File: test_edf.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (1192 lines) | stat: -rw-r--r-- 38,947 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

import datetime
from contextlib import nullcontext
from functools import partial
from pathlib import Path

import numpy as np
import pytest
from numpy.testing import (
    assert_allclose,
    assert_array_almost_equal,
    assert_array_equal,
    assert_equal,
)
from scipy.io import loadmat

from mne import Annotations, pick_types
from mne._fiff.pick import channel_indices_by_type, get_channel_type_constants
from mne.annotations import _ndarray_ch_names, events_from_annotations, read_annotations
from mne.datasets import testing
from mne.io import edf, read_raw_bdf, read_raw_edf, read_raw_fif, read_raw_gdf
from mne.io.edf.edf import (
    _edf_str,
    _parse_prefilter_string,
    _prefilter_float,
    _read_annotations_edf,
    _read_ch,
    _read_edf_header,
    _read_header,
    _set_prefilter,
)
from mne.io.tests.test_raw import _test_raw_reader
from mne.tests.test_annotations import _assert_annotations_equal
from mne.utils import _record_warnings

td_mark = testing._pytest_mark()

data_dir = Path(__file__).parent / "data"
montage_path = data_dir / "biosemi.hpts"  # XXX: missing reader
bdf_path = data_dir / "test.bdf"
edf_path = data_dir / "test.edf"
duplicate_channel_labels_path = data_dir / "duplicate_channel_labels.edf"
edf_uneven_path = data_dir / "test_uneven_samp.edf"
bdf_eeglab_path = data_dir / "test_bdf_eeglab.mat"
edf_stim_channel_path = data_dir / "test_edf_stim_channel.edf"
edf_txt_stim_channel_path = data_dir / "test_edf_stim_channel.txt"

data_path = testing.data_path(download=False)
edf_stim_resamp_path = data_path / "EDF" / "test_edf_stim_resamp.edf"
edf_overlap_annot_path = data_path / "EDF" / "test_edf_overlapping_annotations.edf"
edf_reduced = data_path / "EDF" / "test_reduced.edf"
edf_annot_only = data_path / "EDF" / "SC4001EC-Hypnogram.edf"
bdf_stim_channel_path = data_path / "BDF" / "test_bdf_stim_channel.bdf"
bdf_multiple_annotations_path = data_path / "BDF" / "multiple_annotation_chans.bdf"
test_generator_bdf = data_path / "BDF" / "test_generator_2.bdf"
test_generator_edf = data_path / "EDF" / "test_generator_2.edf"
edf_annot_sub_s_path = data_path / "EDF" / "subsecond_starttime.edf"
edf_chtypes_path = data_path / "EDF" / "chtypes_edf.edf"
edf_utf8_annotations = data_path / "EDF" / "test_utf8_annotations.edf"

eog = ["REOG", "LEOG", "IEOG"]
misc = ["EXG1", "EXG5", "EXG8", "M1", "M2"]


def test_orig_units():
    """Test exposure of original channel units."""
    raw = read_raw_edf(edf_path, preload=True)

    # Test original units
    orig_units = raw._orig_units
    assert len(orig_units) == len(raw.ch_names)
    assert orig_units["A1"] == "µV"  # formerly 'uV' edit by _check_orig_units
    del orig_units

    raw.rename_channels(dict(A1="AA"))
    assert raw._orig_units["AA"] == "µV"
    raw.rename_channels(dict(AA="A1"))

    raw_back = raw.copy().pick(raw.ch_names[:1])  # _pick_drop_channels
    assert raw_back.ch_names == ["A1"]
    assert set(raw_back._orig_units) == {"A1"}
    raw_back.add_channels([raw.copy().pick(raw.ch_names[1:])])
    assert raw_back.ch_names == raw.ch_names
    assert set(raw_back._orig_units) == set(raw.ch_names)
    raw_back.reorder_channels(raw.ch_names[::-1])
    assert set(raw_back._orig_units) == set(raw.ch_names)


def test_units_params():
    """Test enforcing original channel units."""
    with pytest.raises(
        ValueError, match=r"Unit for channel .* is present .* cannot overwrite it"
    ):
        _ = read_raw_edf(edf_path, units="V", preload=True)


def test_edf_temperature(monkeypatch):
    """Test that we can parse temperature channel type."""
    raw = read_raw_edf(edf_path)
    assert raw.get_channel_types()[0] == "eeg"

    def _first_chan_temp(*args, **kwargs):
        out, orig_units = _read_edf_header(*args, **kwargs)
        out["ch_types"][0] = "TEMP"
        return out, orig_units

    monkeypatch.setattr(edf.edf, "_read_edf_header", _first_chan_temp)
    raw = read_raw_edf(edf_path)
    assert "temperature" in raw
    assert raw.get_channel_types()[0] == "temperature"


@testing.requires_testing_data
def test_subject_info(tmp_path):
    """Test exposure of original channel units."""
    raw = read_raw_edf(edf_stim_resamp_path, preload=True)

    # check subject_info from `info`
    assert raw.info["subject_info"] is not None
    want = {
        "his_id": "X",
        "sex": 1,
        "birthday": datetime.date(1967, 10, 9),
        "last_name": "X",
    }
    for key, val in want.items():
        assert raw.info["subject_info"][key] == val, key

    # add information
    raw.info["subject_info"]["hand"] = 0

    # save raw to FIF and load it back
    fname = tmp_path / "test_raw.fif"
    raw.save(fname)
    raw = read_raw_fif(fname)

