1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
|
"""Conversion tool from SQD to FIF.
RawKIT class is adapted from Denis Engemann et al.'s mne_bti2fiff.py.
"""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from collections import OrderedDict, defaultdict
from math import cos, sin
from os import SEEK_CUR, PathLike
from os import path as op
from pathlib import Path
import numpy as np
from ..._fiff.constants import FIFF
from ..._fiff.meas_info import _empty_info
from ..._fiff.pick import pick_types
from ..._fiff.utils import _mult_cal_one
from ...epochs import BaseEpochs
from ...event import read_events
from ...transforms import als_ras_trans, apply_trans
from ...utils import (
_check_fname,
_check_option,
_stamp_to_dt,
fill_doc,
logger,
verbose,
warn,
)
from ..base import BaseRaw
from .constants import KIT, LEGACY_AMP_PARAMS
from .coreg import _set_dig_kit, read_mrk
FLOAT64 = "<f8"
UINT32 = "<u4"
INT32 = "<i4"
def _call_digitization(info, mrk, elp, hsp, kit_info, *, bad_coils=()):
# Use values from kit_info only if all others are None
if mrk is None and elp is None and hsp is None:
mrk = kit_info.get("mrk", None)
elp = kit_info.get("elp", None)
hsp = kit_info.get("hsp", None)
# prepare mrk
if isinstance(mrk, list):
mrk = [
read_mrk(marker) if isinstance(marker, str | Path | PathLike) else marker
for marker in mrk
]
mrk = np.mean(mrk, axis=0)
# setup digitization
if mrk is not None and elp is not None and hsp is not None:
with info._unlock():
info["dig"], info["dev_head_t"], info["hpi_results"] = _set_dig_kit(
mrk,
elp,
hsp,
kit_info["eeg_dig"],
bad_coils=bad_coils,
)
elif mrk is not None or elp is not None or hsp is not None:
raise ValueError(
"mrk, elp and hsp need to be provided as a group (all or none)"
)
return info
class UnsupportedKITFormat(ValueError):
"""Our reader is not guaranteed to work with old files."""
def __init__(self, sqd_version, *args, **kwargs):
self.sqd_version = sqd_version
ValueError.__init__(self, *args, **kwargs)
@fill_doc
class RawKIT(BaseRaw):
r"""Raw object from KIT SQD file.
Parameters
----------
input_fname : path-like
Path to the SQD file.
%(kit_mrk)s
%(kit_elp)s
%(kit_hsp)s
%(kit_stim)s
%(kit_slope)s
%(kit_stimthresh)s
%(preload)s
%(kit_stimcode)s
allow_unknown_format : bool
Force reading old data that is not officially supported. Alternatively,
read and re-save the data with the KIT MEG Laboratory application.
%(standardize_names)s
%(kit_badcoils)s
%(verbose)s
Notes
-----
``elp`` and ``hsp`` are usually the exported text files (*.txt) from the
Polhemus FastScan system. ``hsp`` refers to the headshape surface points.
``elp`` refers to the points in head-space that corresponds to the HPI
points.
If ``mrk``\, ``hsp`` or ``elp`` are :term:`array_like` inputs, then the
numbers in xyz coordinates should be in units of meters.
See Also
--------
mne.io.Raw : Documentation of attributes and methods.
"""
_extra_attributes = ("read_stim_ch",)
@verbose
def __init__(
self,
input_fname,
mrk=None,
elp=None,
hsp=None,
stim=">",
slope="-",
stimthresh=1,
preload=False,
stim_code="binary",
allow_unknown_format=False,
standardize_names=None,
*,
bad_coils=(),
verbose=None,
):
logger.info(f"Extracting SQD Parameters from {input_fname}...")
input_fname = op.abspath(input_fname)
self.preload = False
logger.info("Creating Raw.info structure...")
