)
_move_to_next(fid, 4)
res["rdlen"] = _read_int(fid)
fid.seek(CTF.FUNNY_POS, 0)
if res["rdlen"] > 0:
res["run_desc"] = _read_string(fid, res["rdlen"])
# Filters
res["nfilt"] = _read_int2(fid)
res["filters"] = list()
for k in range(res["nfilt"]):
res["filters"].append(_read_filter(fid))
# Channel information (names, then data)
res["ch_names"] = list()
for k in range(res["nchan"]):
ch_name = _read_string(fid, 32)
res["ch_names"].append(ch_name)
_coil_dt = np.dtype(
[
("pos", ">f8", 3),
("d0", ">f8"),
("norm", ">f8", 3),
("d1", ">f8"),
("turns", ">i2"),
("d2", ">i4"),
("d3", ">i2"),
("area", ">f8"),
]
)
_ch_dt = np.dtype(
[
("sensor_type_index", ">i2"),
("original_run_no", ">i2"),
("coil_type", ">i4"),
("proper_gain", ">f8"),
("qgain", ">f8"),
("io_gain", ">f8"),
("io_offset", ">f8"),
("num_coils", ">i2"),
("grad_order_no", ">i2"),
("d0", ">i4"),
("coil", _coil_dt, CTF.CTFV_MAX_COILS),
("head_coil", _coil_dt, CTF.CTFV_MAX_COILS),
]
)
chs = np.fromfile(fid, _ch_dt, res["nchan"])
for coil in (chs["coil"], chs["head_coil"]):
coil["pos"] /= 100.0
coil["area"] *= 1e-4
# convert to dict
chs = [dict(zip(chs.dtype.names, x)) for x in chs]
for ch in chs:
for key, val in ch.items():
ch[key] = _auto_cast(val)
res["chs"] = chs
for k in range(res["nchan"]):
res["chs"][k]["ch_name"] = res["ch_names"][k]
# The compensation coefficients
_read_comp_coeff(fid, res)
logger.info(" res4 data read.")
return res
def _auto_cast(x):
# Upcast scalars
if isinstance(x, np.ScalarType):
if x.dtype.kind == "i":
if x.dtype != np.int64:
x = x.astype(np.int64)
elif x.dtype.kind == "f":
if x.dtype != np.float64:
x = x.astype(np.float64)
return x
|