    # check subject_info from `info`
    assert raw.info["subject_info"] is not None
    want = {
        "his_id": "X",
        "sex": 1,
        "birthday": datetime.date(1967, 10, 9),
        "last_name": "X",
        "hand": 0,
    }
    for key, val in want.items():
        assert raw.info["subject_info"][key] == val


def test_bdf_data():
    """Test reading raw bdf files."""
    # XXX BDF data for these is around 0.01 when it should be in the uV range,
    # probably some bug
    test_scaling = False
    raw_py = _test_raw_reader(
        read_raw_bdf,
        input_fname=bdf_path,
        eog=eog,
        misc=misc,
        exclude=["M2", "IEOG"],
        test_scaling=test_scaling,
    )
    assert len(raw_py.ch_names) == 71
    raw_py = _test_raw_reader(
        read_raw_bdf,
        input_fname=bdf_path,
        montage="biosemi64",
        eog=eog,
        misc=misc,
        exclude=["M2", "IEOG"],
        test_scaling=test_scaling,
    )
    assert len(raw_py.ch_names) == 71
    assert "RawEDF" in repr(raw_py)
    picks = pick_types(raw_py.info, meg=False, eeg=True, exclude="bads")
    data_py, _ = raw_py[picks]

    # this .mat was generated using the EEG Lab Biosemi Reader
    raw_eeglab = loadmat(bdf_eeglab_path)
    raw_eeglab = raw_eeglab["data"] * 1e-6  # data are stored in microvolts
    data_eeglab = raw_eeglab[picks]
    # bdf saved as a single, resolution to seven decimal points in matlab
    assert_array_almost_equal(data_py, data_eeglab, 8)

    # Manually checking that float coordinates are imported
    assert (raw_py.info["chs"][0]["loc"]).any()
    assert (raw_py.info["chs"][25]["loc"]).any()
    assert (raw_py.info["chs"][63]["loc"]).any()


@testing.requires_testing_data
def test_bdf_crop_save_stim_channel(tmp_path):
    """Test EDF with various sampling rates."""
    raw = read_raw_bdf(bdf_stim_channel_path)
    raw.save(tmp_path / "test-raw.fif", tmin=1.2, tmax=4.0, overwrite=True)


@testing.requires_testing_data
@pytest.mark.parametrize(
    "fname",
    [
        edf_reduced,
        edf_overlap_annot_path,
    ],
)
@pytest.mark.parametrize("stim_channel", (None, False, "auto"))
def test_edf_others(fname, stim_channel):
    """Test EDF with various sampling rates and overlapping annotations."""
    _test_raw_reader(
        read_raw_edf,
        input_fname=fname,
        stim_channel=stim_channel,
        verbose="error",
        test_preloading=False,
        preload=True,  # no preload=False for mixed sfreqs
    )


@testing.requires_testing_data
@pytest.mark.parametrize("stim_channel", (None, False, "auto"))
def test_edf_different_sfreqs(stim_channel):
    """Test EDF with various sampling rates."""
    rng = np.random.RandomState(0)
    # load with and without preloading, should produce the same results
    raw1 = read_raw_edf(
        input_fname=edf_reduced,
        stim_channel=stim_channel,
        verbose="error",
        preload=False,
    )
    raw2 = read_raw_edf(
        input_fname=edf_reduced,
        stim_channel=stim_channel,
        verbose="error",
        preload=True,
    )

    picks = rng.permutation(np.arange(len(raw1.ch_names) - 1))[:10]
    data1, times1 = raw1[picks, :]
    data2, times2 = raw2[picks, :]
    assert_allclose(data1, data2, err_msg="Data mismatch with preload")
    assert_allclose(times1, times2)

    # loading slices should throw a warning as they have different
    # edge artifacts than when loading the entire file at once
    with pytest.warns(RuntimeWarning, match="mixed sampling frequencies"):
        data1, times1 = raw1[picks, :512]
    data2, times2 = raw2[picks, :512]

    # should NOT throw a warning when loading channels that have all the same
    # sampling frequency - here, no edge artifacts can appear
    picks = np.arange(15, 20)  # these channels all have 512 Hz
    data1, times1 = raw1[picks, :512]
    data2, times2 = raw2[picks, :512]
    assert_allclose(data1, data2, err_msg="Data mismatch with preload")
    assert_allclose(times1, times2)


def test_edf_data_broken(tmp_path):
    """Test edf files."""
    raw = _test_raw_reader(
        read_raw_edf,
        input_fname=edf_path,
        exclude=["Ergo-Left", "H10"],
        verbose="error",
    )
    raw_py = read_raw_edf(edf_path)
    data = raw_py.get_data()
    assert_equal(len(raw.ch_names) + 2, len(raw_py.ch_names))

    # Test with number of records not in header (-1).
    broken_fname = tmp_path / "broken.edf"
    with open(edf_path, "rb") as fid_in:
        fid_in.seek(0, 2)
        n_bytes = fid_in.tell()
        fid_in.seek(0, 0)
        rbytes = fid_in.read()
    with open(broken_fname, "wb") as fid_out:
        fid_out.write(rbytes[:236])
        fid_out.write(b"-1      ")
        fid_out.write(rbytes[244 : 244 + int(n_bytes * 0.4)])
    with pytest.warns(RuntimeWarning, match="records .* not match the file size"):
        raw = read_raw_edf(broken_fname, preload=True)
        read_raw_edf(broken_fname, exclude=raw.ch_names[:132], preload=True)