info, kit_info = get_kit_info(
input_fname, allow_unknown_format, standardize_names
)
kit_info["slope"] = slope
kit_info["stimthresh"] = stimthresh
if kit_info["acq_type"] != KIT.CONTINUOUS:
raise TypeError("SQD file contains epochs, not raw data. Wrong reader.")
logger.info("Creating Info structure...")
last_samps = [kit_info["n_samples"] - 1]
self._raw_extras = [kit_info]
_set_stimchannels(self, info, stim, stim_code)
super().__init__(
info,
preload,
last_samps=last_samps,
filenames=[input_fname],
raw_extras=self._raw_extras,
verbose=verbose,
)
self.info = _call_digitization(
info=self.info,
mrk=mrk,
elp=elp,
hsp=hsp,
kit_info=kit_info,
bad_coils=bad_coils,
)
logger.info("Ready.")
def read_stim_ch(self, buffer_size=1e5):
"""Read events from data.
Parameter
---------
buffer_size : int
The size of chunk to by which the data are scanned.
Returns
-------
events : array, [samples]
The event vector (1 x samples).
"""
buffer_size = int(buffer_size)
start = int(self.first_samp)
stop = int(self.last_samp + 1)
pick = pick_types(self.info, meg=False, ref_meg=False, stim=True, exclude=[])
stim_ch = np.empty((1, stop), dtype=np.int64)
for b_start in range(start, stop, buffer_size):
b_stop = b_start + buffer_size
x = self[pick, b_start:b_stop][0]
stim_ch[:, b_start : b_start + x.shape[1]] = x
return stim_ch
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a chunk of raw data."""
sqd = self._raw_extras[fi]
nchan = sqd["nchan"]
data_left = (stop - start) * nchan
conv_factor = sqd["conv_factor"]
n_bytes = sqd["dtype"].itemsize
assert n_bytes in (2, 4)
# Read up to 100 MB of data at a time.
blk_size = min(data_left, (100000000 // n_bytes // nchan) * nchan)
with open(self.filenames[fi], "rb", buffering=0) as fid:
# extract data
pointer = start * nchan * n_bytes
fid.seek(sqd["dirs"][KIT.DIR_INDEX_RAW_DATA]["offset"] + pointer)
stim = sqd["stim"]
for blk_start in np.arange(0, data_left, blk_size) // nchan:
blk_size = min(blk_size, data_left - blk_start * nchan)
block = np.fromfile(fid, dtype=sqd["dtype"], count=blk_size)
block = block.reshape(nchan, -1, order="F").astype(float)
blk_stop = blk_start + block.shape[1]
data_view = data[:, blk_start:blk_stop]
block *= conv_factor
# Create a synthetic stim channel
if stim is not None:
stim_ch = _make_stim_channel(
block[stim, :],
sqd["slope"],
sqd["stimthresh"],
sqd["stim_code"],
stim,
)
block = np.vstack((block, stim_ch))
_mult_cal_one(data_view, block, idx, cals, mult)
# cals are all unity, so can be ignored
def _set_stimchannels(inst, info, stim, stim_code):
"""Specify how the trigger channel is synthesized from analog channels.
Has to be done before loading data. For a RawKIT instance that has been
created with preload=True, this method will raise a
NotImplementedError.
Parameters
----------
%(info_not_none)s
stim : list of int | '<' | '>'
Can be submitted as list of trigger channels.
If a list is not specified, the default triggers extracted from
misc channels will be used with specified directionality.
'<' means that largest values assigned to the first channel
in sequence.
'>' means the largest trigger assigned to the last channel
in sequence.
stim_code : 'binary' | 'channel'
How to decode trigger values from stim channels. 'binary' read stim
channel events as binary code, 'channel' encodes channel number.
"""
if inst.preload:
raise NotImplementedError("Can't change stim channel after loading data")
_check_option("stim_code", stim_code, ["binary", "channel"])
if stim is not None:
if isinstance(stim, str):
picks = _default_stim_chs(info)
if stim == "<":
stim = picks[::-1]
elif stim == ">":
stim = picks
else:
raise ValueError(
f"stim needs to be list of int, '>' or '<', not {str(stim)!r}"
)
else:
stim = np.asarray(stim, int)
if stim.max() >= inst._raw_extras[0]["nchan"]:
raise ValueError(
f"Got stim={stim}, but sqd file only has "
f"{inst._raw_extras[0]['nchan']} channels."
