1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import datetime as dt
import re
import numpy as np
from ..._fiff.constants import FIFF
from ..._fiff.meas_info import _merge_info, create_info
from ..._fiff.utils import _mult_cal_one
from ...utils import _check_fname, _check_option, fill_doc, logger, verbose, warn
from ..base import BaseRaw
from ..nirx.nirx import _read_csv_rows_cols
@fill_doc
def read_raw_hitachi(fname, preload=False, verbose=None) -> "RawHitachi":
"""Reader for a Hitachi fNIRS recording.
Parameters
----------
%(hitachi_fname)s
%(preload)s
%(verbose)s
Returns
-------
raw : instance of RawHitachi
A Raw object containing Hitachi data.
See :class:`mne.io.Raw` for documentation of attributes and methods.
See Also
--------
mne.io.Raw : Documentation of attributes and methods of RawHitachi.
Notes
-----
%(hitachi_notes)s
"""
return RawHitachi(fname, preload, verbose=verbose)
def _check_bad(cond, msg):
if cond:
raise RuntimeError(f"Could not parse file: {msg}")
@fill_doc
class RawHitachi(BaseRaw):
"""Raw object from a Hitachi fNIRS file.
Parameters
----------
%(hitachi_fname)s
%(preload)s
%(verbose)s
See Also
--------
mne.io.Raw : Documentation of attributes and methods.
Notes
-----
%(hitachi_notes)s
"""
@verbose
def __init__(self, fname, preload=False, *, verbose=None):
if not isinstance(fname, list | tuple):
fname = [fname]
fname = list(fname) # our own list that we can modify
for fi, this_fname in enumerate(fname):
fname[fi] = _check_fname(this_fname, "read", True, f"fname[{fi}]")
infos = list()
probes = list()
last_samps = list()
S_offset = D_offset = 0
ignore_names = ["Time"]
for this_fname in fname:
info, extra, last_samp, offsets = _get_hitachi_info(
this_fname, S_offset, D_offset, ignore_names
)
ignore_names = list(set(ignore_names + info["ch_names"]))
S_offset += offsets[0]
D_offset += offsets[1]
infos.append(info)
probes.append(extra)
last_samps.append(last_samp)
# combine infos
if len(fname) > 1:
info = _merge_info(infos)
else:
info = infos[0]
if len(set(last_samps)) != 1:
raise RuntimeError(
"All files must have the same number of samples, got: {last_samps}"
)
last_samps = [last_samps[0]]
raw_extras = [dict(probes=probes)]
# One representative filename is good enough here
# (additional filenames indicate temporal concat, not ch concat)
super().__init__(
info,
preload,
filenames=[fname[0]],
last_samps=last_samps,
raw_extras=raw_extras,
verbose=verbose,
)
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a segment of data from a file."""
this_data = list()
for this_probe in self._raw_extras[fi]["probes"]:
this_data.append(
_read_csv_rows_cols(
this_probe["fname"],
start,
stop,
this_probe["keep_mask"],
this_probe["bounds"],
sep=",",
replace=lambda x: x.replace("\r", "\n")
.replace("\n\n", "\n")
.replace("\n", ",")
.replace(":", ""),
).T
)
this_data = np.concatenate(this_data, axis=0)
_mult_cal_one(data, this_data, idx, cals, mult)
return data
def _get_hitachi_info(fname, S_offset, D_offset, ignore_names):
logger.info(f"Loading {fname}")
raw_extra = dict(fname=fname)
info_extra = dict()
subject_info = dict()
ch_wavelengths = dict()
fnirs_wavelengths = [None, None]
meas_date = age = ch_names = sfreq = None
with open(fname, "rb") as fid:
lines = fid.read()
lines = lines.decode("latin-1").rstrip("\r\n")
oldlen = len(lines)
assert len(lines) == oldlen
bounds = [0]
end = "\n" if "\n" in lines else "\r"
bounds.extend(a.end() for a in re.finditer(end, lines))
bounds.append(len(lines))
lines = lines.split(end)
assert len(bounds) == len(lines) + 1
line = lines[0].rstrip(",\r\n")
_check_bad(line != "Header", "no header found")
li = 0
mode = None
for li, line in enumerate(lines[1:], 1):
# Newer format has some blank lines
if len(line) == 0:
continue
parts = line.rstrip(",\r\n").split(",")
if len(parts) == 0: # some header lines are blank
continue
kind, parts = parts[0], parts[1:]
if len(parts) == 0:
parts = [""] # some fields (e.g., Comment) meaningfully blank
if kind == "File Version":
logger.info(f"Reading Hitachi fNIRS file version {parts[0]}")
elif kind == "AnalyzeMode":
_check_bad(parts != ["Continuous"], f"not continuous data ({parts})")
elif kind == "Sampling Period[s]":
sfreq = 1 / float(parts[0])
elif kind == "Exception":
raise NotImplementedError(kind)
elif kind == "Comment":
info_extra["description"] = parts[0]
elif kind == "ID":
subject_info["his_id"] = parts[0]
elif kind == "Name":
if len(parts):
name = parts[0].split(" ")
if len(name):
subject_info["first_name"] = name[0]