    # Test with \x00's in the data
    with open(broken_fname, "wb") as fid_out:
        fid_out.write(rbytes[:184])
        assert rbytes[184:192] == b"36096   "
        fid_out.write(rbytes[184:192].replace(b" ", b"\x00"))
        fid_out.write(rbytes[192:])
    raw_py = read_raw_edf(broken_fname)
    data_new = raw_py.get_data()
    assert_allclose(data, data_new)


def test_duplicate_channel_labels_edf():
    """Test reading edf file with duplicate channel names."""
    EXPECTED_CHANNEL_NAMES = ["EEG F1-Ref-0", "EEG F2-Ref", "EEG F1-Ref-1"]
    with pytest.warns(RuntimeWarning, match="Channel names are not unique"):
        raw = read_raw_edf(duplicate_channel_labels_path, preload=False)

    assert raw.ch_names == EXPECTED_CHANNEL_NAMES


def test_parse_annotation(tmp_path):
    """Test parsing the tal channel."""
    # test the parser
    annot = (
        b"+180\x14Lights off\x14Close door\x14\x00\x00\x00\x00\x00"
        b"+180\x14Lights off\x14\x00\x00\x00\x00\x00\x00\x00\x00"
        b"+180\x14Close door\x14\x00\x00\x00\x00\x00\x00\x00\x00"
        b"+3.14\x1504.20\x14nothing\x14\x00\x00\x00\x00"
        b"+1800.2\x1525.5\x14Apnea\x14\x00\x00\x00\x00\x00\x00\x00"
        b"+123\x14\x14\x00\x00\x00\x00\x00\x00\x00"
    )
    annot_file = tmp_path / "annotations.txt"
    with open(annot_file, "wb") as f:
        f.write(annot)

    annot = [a for a in bytes(annot)]
    annot[1::2] = [a * 256 for a in annot[1::2]]
    tal_channel_A = np.array(
        list(map(sum, zip(annot[0::2], annot[1::2]))), dtype=np.int64
    )

    with open(annot_file, "rb") as fid:
        # ch_data = np.fromfile(fid, dtype='<i2', count=len(annot))
        tal_channel_B = _read_ch(
            fid,
            subtype="EDF",
            dtype="<i2",
            samp=(len(annot) - 1) // 2,
            dtype_byte="This_parameter_is_not_used",
        )

    want_onset, want_duration, want_description = zip(
        *[
            [3.14, 4.2, "nothing"],
            [180.0, 0.0, "Lights off"],
            [180.0, 0.0, "Close door"],
            [180.0, 0.0, "Lights off"],
            [180.0, 0.0, "Close door"],
            [1800.2, 25.5, "Apnea"],
        ]
    )
    for tal_channel in [tal_channel_A, tal_channel_B]:
        annotations = _read_annotations_edf([tal_channel])
        assert_allclose(annotations.onset, want_onset)
        assert_allclose(annotations.duration, want_duration)
        assert_array_equal(annotations.description, want_description)


def test_find_events_backward_compatibility():
    """Test if events are detected correctly in a typical MNE workflow."""
    EXPECTED_EVENTS = [[68, 0, 2], [199, 0, 2], [1024, 0, 3], [1280, 0, 2]]
    # test an actual file
    raw = read_raw_edf(edf_path, preload=True)
    event_id = {
        a: n for n, a in enumerate(sorted(set(raw.annotations.description)), start=1)
    }
    event_id.pop("start")
    events_from_EFA, _ = events_from_annotations(
        raw, event_id=event_id, use_rounding=False
    )

    assert_array_equal(events_from_EFA, EXPECTED_EVENTS)


@testing.requires_testing_data
def test_no_data_channels():
    """Test that we can load with no data channels."""
    # analog
    raw = read_raw_edf(edf_path, preload=True)
    picks = pick_types(raw.info, stim=True)
    assert list(picks) == [len(raw.ch_names) - 1]
    stim_data = raw[picks][0]
    raw = read_raw_edf(edf_path, exclude=raw.ch_names[:-1])
    stim_data_2 = raw[0][0]
    assert_array_equal(stim_data, stim_data_2)
    raw.plot()  # smoke test
    # annotations
    raw = read_raw_edf(edf_overlap_annot_path)
    picks = pick_types(raw.info, stim=True)
    assert picks.size == 0
    annot = raw.annotations
    raw = read_raw_edf(edf_overlap_annot_path, exclude=raw.ch_names)
    annot_2 = raw.annotations
    _assert_annotations_equal(annot, annot_2)
    # only annotations (should warn)
    with _record_warnings(), pytest.warns(RuntimeWarning, match="read_annotations"):
        read_raw_edf(edf_annot_only)


@pytest.mark.parametrize("fname", [edf_path, bdf_path])
def test_to_data_frame(fname):
    """Test EDF/BDF Raw Pandas exporter."""
    pytest.importorskip("pandas")
    ext = fname.suffix
    if ext == ".edf":
        raw = read_raw_edf(fname, preload=True, verbose="error")
    elif ext == ".bdf":
        raw = read_raw_bdf(fname, preload=True, verbose="error")
    _, times = raw[0, :10]
    df = raw.to_data_frame(index="time")
    assert (df.columns == raw.ch_names).all()
    assert_array_equal(times, df.index.values[:10])
    df = raw.to_data_frame(index=None, scalings={"eeg": 1e13})
    assert "time" in df.columns
    assert_array_equal(df.values[:, 1], raw._data[0] * 1e13)


def test_read_raw_edf_stim_channel_input_parameters():
    """Test edf raw reader stim channel kwarg changes."""
    read_raw_edf(edf_path)  # smoke test, no warnings
    for invalid_stim_parameter in ["EDF Annotations", "BDF Annotations"]:
        with pytest.raises(ValueError, match="stim channel is not supported"):
            read_raw_edf(edf_path, stim_channel=invalid_stim_parameter)


def test_read_annot(tmp_path):
    """Test parsing the tal channel."""
    EXPECTED_ANNOTATIONS = [
        [180.0, 0, "Lights off"],
        [180.0, 0, "Close door"],
        [180.0, 0, "Lights off"],
        [180.0, 0, "Close door"],
        [3.14, 4.2, "nothing"],
        [1800.2, 25.5, "Apnea"],
    ]