)
# modify info
nchan = inst._raw_extras[0]["nchan"] + 1
info["chs"].append(
dict(
cal=KIT.CALIB_FACTOR,
logno=nchan,
scanno=nchan,
range=1.0,
unit=FIFF.FIFF_UNIT_NONE,
unit_mul=FIFF.FIFF_UNITM_NONE,
ch_name="STI 014",
coil_type=FIFF.FIFFV_COIL_NONE,
loc=np.full(12, np.nan),
kind=FIFF.FIFFV_STIM_CH,
coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
)
)
info._update_redundant()
inst._raw_extras[0]["stim"] = stim
inst._raw_extras[0]["stim_code"] = stim_code
def _default_stim_chs(info):
"""Return default stim channels for SQD files."""
return pick_types(info, meg=False, ref_meg=False, misc=True, exclude=[])[:8]
def _make_stim_channel(trigger_chs, slope, threshold, stim_code, trigger_values):
"""Create synthetic stim channel from multiple trigger channels."""
if slope == "+":
trig_chs_bin = trigger_chs > threshold
elif slope == "-":
trig_chs_bin = trigger_chs < threshold
else:
raise ValueError("slope needs to be '+' or '-'")
# trigger value
if stim_code == "binary":
trigger_values = 2 ** np.arange(len(trigger_chs))
elif stim_code != "channel":
raise ValueError(
f"stim_code must be 'binary' or 'channel', got {repr(stim_code)}"
)
trig_chs = trig_chs_bin * trigger_values[:, np.newaxis]
return np.array(trig_chs.sum(axis=0), ndmin=2)
@fill_doc
class EpochsKIT(BaseEpochs):
"""Epochs Array object from KIT SQD file.
Parameters
----------
input_fname : path-like
Path to the sqd file.
events : array of int, shape (n_events, 3) | path-like
The array of :term:`events`. The first column contains the event time
in samples, with :term:`first_samp` included. The third column contains
the event id. If a path, must yield a ``.txt`` file containing the
events.
If some events don't match the events of interest as specified by
``event_id``, they will be marked as ``IGNORED`` in the drop log.
%(event_id)s
tmin : float
Start time before event.
%(baseline_epochs)s
%(reject_epochs)s
%(flat)s
%(epochs_reject_tmin_tmax)s
%(kit_mrk)s
%(kit_elp)s
%(kit_hsp)s
allow_unknown_format : bool
Force reading old data that is not officially supported. Alternatively,
read and re-save the data with the KIT MEG Laboratory application.
%(standardize_names)s
%(verbose)s
Notes
-----
``elp`` and ``hsp`` are usually the exported text files (*.txt) from the
Polhemus FastScan system. hsp refers to the headshape surface points. elp
refers to the points in head-space that corresponds to the HPI points.
Currently, '*.elp' and '*.hsp' files are NOT supported.
See Also
--------
mne.Epochs : Documentation of attributes and methods.
"""
@verbose
def __init__(
self,
input_fname,
events,
event_id=None,
tmin=0,
baseline=None,
reject=None,
flat=None,
reject_tmin=None,
reject_tmax=None,
mrk=None,
elp=None,
hsp=None,
allow_unknown_format=False,
standardize_names=None,
verbose=None,
):
if isinstance(events, str | PathLike | Path):
events = read_events(events)
input_fname = str(
_check_fname(fname=input_fname, must_exist=True, overwrite="read")
)
logger.info(f"Extracting KIT Parameters from {input_fname}...")
self.info, kit_info = get_kit_info(
input_fname, allow_unknown_format, standardize_names
)
kit_info.update(input_fname=input_fname)
self._raw_extras = [kit_info]
self.filenames = []
if len(events) != self._raw_extras[0]["n_epochs"]:
raise ValueError("Event list does not match number of epochs.")
if self._raw_extras[0]["acq_type"] == KIT.EPOCHS:
self._raw_extras[0]["data_length"] = KIT.INT
else:
raise TypeError(
"SQD file contains raw data, not epochs or average. Wrong reader."