subject_info["last_name"] = " ".join(name[1:])
elif kind == "Age":
age = int(parts[0].rstrip("y"))
elif kind == "Mode":
mode = parts[0]
elif kind in ("HPF[Hz]", "LPF[Hz]"):
try:
freq = float(parts[0])
except ValueError:
pass
else:
info_extra[{"HPF[Hz]": "highpass", "LPF[Hz]": "lowpass"}[kind]] = freq
elif kind == "Date":
# 5/17/04 5:14
try:
mdy, HM = parts[0].split(" ")
H, M = HM.split(":")
if len(H) == 1:
H = f"0{H}"
mdyHM = " ".join([mdy, ":".join([H, M])])
for fmt in ("%m/%d/%y %H:%M", "%Y/%m/%d %H:%M"):
try:
meas_date = dt.datetime.strptime(mdyHM, fmt)
except Exception:
pass
else:
break
else:
raise RuntimeError # unknown format
except Exception:
warn(
"Extraction of measurement date failed. "
"Please report this as a github issue. "
"The date is being set to January 1st, 2000, "
f"instead of {repr(parts[0])}"
)
elif kind == "Sex":
try:
subject_info["sex"] = dict(
female=FIFF.FIFFV_SUBJ_SEX_FEMALE, male=FIFF.FIFFV_SUBJ_SEX_MALE
)[parts[0].lower()]
except KeyError:
pass
elif kind == "Wave[nm]":
fnirs_wavelengths[:] = [int(part) for part in parts]
elif kind == "Wave Length":
ch_regex = re.compile(r"^(.*)\(([0-9\.]+)\)$")
for ent in parts:
_, v = ch_regex.match(ent).groups()
ch_wavelengths[ent] = float(v)
elif kind == "Data":
break
fnirs_wavelengths = np.array(fnirs_wavelengths, int)
assert len(fnirs_wavelengths) == 2
ch_names = lines[li + 1].rstrip(",\r\n").split(",")
# cull to correct ones
raw_extra["keep_mask"] = ~np.isin(ch_names, list(ignore_names))
for ci, ch_name in enumerate(ch_names):
if re.match("Probe[0-9]+", ch_name):
raw_extra["keep_mask"][ci] = False
# set types
ch_names = [
ch_name for ci, ch_name in enumerate(ch_names) if raw_extra["keep_mask"][ci]
]
ch_types = [
"fnirs_cw_amplitude" if ch_name.startswith("CH") else "stim"
for ch_name in ch_names
]
# get locations
nirs_names = [
ch_name
for ch_name, ch_type in zip(ch_names, ch_types)
if ch_type == "fnirs_cw_amplitude"
]
n_nirs = len(nirs_names)
assert n_nirs % 2 == 0
names = {
"3x3": "ETG-100",
"3x5": "ETG-7000",
"4x4": "ETG-7000",
"3x11": "ETG-4000",
}
_check_option("Hitachi mode", mode, sorted(names))
n_row, n_col = (int(x) for x in mode.split("x"))
logger.info(f"Constructing pairing matrix for {names[mode]} ({mode})")
pairs = _compute_pairs(n_row, n_col, n=1 + (mode == "3x3"))
assert n_nirs == len(pairs) * 2
locs = np.zeros((len(ch_names), 12))
locs[:, :9] = np.nan
idxs = np.where(np.array(ch_types, "U") == "fnirs_cw_amplitude")[0]
for ii, idx in enumerate(idxs):
ch_name = ch_names[idx]
# Use the actual/accurate wavelength in loc
acc_freq = ch_wavelengths[ch_name]
locs[idx][9] = acc_freq
# Rename channel based on standard naming scheme, using the
# nominal wavelength
sidx, didx = pairs[ii // 2]
nom_freq = fnirs_wavelengths[np.argmin(np.abs(acc_freq - fnirs_wavelengths))]
ch_names[idx] = f"S{S_offset + sidx + 1}_D{D_offset + didx + 1} {nom_freq}"
offsets = np.array(pairs, int).max(axis=0) + 1
# figure out bounds
bounds = raw_extra["bounds"] = bounds[li + 2 :]
last_samp = len(bounds) - 2
if age is not None and meas_date is not None:
subject_info["birthday"] = dt.date(
meas_date.year - age,
meas_date.month,
meas_date.day,
)
if meas_date is None:
meas_date = dt.datetime(2000, 1, 1, 0, 0, 0)
meas_date = meas_date.replace(tzinfo=dt.timezone.utc)
if subject_info:
info_extra["subject_info"] = subject_info
# Create mne structure
info = create_info(ch_names, sfreq, ch_types=ch_types)
with info._unlock():
info.update(info_extra)
info["meas_date"] = meas_date
for li, loc in enumerate(locs):
info["chs"][li]["loc"][:] = loc
return info, raw_extra, last_samp, offsets
def _compute_pairs(n_rows, n_cols, n=1):
n_tot = n_rows * n_cols
sd_idx = (np.arange(n_tot) // 2).reshape(n_rows, n_cols)
d_bool = np.empty((n_rows, n_cols), bool)
for ri in range(n_rows):
d_bool[ri] = np.arange(ri, ri + n_cols) % 2
pairs = list()
for ri in range(n_rows):
# First iterate over connections within the row
for ci in range(n_cols - 1):
pair = (sd_idx[ri, ci], sd_idx[ri, ci + 1])
if d_bool[ri, ci]: # reverse
pair = pair[::-1]
pairs.append(pair)
# Next iterate over row-row connections, if applicable
if ri >= n_rows - 1:
continue
for ci in range(n_cols):
pair = (sd_idx[ri, ci], sd_idx[ri + 1, ci])
if d_bool[ri, ci]:
pair = pair[::-1]
pairs.append(pair)
if n > 1:
assert n == 2 # only one supported for now
pairs = np.array(pairs, int)
second = pairs + pairs.max(axis=0) + 1
pairs = np.r_[pairs, second]
pairs = tuple(tuple(row) for row in pairs)
return tuple(pairs)
|