    EXPECTED_ONSET = [180.0, 180.0, 180.0, 180.0, 3.14, 1800.2]
    EXPECTED_DURATION = [0, 0, 0, 0, 4.2, 25.5]
    EXPECTED_DESC = [
        "Lights off",
        "Close door",
        "Lights off",
        "Close door",
        "nothing",
        "Apnea",
    ]
    EXPECTED_ANNOTATIONS = Annotations(
        onset=EXPECTED_ONSET,
        duration=EXPECTED_DURATION,
        description=EXPECTED_DESC,
        orig_time=None,
    )

    annot = (
        b"+180\x14Lights off\x14Close door\x14\x00\x00\x00\x00\x00"
        b"+180\x14Lights off\x14\x00\x00\x00\x00\x00\x00\x00\x00"
        b"+180\x14Close door\x14\x00\x00\x00\x00\x00\x00\x00\x00"
        b"+3.14\x1504.20\x14nothing\x14\x00\x00\x00\x00"
        b"+1800.2\x1525.5\x14Apnea\x14\x00\x00\x00\x00\x00\x00\x00"
        b"+123\x14\x14\x00\x00\x00\x00\x00\x00\x00"
    )
    annot_file = tmp_path / "annotations.txt"
    with open(annot_file, "wb") as f:
        f.write(annot)

    annotations = _read_annotations_edf(annotations=str(annot_file))
    _assert_annotations_equal(annotations, EXPECTED_ANNOTATIONS)

    # Now test when reading from buffer of data
    with open(annot_file, "rb") as fid:
        ch_data = np.fromfile(fid, dtype="<i2", count=len(annot))
    annotations = _read_annotations_edf([ch_data])
    _assert_annotations_equal(annotations, EXPECTED_ANNOTATIONS)


@testing.requires_testing_data
@pytest.mark.parametrize("fname", [test_generator_edf, test_generator_bdf])
def test_read_annotations(fname, recwarn):
    """Test IO of annotations from edf and bdf files via regexp."""
    annot = read_annotations(fname)
    assert len(annot.onset) == 2


@testing.requires_testing_data
def test_read_utf8_annotations():
    """Test if UTF8 annotations can be read."""
    raw = read_raw_edf(edf_utf8_annotations)
    assert raw.annotations[0]["description"] == "RECORD START"
    assert raw.annotations[1]["description"] == "仰卧"


def test_read_annotations_edf(tmp_path):
    """Test reading annotations from EDF file."""
    annot = (
        b"+1.1\x14Event A@@CH1\x14\x00\x00"
        b"+1.2\x14Event A\x14\x00\x00"
        b"+1.3\x14Event B@@CH1\x14\x00\x00"
        b"+1.3\x14Event B@@CH2\x14\x00\x00"
        b"+1.4\x14Event A@@CH3\x14\x00\x00"
        b"+1.5\x14Event B\x14\x00\x00"
    )
    annot_file = tmp_path / "annotations.edf"
    with open(annot_file, "wb") as f:
        f.write(annot)

    # Test reading annotations from channel data
    with open(annot_file, "rb") as f:
        tal_channel = _read_ch(
            f,
            subtype="EDF",
            dtype="<i2",
            samp=-1,
            dtype_byte=None,
        )

    # Read annotations without input channel names: annotations are left untouched and
    # assigned as global
    annotations = _read_annotations_edf(tal_channel, ch_names=None, encoding="latin1")
    assert_allclose(annotations.onset, [1.1, 1.2, 1.3, 1.3, 1.4, 1.5])
    assert not any(annotations.duration)  # all durations are 0
    assert_array_equal(
        annotations.description,
        [
            "Event A@@CH1",
            "Event A",
            "Event B@@CH1",
            "Event B@@CH2",
            "Event A@@CH3",
            "Event B",
        ],
    )
    assert_array_equal(
        annotations.ch_names, _ndarray_ch_names([(), (), (), (), (), ()])
    )

    # Read annotations with complete input channel names: each annotation is parsed and
    # associated to a channel
    annotations = _read_annotations_edf(
        tal_channel, ch_names=["CH1", "CH2", "CH3"], encoding="latin1"
    )
    assert_allclose(annotations.onset, [1.1, 1.2, 1.3, 1.4, 1.5])
    assert not any(annotations.duration)  # all durations are 0
    assert_array_equal(
        annotations.description, ["Event A", "Event A", "Event B", "Event A", "Event B"]
    )
    assert_array_equal(
        annotations.ch_names,
        _ndarray_ch_names([("CH1",), (), ("CH1", "CH2"), ("CH3",), ()]),
    )

    # Read annotations with incomplete input channel names: "CH3" is missing from input
    # channels, turning the related annotation into a global one
    annotations = _read_annotations_edf(
        tal_channel, ch_names=["CH1", "CH2"], encoding="latin1"
    )
    assert_allclose(annotations.onset, [1.1, 1.2, 1.3, 1.4, 1.5])
    assert not any(annotations.duration)  # all durations are 0
    assert_array_equal(
        annotations.description,
        ["Event A", "Event A", "Event B", "Event A@@CH3", "Event B"],
    )
    assert_array_equal(
        annotations.ch_names, _ndarray_ch_names([("CH1",), (), ("CH1", "CH2"), (), ()])
    )


def test_read_latin1_annotations(tmp_path):
    """Test if annotations encoded as Latin-1 can be read.