)
if event_id is None: # convert to int to make typing-checks happy
event_id = {str(e): int(e) for e in np.unique(events[:, 2])}
for key, val in event_id.items():
if val not in events[:, 2]:
raise ValueError(f"No matching events found for {key} (event id {val})")
data = self._read_kit_data()
assert data.shape == (
self._raw_extras[0]["n_epochs"],
self.info["nchan"],
self._raw_extras[0]["frame_length"],
)
tmax = ((data.shape[2] - 1) / self.info["sfreq"]) + tmin
super().__init__(
self.info,
data,
events,
event_id,
tmin,
tmax,
baseline,
reject=reject,
flat=flat,
reject_tmin=reject_tmin,
reject_tmax=reject_tmax,
filename=input_fname,
verbose=verbose,
)
self.info = _call_digitization(
info=self.info, mrk=mrk, elp=elp, hsp=hsp, kit_info=kit_info
)
logger.info("Ready.")
def _read_kit_data(self):
"""Read epochs data.
Returns
-------
data : array, [channels x samples]
the data matrix (channels x samples).
times : array, [samples]
returns the time values corresponding to the samples.
"""
info = self._raw_extras[0]
epoch_length = info["frame_length"]
n_epochs = info["n_epochs"]
n_samples = info["n_samples"]
input_fname = info["input_fname"]
dtype = info["dtype"]
nchan = info["nchan"]
with open(input_fname, "rb", buffering=0) as fid:
fid.seek(info["dirs"][KIT.DIR_INDEX_RAW_DATA]["offset"])
count = n_samples * nchan
data = np.fromfile(fid, dtype=dtype, count=count)
data = data.reshape((n_samples, nchan)).T
data = data * info["conv_factor"]
data = data.reshape((nchan, n_epochs, epoch_length))
data = data.transpose((1, 0, 2))
return data
def _read_dir(fid):
return dict(
offset=np.fromfile(fid, UINT32, 1)[0],
size=np.fromfile(fid, INT32, 1)[0],
max_count=np.fromfile(fid, INT32, 1)[0],
count=np.fromfile(fid, INT32, 1)[0],
)
@verbose
def _read_dirs(fid, verbose=None):
dirs = list()
dirs.append(_read_dir(fid))
for ii in range(dirs[0]["count"] - 1):
logger.debug(f" KIT dir entry {ii} @ {fid.tell()}")
dirs.append(_read_dir(fid))
assert len(dirs) == dirs[KIT.DIR_INDEX_DIR]["count"]
return dirs
@verbose
def get_kit_info(rawfile, allow_unknown_format, standardize_names=None, verbose=None):
"""Extract all the information from the sqd/con file.
Parameters
----------
rawfile : path-like
KIT file to be read.
allow_unknown_format : bool
Force reading old data that is not officially supported. Alternatively,
read and re-save the data with the KIT MEG Laboratory application.
%(standardize_names)s
%(verbose)s
Returns
-------
%(info_not_none)s
sqd : dict
A dict containing all the sqd parameter settings.
