1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
"""Coordinate Point Extractor for KIT system."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import re
from collections import OrderedDict
from os import SEEK_CUR, PathLike
from pathlib import Path
import numpy as np
from ..._fiff._digitization import _make_dig_points
from ...channels.montage import (
_check_dig_shape,
read_custom_montage,
read_dig_polhemus_isotrak,
read_polhemus_fastscan,
)
from ...transforms import (
Transform,
als_ras_trans,
apply_trans,
get_ras_to_neuromag_trans,
)
from ...utils import _check_fname, _check_option, warn
from .constants import FIFF, KIT
INT32 = "<i4"
FLOAT64 = "<f8"
def read_mrk(fname):
r"""Marker Point Extraction in MEG space directly from sqd.
Parameters
----------
fname : path-like
Absolute path to Marker file.
File formats allowed: \*.sqd, \*.mrk, \*.txt.
Returns
-------
mrk_points : ndarray, shape (n_points, 3)
Marker points in MEG space [m].
"""
from .kit import _read_dirs
fname = Path(_check_fname(fname, "read", must_exist=True, name="mrk file"))
_check_option("file extension", fname.suffix, (".sqd", ".mrk", ".txt"))
if fname.suffix in (".sqd", ".mrk"):
with open(fname, "rb", buffering=0) as fid:
dirs = _read_dirs(fid)
fid.seek(dirs[KIT.DIR_INDEX_COREG]["offset"])
# skips match_done, meg_to_mri and mri_to_meg
fid.seek(KIT.INT + (2 * KIT.DOUBLE * 16), SEEK_CUR)
mrk_count = np.fromfile(fid, INT32, 1)[0]
pts = []
for _ in range(mrk_count):
# mri_type, meg_type, mri_done, meg_done
_, _, _, meg_done = np.fromfile(fid, INT32, 4)
_, meg_pts = np.fromfile(fid, FLOAT64, 6).reshape(2, 3)
if meg_done:
pts.append(meg_pts)
mrk_points = np.array(pts)
else:
assert fname.suffix == ".txt"
mrk_points = _read_dig_kit(fname, unit="m")
# check output
mrk_points = np.asarray(mrk_points)
if mrk_points.shape != (5, 3):
err = f"{repr(fname)} is no marker file, shape is {mrk_points.shape}"
raise ValueError(err)
return mrk_points
def read_sns(fname):
"""Sensor coordinate extraction in MEG space.
Parameters
----------
fname : path-like
Absolute path to sensor definition file.
Returns
-------
locs : numpy.array, shape = (n_points, 3)
Sensor coil location.
"""
p = re.compile(
r"\d,[A-Za-z]*,([\.\-0-9]+),"
+ r"([\.\-0-9]+),([\.\-0-9]+),"
+ r"([\.\-0-9]+),([\.\-0-9]+)"
)
with open(fname) as fid:
locs = np.array(p.findall(fid.read()), dtype=float)
return locs
def _set_dig_kit(mrk, elp, hsp, eeg, *, bad_coils=()):
"""Add landmark points and head shape data to the KIT instance.
Digitizer data (elp and hsp) are represented in [mm] in the Polhemus
ALS coordinate system. This is converted to [m].
Parameters
----------
mrk : path-like | array_like, shape (5, 3) | None
Marker points representing the location of the marker coils with
respect to the MEG Sensors, or path to a marker file.
elp : path-like | array_like, shape (8, 3) | None
Digitizer points representing the location of the fiducials and the
marker coils with respect to the digitized head shape, or path to a
file containing these points.
hsp : path-like | array, shape (n_points, 3) | None
Digitizer head shape points, or path to head shape file. If more
than 10`000 points are in the head shape, they are automatically
decimated.
bad_coils : list
Indices of bad marker coils (up to two). Bad coils will be excluded
when computing the device-head transformation.
eeg : dict
Ordered dict of EEG dig points.
Returns
-------
dig_points : list
List of digitizer points for info['dig'].
dev_head_t : Transform
A dictionary describing the device-head transformation.
hpi_results : list
The hpi results.