    Note that the correct encoding according to the EDF+ standard should be
    UTF8, but many real-world files are saved with the Latin-1 encoding.
    """
    annot = (
        b"+1.1\x14\xe9\x14\x00\x00"  # +1.1 é
        b"+1.2\x14\xe0\x14\x00\x00"  # +1.2 à
        b"+1.3\x14\xe8\x14\x00\x00"  # +1.3 è
        b"+1.4\x14\xf9\x14\x00\x00"  # +1.4 ù
        b"+1.5\x14\xe2\x14\x00\x00"  # +1.5 â
        b"+1.6\x14\xea\x14\x00\x00"  # +1.6 ê
        b"+1.7\x14\xee\x14\x00\x00"  # +1.7 î
        b"+1.8\x14\xf4\x14\x00\x00"  # +1.8 ô
        b"+1.9\x14\xfb\x14\x00\x00"  # +1.9 û
    )
    annot_file = tmp_path / "annotations.edf"
    with open(annot_file, "wb") as f:
        f.write(annot)

    # Test reading directly from file
    annotations = read_annotations(fname=annot_file, encoding="latin1")
    assert_allclose(annotations.onset, [1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9])
    assert not any(annotations.duration)  # all durations are 0
    assert_array_equal(
        annotations.description, ["é", "à", "è", "ù", "â", "ê", "î", "ô", "û"]
    )

    # Test reading annotations from channel data
    with open(annot_file, "rb") as f:
        tal_channel = _read_ch(
            f,
            subtype="EDF",
            dtype="<i2",
            samp=-1,
            dtype_byte=None,
        )
    annotations = _read_annotations_edf(tal_channel, encoding="latin1")
    assert_allclose(annotations.onset, [1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9])
    assert not any(annotations.duration)  # all durations are 0
    assert_array_equal(
        annotations.description, ["é", "à", "è", "ù", "â", "ê", "î", "ô", "û"]
    )

    with pytest.raises(Exception, match="Encountered invalid byte in"):
        _read_annotations_edf(tal_channel)  # default encoding="utf8" fails
    with pytest.raises(Exception, match="'utf-8' codec can't decode.*"):
        _read_annotations_edf(str(annot_file))  # default encoding="utf8" fails


@pytest.mark.parametrize(
    "prefiltering, hp, lp",
    [
        pytest.param(["HP: 1Hz LP: 30Hz"], ["1"], ["30"], id="basic edf"),
        pytest.param(["LP: 30Hz HP: 1Hz"], ["1"], ["30"], id="reversed order"),
        pytest.param(["HP: 1 LP: 30"], ["1"], ["30"], id="w/o Hz"),
        pytest.param(["HP: 0,1 LP: 30,5"], ["0.1"], ["30.5"], id="using comma"),
        pytest.param(
            ["HP:0.1Hz LP:75Hz N:50Hz"], ["0.1"], ["75"], id="with notch filter"
        ),
        pytest.param([""], [""], [""], id="empty string"),
        pytest.param(["HP: DC; LP: 410"], ["DC"], ["410"], id="bdf_dc"),
        pytest.param(
            ["", "HP:0.1Hz LP:75Hz N:50Hz", ""],
            ["", "0.1", ""],
            ["", "75", ""],
            id="multi-ch",
        ),
    ],
)
def test_edf_parse_prefilter_string(prefiltering, hp, lp):
    """Test prefilter strings from header are parsed correctly."""
    highpass, lowpass = _parse_prefilter_string(prefiltering)
    assert_array_equal(highpass, hp)
    assert_array_equal(lowpass, lp)


@pytest.mark.parametrize(
    "prefilter_string, expected",
    [
        ("0", 0),
        ("1.1", 1.1),
        ("DC", 0),
        ("", np.nan),
        ("1.1.1", np.nan),
        (1.1, 1.1),
        (1, 1),
        (np.float32(1.1), np.float32(1.1)),
        (np.nan, np.nan),
    ],
)
def test_edf_prefilter_float(prefilter_string, expected):
    """Test to make float from prefilter string."""
    assert_equal(_prefilter_float(prefilter_string), expected)


@pytest.mark.parametrize(
    "edf_info, hp, lp, hp_warn, lp_warn",
    [
        ({"highpass": ["0"], "lowpass": ["1.1"]}, -1, 1.1, False, False),
        ({"highpass": [""], "lowpass": [""]}, -1, -1, False, False),
        ({"highpass": ["DC"], "lowpass": [""]}, -1, -1, False, False),
        ({"highpass": [1], "lowpass": [2]}, 1, 2, False, False),
        ({"highpass": [np.nan], "lowpass": [np.nan]}, -1, -1, False, False),
        ({"highpass": ["1", "2"], "lowpass": ["3", "4"]}, 2, 3, True, True),
        ({"highpass": [np.nan, 1], "lowpass": ["", 3]}, 1, 3, True, True),
        ({"highpass": [np.nan, np.nan], "lowpass": [1, 2]}, -1, 1, False, True),
        ({}, -1, -1, False, False),
    ],
)
def test_edf_set_prefilter(edf_info, hp, lp, hp_warn, lp_warn):
    """Test _set_prefilter function."""
    info = {"lowpass": -1, "highpass": -1}