"""
sqd = dict()
sqd["rawfile"] = rawfile
unsupported_format = False
with open(rawfile, "rb", buffering=0) as fid: # buffering=0 for np bug
#
# directories (0)
#
sqd["dirs"] = dirs = _read_dirs(fid)
#
# system (1)
#
fid.seek(dirs[KIT.DIR_INDEX_SYSTEM]["offset"])
# check file format version
version, revision = np.fromfile(fid, INT32, 2)
if version < 2 or (version == 2 and revision < 3):
version_string = f"V{version}R{revision:03d}"
if allow_unknown_format:
unsupported_format = True
warn(f"Force loading KIT format {version_string}")
else:
raise UnsupportedKITFormat(
version_string,
f"SQD file format {version_string} is not officially supported. "
"Set allow_unknown_format=True to load it anyways.",
)
sysid = np.fromfile(fid, INT32, 1)[0]
# basic info
system_name = _read_name(fid, n=128)
# model name
model_name = _read_name(fid, n=128)
# channels
sqd["nchan"] = channel_count = int(np.fromfile(fid, INT32, 1)[0])
comment = _read_name(fid, n=256)
create_time, last_modified_time = np.fromfile(fid, INT32, 2)
del last_modified_time
fid.seek(KIT.INT * 3, SEEK_CUR) # reserved
dewar_style = np.fromfile(fid, INT32, 1)[0]
fid.seek(KIT.INT * 3, SEEK_CUR) # spare
fll_type = np.fromfile(fid, INT32, 1)[0]
fid.seek(KIT.INT * 3, SEEK_CUR) # spare
trigger_type = np.fromfile(fid, INT32, 1)[0]
fid.seek(KIT.INT * 3, SEEK_CUR) # spare
adboard_type = np.fromfile(fid, INT32, 1)[0]
fid.seek(KIT.INT * 29, SEEK_CUR) # reserved
if version < 2 or (version == 2 and revision <= 3):
adc_range = float(np.fromfile(fid, INT32, 1)[0])
else:
adc_range = np.fromfile(fid, FLOAT64, 1)[0]
adc_polarity, adc_allocated, adc_stored = np.fromfile(fid, INT32, 3)
del adc_polarity
system_name = system_name.replace("\x00", "")
system_name = system_name.strip().replace("\n", "/")
model_name = model_name.replace("\x00", "")
model_name = model_name.strip().replace("\n", "/")
full_version = f"V{version:d}R{revision:03d}"
logger.debug("SQD file basic information:")
logger.debug("Meg160 version = %s", full_version)
logger.debug("System ID = %i", sysid)
logger.debug("System name = %s", system_name)
logger.debug("Model name = %s", model_name)
logger.debug("Channel count = %i", channel_count)
logger.debug("Comment = %s", comment)
logger.debug("Dewar style = %i", dewar_style)
logger.debug("FLL type = %i", fll_type)
logger.debug("Trigger type = %i", trigger_type)
logger.debug("A/D board type = %i", adboard_type)
logger.debug("ADC range = +/-%s[V]", adc_range / 2.0)
logger.debug("ADC allocate = %i[bit]", adc_allocated)
logger.debug("ADC bit = %i[bit]", adc_stored)
# MGH description: 'acquisition (megacq) VectorView system at NMR-MGH'
description = f"{system_name} ({sysid}) {full_version} {model_name}"
assert adc_allocated % 8 == 0
sqd["dtype"] = np.dtype(f"<i{adc_allocated // 8}")
# check that we can read this file
if fll_type not in KIT.FLL_SETTINGS:
fll_types = sorted(KIT.FLL_SETTINGS.keys())
use_fll_type = fll_types[np.searchsorted(fll_types, fll_type) - 1]
warn(
"Unknown site filter settings (FLL) for system "
f'"{system_name}" model "{model_name}" (ID {sysid}), will assume FLL '
f"{fll_type}->{use_fll_type}, check your data for correctness, "
"including channel scales and filter settings!"
)
fll_type = use_fll_type
#
# channel information (4)
#
chan_dir = dirs[KIT.DIR_INDEX_CHANNELS]
chan_offset, chan_size = chan_dir["offset"], chan_dir["size"]
sqd["channels"] = channels = []
exg_gains = list()
for i in range(channel_count):
fid.seek(chan_offset + chan_size * i)
(channel_type,) = np.fromfile(fid, INT32, 1)
# System 52 mislabeled reference channels as NULL. This was fixed
# in system 53; not sure about 51...
if sysid == 52 and i < 160 and channel_type == KIT.CHANNEL_NULL:
channel_type = KIT.CHANNEL_MAGNETOMETER_REFERENCE
if channel_type in KIT.CHANNELS_MEG:
if channel_type not in KIT.CH_TO_FIFF_COIL:
raise NotImplementedError(
"KIT channel type {channel_type} can not be read. Please "
"contact the mne-python developers."
