1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import shutil
from os import remove
import pytest
import scipy.io
from numpy import array, empty, isnan
from numpy.testing import assert_array_almost_equal, assert_array_equal
from mne import pick_types
from mne.datasets import testing
from mne.io import read_raw_fil
from mne.io.fil.sensors import _get_pos_units
fil_path = testing.data_path(download=False) / "FIL"
# TODO: Ignore this warning in all these tests until we deal with this properly
pytestmark = pytest.mark.filterwarnings(
"ignore:.*problems later!:RuntimeWarning",
)
def _set_bads_tsv(chanfile, badchan):
"""Update channels.tsv by setting target channel to bad."""
data = []
with open(chanfile, encoding="utf-8") as f:
for line in f:
columns = line.strip().split("\t")
data.append(columns)
with open(chanfile, "w", encoding="utf-8") as f:
for row in data:
if badchan in row:
row[-1] = "bad"
f.write("\t".join(row) + "\n")
def unpack_mat(matin):
"""Extract relevant entries from unstructred readmat."""
data = matin["data"]
grad = data[0][0]["grad"]
label = list()
coil_label = list()
for ii in range(len(data[0][0]["label"])):
label.append(str(data[0][0]["label"][ii][0][0]))
for ii in range(len(grad[0][0]["label"])):
coil_label.append(str(grad[0][0]["label"][ii][0][0]))
matout = {
"label": label,
"trial": data["trial"][0][0][0][0],
"coil_label": coil_label,
"coil_pos": grad[0][0]["coilpos"],
"coil_ori": grad[0][0]["coilori"],
}
return matout
def _match_str(A_list, B_list):
"""Locate where in a list matches another."""
B_inds = list()
for ii in A_list:
if ii in B_list:
B_inds.append(B_list.index(ii))
return B_inds
def _get_channels_with_positions(info):
"""Parse channel orientation/position."""
ch_list = list()
ch_inds = list()
for ii, ch in enumerate(info["chs"]):
if not (any(isnan(ch["loc"]))):
ch_inds.append(ii)
ch_list.append(ch["ch_name"])
return ch_list, ch_inds
def _fil_megmag(raw_test, raw_mat):
"""Test the magnetometer channels."""
test_inds = pick_types(raw_test.info, meg="mag", ref_meg=False, exclude="bads")
test_list = list(raw_test.info["ch_names"][i] for i in test_inds)
mat_list = raw_mat["label"]
mat_inds = _match_str(test_list, mat_list)
assert len(mat_inds) == len(
test_inds
), "Number of magnetometer channels in RAW does not match .mat file!"
a = raw_test._data[test_inds, :]
b = raw_mat["trial"][mat_inds, :] * 1e-15 # fT to T
assert_array_equal(a, b)
def _fil_stim(raw_test, raw_mat):
"""Test the trigger channels."""
test_inds = pick_types(
raw_test.info, meg=False, ref_meg=False, stim=True, exclude="bads"
)
test_list = list(raw_test.info["ch_names"][i] for i in test_inds)
mat_list = raw_mat["label"]
mat_inds = _match_str(test_list, mat_list)
assert len(mat_inds) == len(
test_inds
), "Number of stim channels in RAW does not match .mat file!"
a = raw_test._data[test_inds, :]
b = raw_mat["trial"][mat_inds, :] # fT to T
assert_array_equal(a, b)
def _fil_sensorpos(raw_test, raw_mat):
"""Test the sensor positions/orientations."""
test_list, test_inds = _get_channels_with_positions(raw_test.info)
grad_list = raw_mat["coil_label"]
grad_inds = _match_str(test_list, grad_list)
assert len(grad_inds) == len(
test_inds
), "Number of channels with position data in RAW does not match .mat file!"
mat_pos = raw_mat["coil_pos"][grad_inds, :]
mat_ori = raw_mat["coil_ori"][grad_inds, :]
_, sf1 = _get_pos_units(mat_pos)
test_pos = empty((len(test_inds), 3))
test_ori = empty((len(test_inds), 3))
for i, ind in enumerate(test_inds):
test_pos[i, :] = raw_test.info["chs"][ind]["loc"][0:3]
test_ori[i, :] = raw_test.info["chs"][ind]["loc"][-3:]
_, sf2 = _get_pos_units(test_pos)
assert_array_almost_equal(test_pos / sf2, mat_pos / sf1)
assert_array_almost_equal(test_ori, mat_ori)
@testing.requires_testing_data
def test_fil_complete():
"""Test FIL reader, match to known answers from .mat file."""
binname = fil_path / "sub-noise_ses-001_task-noise220622_run-001_meg.bin"
matname = fil_path / "sub-noise_ses-001_task-noise220622_run-001_fieldtrip.mat"
raw = read_raw_fil(binname)
raw.load_data(verbose=False)
tmp = scipy.io.loadmat(matname)
mat = unpack_mat(tmp)
_fil_megmag(raw, mat)
_fil_stim(raw, mat)
_fil_sensorpos(raw, mat)
@testing.requires_testing_data
def test_fil_no_positions(tmp_path):
"""Test FIL reader in cases where a position file is missing."""
test_path = tmp_path / "FIL"
shutil.copytree(fil_path, test_path)
posname = test_path / "sub-noise_ses-001_task-noise220622_run-001_positions.tsv"
binname = test_path / "sub-noise_ses-001_task-noise220622_run-001_meg.bin"
remove(posname)
with pytest.warns(RuntimeWarning, match="No sensor position.*"):
raw = read_raw_fil(binname)
chs = raw.info["chs"]
locs = array([ch["loc"][:] for ch in chs])
assert isnan(locs).all()
@testing.requires_testing_data
def test_fil_bad_channel_spec(tmp_path):
"""Test FIL reader when a bad channel is specified in channels.tsv."""
test_path = tmp_path / "FIL"
shutil.copytree(fil_path, test_path)
channame = test_path / "sub-noise_ses-001_task-noise220622_run-001_channels.tsv"
binname = test_path / "sub-noise_ses-001_task-noise220622_run-001_meg.bin"
bad_chan = "G2-OG-Y"
_set_bads_tsv(channame, bad_chan)
raw = read_raw_fil(binname)
bads = raw.info["bads"]
assert bad_chan in bads
|