    if hp_warn:
        ctx = pytest.warns(
            RuntimeWarning,
            match=(
                "Channels contain different highpass filters. "
                "Highest filter setting will be stored."
            ),
        )
    else:
        ctx = nullcontext()
    with ctx:
        _set_prefilter(
            info, edf_info, list(range(len(edf_info.get("highpass", [])))), "highpass"
        )

    if lp_warn:
        ctx = pytest.warns(
            RuntimeWarning,
            match=(
                "Channels contain different lowpass filters. "
                "Lowest filter setting will be stored."
            ),
        )
    else:
        ctx = nullcontext()
    with ctx:
        _set_prefilter(
            info, edf_info, list(range(len(edf_info.get("lowpass", [])))), "lowpass"
        )
    assert info["highpass"] == hp
    assert info["lowpass"] == lp


@testing.requires_testing_data
@pytest.mark.parametrize("fname", [test_generator_edf, test_generator_bdf])
def test_load_generator(fname, recwarn):
    """Test IO of annotations from edf and bdf files with raw info."""
    if fname.suffix == ".edf":
        raw = read_raw_edf(fname)
    elif fname.suffix == ".bdf":
        raw = read_raw_bdf(fname)
    assert len(raw.annotations.onset) == 2
    found_types = [
        k for k, v in channel_indices_by_type(raw.info, picks=None).items() if v
    ]
    assert len(found_types) == 1
    events, event_id = events_from_annotations(raw)
    ch_names = [
        "squarewave",
        "ramp",
        "pulse",
        "ECG",
        "noise",
        "sine 1 Hz",
        "sine 8 Hz",
        "sine 8.5 Hz",
        "sine 15 Hz",
        "sine 17 Hz",
        "sine 50 Hz",
    ]
    assert raw.get_data().shape == (11, 120000)
    assert raw.ch_names == ch_names
    assert event_id == {"RECORD START": 2, "REC STOP": 1}
    assert_array_equal(events, [[0, 0, 2], [120000, 0, 1]])


@pytest.mark.parametrize(
    "EXPECTED, test_input",
    [
        pytest.param(
            {"stAtUs": "stim", "tRigGer": "stim", "sine 1 Hz": "eeg"}, "auto", id="auto"
        ),
        pytest.param(
            {"stAtUs": "eeg", "tRigGer": "eeg", "sine 1 Hz": "eeg"}, None, id="None"
        ),
        pytest.param(
            {"stAtUs": "eeg", "tRigGer": "eeg", "sine 1 Hz": "stim"},
            "sine 1 Hz",
            id="single string",
        ),
        pytest.param(
            {"stAtUs": "eeg", "tRigGer": "eeg", "sine 1 Hz": "stim"}, 2, id="single int"
        ),
        pytest.param(
            {"stAtUs": "eeg", "tRigGer": "eeg", "sine 1 Hz": "stim"},
            -1,
            id="single int (revers indexing)",
        ),
        pytest.param(
            {"stAtUs": "stim", "tRigGer": "stim", "sine 1 Hz": "eeg"},
            [0, 1],
            id="int list",
        ),
    ],
)
def test_edf_stim_ch_pick_up(test_input, EXPECTED):
    """Test stim_channel."""
    # This is fragile for EEG/EEG-CSD, so just omit csd
    KIND_DICT = get_channel_type_constants()
    TYPE_LUT = {
        v["kind"]: k for k, v in KIND_DICT.items() if k not in ("csd", "chpi")
    }  # chpi not needed, and unhashable (a list)
    fname = data_dir / "test_stim_channel.edf"

    raw = read_raw_edf(fname, stim_channel=test_input)
    ch_types = {ch["ch_name"]: TYPE_LUT[ch["kind"]] for ch in raw.info["chs"]}
    assert ch_types == EXPECTED


@testing.requires_testing_data
@pytest.mark.parametrize(
    "exclude_after_unique, warns",
    [
        (False, False),
        (True, True),
    ],
)
def test_bdf_multiple_annotation_channels(exclude_after_unique, warns):
    """Test BDF with multiple annotation channels."""
    if warns:
        ctx = pytest.warns(RuntimeWarning, match="Channel names are not unique")
    else:
        ctx = nullcontext()
    with ctx:
        raw = read_raw_bdf(
            bdf_multiple_annotations_path, exclude_after_unique=exclude_after_unique
        )
    assert len(raw.annotations) == 10
    descriptions = np.array(
        [
            "signal_start",
            "EEG-check#1",
            "TestStim#1",
            "TestStim#2",
            "TestStim#3",
            "TestStim#4",
            "TestStim#5",
            "TestStim#6",
            "TestStim#7",
            "Ligths-Off#1",
        ],
        dtype="<U12",
    )
    assert_array_equal(descriptions, raw.annotations.description)


@testing.requires_testing_data
def test_edf_lowpass_zero():
    """Test if a lowpass filter of 0Hz is mapped to the Nyquist frequency."""
    raw = read_raw_edf(edf_stim_resamp_path)
    assert raw.ch_names[100] == "EEG LDAMT_01-REF"
    assert_allclose(raw.info["lowpass"], raw.info["sfreq"] / 2)


@testing.requires_testing_data
def test_edf_annot_sub_s_onset():
    """Test reading of sub-second annotation onsets."""
    raw = read_raw_edf(edf_annot_sub_s_path)
    assert_allclose(raw.annotations.onset, [1.951172, 3.492188])


def test_invalid_date(tmp_path):
    """Test handling of invalid date in EDF header."""
    with open(edf_path, "rb") as f:  # read valid test file
        edf = bytearray(f.read())