"""
from ...coreg import _decimate_points, fit_matched_points
if isinstance(hsp, str | Path | PathLike):
hsp = _read_dig_kit(hsp)
n_pts = len(hsp)
if n_pts > KIT.DIG_POINTS:
hsp = _decimate_points(hsp, res=0.005)
n_new = len(hsp)
warn(
f"The selected head shape contained {n_pts} points, which is more than "
f"recommended ({KIT.DIG_POINTS}), and was automatically downsampled to "
f"{n_new} points. The preferred way to downsample is using FastScan."
)
if isinstance(elp, str | Path | PathLike):
elp_points = _read_dig_kit(elp)
if len(elp_points) != 8:
raise ValueError(
f"File {repr(elp)} should contain 8 points; got shape "
f"{elp_points.shape}."
)
elp = elp_points
if len(bad_coils) > 0:
elp = np.delete(elp, np.array(bad_coils) + 3, 0)
# check we have at least 3 marker coils (whether read from file or
# passed in directly)
if len(elp) not in (6, 7, 8):
raise ValueError(f"ELP should contain 6 ~ 8 points; got shape {elp.shape}.")
if isinstance(mrk, str | Path | PathLike):
mrk = read_mrk(mrk)
if len(bad_coils) > 0:
mrk = np.delete(mrk, bad_coils, 0)
if len(mrk) not in (3, 4, 5):
raise ValueError(f"MRK should contain 3 ~ 5 points; got shape {mrk.shape}.")
mrk = apply_trans(als_ras_trans, mrk)
nasion, lpa, rpa = elp[:3]
nmtrans = get_ras_to_neuromag_trans(nasion, lpa, rpa)
elp = apply_trans(nmtrans, elp)
hsp = apply_trans(nmtrans, hsp)
eeg = OrderedDict((k, apply_trans(nmtrans, p)) for k, p in eeg.items())
# device head transform
trans = fit_matched_points(tgt_pts=elp[3:], src_pts=mrk, out="trans")
nasion, lpa, rpa = elp[:3]
elp = elp[3:]
dig_points = _make_dig_points(nasion, lpa, rpa, elp, hsp, dig_ch_pos=eeg)
dev_head_t = Transform("meg", "head", trans)
hpi_results = [
dict(
dig_points=[
dict(
ident=ci,
r=r,
kind=FIFF.FIFFV_POINT_HPI,
coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
)
for ci, r in enumerate(mrk)
],
coord_trans=dev_head_t,
)
]
return dig_points, dev_head_t, hpi_results
def _read_dig_kit(fname, unit="auto"):
# Read dig points from a file and return ndarray, using FastSCAN for .txt
fname = _check_fname(fname, "read", must_exist=True, name="hsp or elp file")
assert unit in ("auto", "m", "mm")
_check_option("file extension", fname.suffix, (".hsp", ".elp", ".mat", ".txt"))
if fname.suffix == ".txt":
unit = "mm" if unit == "auto" else unit
out = read_polhemus_fastscan(fname, unit=unit, on_header_missing="ignore")
elif fname.suffix in (".hsp", ".elp"):
unit = "m" if unit == "auto" else unit
mon = read_dig_polhemus_isotrak(fname, unit=unit)
if fname.suffix == ".hsp":
dig = [d["r"] for d in mon.dig if d["kind"] != FIFF.FIFFV_POINT_CARDINAL]
else:
dig = [d["r"] for d in mon.dig]
if (
dig
and mon.dig[0]["kind"] == FIFF.FIFFV_POINT_CARDINAL
and mon.dig[0]["ident"] == FIFF.FIFFV_POINT_LPA
):
# LPA, Nasion, RPA -> NLR
dig[:3] = [dig[1], dig[0], dig[2]]
out = np.array(dig, float)
else:
assert fname.suffix == ".mat"
out = np.array([d["r"] for d in read_custom_montage(fname).dig])
_check_dig_shape(out)
return out
|