    # original date in header is 29.04.14 (2014-04-29) at pos 168:176
    # but we also use Startdate if available,
    # which starts at byte 88 and is b'Startdate 29-APR-2014 X X X'
    # create invalid date 29.02.14 (2014 is not a leap year)

    # one wrong: no warning
    edf[101:104] = b"FEB"
    assert edf[172] == ord("4")
    fname = tmp_path / "temp.edf"
    with open(fname, "wb") as f:
        f.write(edf)
    read_raw_edf(fname)

    # other wrong: no warning
    edf[101:104] = b"APR"
    edf[172] = ord("2")
    with open(fname, "wb") as f:
        f.write(edf)
    read_raw_edf(fname)

    # both wrong: warning
    edf[101:104] = b"FEB"
    edf[172] = ord("2")
    with open(fname, "wb") as f:
        f.write(edf)
    with pytest.warns(RuntimeWarning, match="Invalid measurement date"):
        read_raw_edf(fname)

    # another invalid date 29.00.14 (0 is not a month)
    assert edf[101:104] == b"FEB"
    edf[172] = ord("0")
    with open(fname, "wb") as f:
        f.write(edf)
    with pytest.warns(RuntimeWarning, match="Invalid measurement date"):
        read_raw_edf(fname)


def test_empty_chars():
    """Test blank char support."""
    assert int(_edf_str(b"1819\x00 ")) == 1819


def _hp_lp_rev(*args, **kwargs):
    out, orig_units = _read_edf_header(*args, **kwargs)
    out["lowpass"], out["highpass"] = out["highpass"], out["lowpass"]
    return out, orig_units


def _hp_lp_mod(*args, **kwargs):
    out, orig_units = _read_edf_header(*args, **kwargs)
    out["lowpass"][:] = "1"
    out["highpass"][:] = "10"
    return out, orig_units


@pytest.mark.filterwarnings("ignore:.*too long.*:RuntimeWarning")
@pytest.mark.parametrize(
    "fname, lo, hi, warns, patch_func",
    [
        (edf_path, 256, 0, False, "rev"),
        (edf_uneven_path, 50, 0, False, "rev"),
        (edf_stim_channel_path, 64, 0, False, "rev"),
        pytest.param(edf_overlap_annot_path, 64, 0, False, "rev", marks=td_mark),
        pytest.param(edf_reduced, 256, 0, False, "rev", marks=td_mark),
        pytest.param(test_generator_edf, 100, 0, False, "rev", marks=td_mark),
        pytest.param(edf_stim_resamp_path, 256, 0, False, "rev", marks=td_mark),
        pytest.param(edf_stim_resamp_path, 256, 0, True, "mod", marks=td_mark),
    ],
)
def test_hp_lp_reversed(fname, lo, hi, warns, patch_func, monkeypatch):
    """Test HP/LP reversed (gh-8584)."""
    fname = str(fname)
    raw = read_raw_edf(fname)
    assert raw.info["lowpass"] == lo
    assert raw.info["highpass"] == hi
    if patch_func == "rev":
        monkeypatch.setattr(edf.edf, "_read_edf_header", _hp_lp_rev)
    elif patch_func == "mod":
        monkeypatch.setattr(edf.edf, "_read_edf_header", _hp_lp_mod)
    if warns:
        ctx = pytest.warns(RuntimeWarning, match="greater than lowpass")
        new_lo, new_hi = raw.info["sfreq"] / 2.0, 0.0
    else:
        ctx = nullcontext()
        new_lo, new_hi = lo, hi
    with ctx:
        raw = read_raw_edf(fname)
    assert raw.info["lowpass"] == new_lo
    assert raw.info["highpass"] == new_hi


def test_degenerate():
    """Test checking of some bad inputs."""
    for func in (
        read_raw_edf,
        read_raw_bdf,
        read_raw_gdf,
        partial(_read_header, exclude=(), infer_types=False),
    ):
        with pytest.raises(NotImplementedError, match="Only.*txt.*"):
            func(edf_txt_stim_channel_path)


def test_exclude():
    """Test exclude parameter."""
    exclude = ["I1", "I2", "I3", "I4"]  # list of excluded channels

    raw = read_raw_edf(edf_path, exclude=["I1", "I2", "I3", "I4"])
    for ch in exclude:
        assert ch not in raw.ch_names

    raw = read_raw_edf(edf_path, exclude="I[1-4]")
    for ch in exclude:
        assert ch not in raw.ch_names


@pytest.mark.parametrize(
    "EXPECTED, exclude, exclude_after_unique, warns",
    [
        (["EEG F2-Ref"], "EEG F1-Ref", False, False),
        (["EEG F1-Ref-0", "EEG F2-Ref", "EEG F1-Ref-1"], "EEG F1-Ref-1", False, True),
        (["EEG F2-Ref"], ["EEG F1-Ref"], False, False),
        (["EEG F2-Ref"], "EEG F1-Ref", True, True),
        (["EEG F1-Ref-0", "EEG F2-Ref"], "EEG F1-Ref-1", True, True),
        (["EEG F1-Ref-0", "EEG F2-Ref", "EEG F1-Ref-1"], ["EEG F1-Ref"], True, True),
    ],
)
def test_exclude_duplicate_channel_data(exclude, exclude_after_unique, warns, EXPECTED):
    """Test exclude parameter for duplicate channel data."""
    if warns:
        ctx = pytest.warns(RuntimeWarning, match="Channel names are not unique")
    else:
        ctx = nullcontext()
    with ctx:
        raw = read_raw_edf(
            duplicate_channel_labels_path,
            exclude=exclude,
            exclude_after_unique=exclude_after_unique,
        )
    assert raw.ch_names == EXPECTED


def test_include():
    """Test include parameter."""
    raw = read_raw_edf(edf_path, include=["I1", "I2"])
    assert sorted(raw.ch_names) == ["I1", "I2"]

    raw = read_raw_edf(edf_path, include="I[1-4]")
    assert sorted(raw.ch_names) == ["I1", "I2", "I3", "I4"]

    with pytest.raises(ValueError, match="'exclude' must be empty if 'include' is "):
        raw = read_raw_edf(edf_path, include=["I1", "I2"], exclude="I[1-4]")


@pytest.mark.parametrize(
    "EXPECTED, include, exclude_after_unique, warns",
    [
        (["EEG F1-Ref-0", "EEG F1-Ref-1"], "EEG F1-Ref", False, True),
        ([], "EEG F1-Ref-1", False, False),
        (["EEG F1-Ref-0", "EEG F1-Ref-1"], ["EEG F1-Ref"], False, True),
        (["EEG F1-Ref-0", "EEG F1-Ref-1"], "EEG F1-Ref", True, True),
        (["EEG F1-Ref-1"], "EEG F1-Ref-1", True, True),
        ([], ["EEG F1-Ref"], True, True),
    ],
)
def test_include_duplicate_channel_data(include, exclude_after_unique, warns, EXPECTED):
    """Test include parameter for duplicate channel data."""
    if warns:
        ctx = pytest.warns(RuntimeWarning, match="Channel names are not unique")
    else:
        ctx = nullcontext()
    with ctx:
        raw = read_raw_edf(
            duplicate_channel_labels_path,
            include=include,
            exclude_after_unique=exclude_after_unique,
        )
    assert raw.ch_names == EXPECTED


@testing.requires_testing_data
def test_ch_types():
    """Test reading of channel types from EDF channel label."""
    raw = read_raw_edf(edf_chtypes_path)  # infer_types=False

    labels = [
        "EEG Fp1-Ref",
        "EEG Fp2-Ref",
        "EEG F3-Ref",
        "EEG F4-Ref",
        "EEG C3-Ref",
        "EEG C4-Ref",
        "EEG P3-Ref",
        "EEG P4-Ref",
        "EEG O1-Ref",
        "EEG O2-Ref",
        "EEG F7-Ref",
        "EEG F8-Ref",
        "EEG T7-Ref",
        "EEG T8-Ref",
        "EEG P7-Ref",
        "EEG P8-Ref",
        "EEG Fz-Ref",
        "EEG Cz-Ref",
        "EEG Pz-Ref",
        "POL E",
        "POL PG1",
        "POL PG2",
        "EEG A1-Ref",
        "EEG A2-Ref",
        "POL T1",
        "POL T2",
        "ECG ECG1",
        "ECG ECG2",
        "EEG F9-Ref",
        "EEG T9-Ref",
        "EEG P9-Ref",
        "EEG F10-Ref",
        "EEG T10-Ref",
        "EEG P10-Ref",
        "SaO2 X9",
        "SaO2 X10",
        "POL DC01",
        "POL DC02",
        "POL DC03",
        "POL DC04",
        "POL $A1",
        "POL $A2",
    ]

    # by default all types are 'eeg'
    assert all(t == "eeg" for t in raw.get_channel_types())
    assert raw.ch_names == labels

    raw = read_raw_edf(edf_chtypes_path, infer_types=True)
    data = raw.get_data()

    labels = [
        "Fp1-Ref",
        "Fp2-Ref",
        "F3-Ref",
        "F4-Ref",
        "C3-Ref",
        "C4-Ref",
        "P3-Ref",
        "P4-Ref",
        "O1-Ref",
        "O2-Ref",
        "F7-Ref",
        "F8-Ref",
        "T7-Ref",
        "T8-Ref",
        "P7-Ref",
        "P8-Ref",
        "Fz-Ref",
        "Cz-Ref",
        "Pz-Ref",
        "POL E",
        "POL PG1",
        "POL PG2",
        "A1-Ref",
        "A2-Ref",
        "POL T1",
        "POL T2",
        "ECG1",
        "ECG2",
        "F9-Ref",
        "T9-Ref",
        "P9-Ref",
        "F10-Ref",
        "T10-Ref",
        "P10-Ref",
        "X9",
        "X10",
        "POL DC01",
        "POL DC02",
        "POL DC03",
        "POL DC04",
        "POL $A1",
        "POL $A2",
    ]
    types = [
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "ecg",
        "ecg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "bio",
        "bio",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
        "eeg",
    ]

    assert raw.get_channel_types() == types
    assert raw.ch_names == labels

    with pytest.raises(ValueError, match="cannot overwrite"):
        read_raw_edf(edf_chtypes_path, units="V")
    raw = read_raw_edf(edf_chtypes_path, units="uV")  # should be okay
    data_units = raw.get_data()
    assert_allclose(data, data_units)


@testing.requires_testing_data
def test_anonymization():
    """Test that RawEDF anonymizes data in memory."""
    # gh-11966
    raw = read_raw_edf(edf_stim_resamp_path)
    for key in ("meas_date", "subject_info"):
        assert key not in raw._raw_extras[0]
    bday = raw.info["subject_info"]["birthday"]
    assert bday == datetime.date(1967, 10, 9)
    raw.anonymize()
    assert raw.info["subject_info"]["birthday"] != bday