)
channels.append(
{
"type": channel_type,
# (x, y, z, theta, phi) for all MEG channels. Some channel
# types have additional information which we're not using.
"loc": np.fromfile(fid, dtype=FLOAT64, count=5),
}
)
if channel_type in KIT.CHANNEL_NAME_NCHAR:
fid.seek(16, SEEK_CUR) # misc fields
channels[-1]["name"] = _read_name(fid, channel_type)
elif channel_type in KIT.CHANNELS_MISC:
(channel_no,) = np.fromfile(fid, INT32, 1)
fid.seek(4, SEEK_CUR)
name = _read_name(fid, channel_type)
channels.append(
{
"type": channel_type,
"no": channel_no,
"name": name,
}
)
if channel_type in (KIT.CHANNEL_EEG, KIT.CHANNEL_ECG):
offset = 6 if channel_type == KIT.CHANNEL_EEG else 8
fid.seek(offset, SEEK_CUR)
exg_gains.append(np.fromfile(fid, FLOAT64, 1)[0])
elif channel_type == KIT.CHANNEL_NULL:
channels.append({"type": channel_type})
else:
raise OSError("Unknown KIT channel type: {channel_type}")
exg_gains = np.array(exg_gains)
#
# Channel sensitivity information: (5)
#
# only sensor channels requires gain. the additional misc channels
# (trigger channels, audio and voice channels) are passed
# through unaffected
fid.seek(dirs[KIT.DIR_INDEX_CALIBRATION]["offset"])
# (offset [Volt], gain [Tesla/Volt]) for each channel
sensitivity = np.fromfile(fid, dtype=FLOAT64, count=channel_count * 2)
sensitivity.shape = (channel_count, 2)
channel_offset, channel_gain = sensitivity.T
assert (channel_offset == 0).all() # otherwise we have a problem
#
# amplifier gain (7)
#
fid.seek(dirs[KIT.DIR_INDEX_AMP_FILTER]["offset"])
amp_data = np.fromfile(fid, INT32, 1)[0]
if fll_type >= 100: # Kapper Type
# gain: mask bit
gain1 = (amp_data & 0x00007000) >> 12
gain2 = (amp_data & 0x70000000) >> 28
gain3 = (amp_data & 0x07000000) >> 24
amp_gain = KIT.GAINS[gain1] * KIT.GAINS[gain2] * KIT.GAINS[gain3]
# filter settings
hpf = (amp_data & 0x00000700) >> 8
lpf = (amp_data & 0x00070000) >> 16
bef = (amp_data & 0x00000003) >> 0
else: # Hanger Type
# gain
input_gain = (amp_data & 0x1800) >> 11
output_gain = (amp_data & 0x0007) >> 0
amp_gain = KIT.GAINS[input_gain] * KIT.GAINS[output_gain]
# filter settings
hpf = (amp_data & 0x007) >> 4
lpf = (amp_data & 0x0700) >> 8
bef = (amp_data & 0xC000) >> 14
hpf_options, lpf_options, bef_options = KIT.FLL_SETTINGS[fll_type]
sqd["highpass"] = KIT.HPFS[hpf_options][hpf]
sqd["lowpass"] = KIT.LPFS[lpf_options][lpf]
sqd["notch"] = KIT.BEFS[bef_options][bef]
#
# Acquisition Parameters (8)
#
fid.seek(dirs[KIT.DIR_INDEX_ACQ_COND]["offset"])
(sqd["acq_type"],) = (acq_type,) = np.fromfile(fid, INT32, 1)
(sqd["sfreq"],) = np.fromfile(fid, FLOAT64, 1)
if acq_type == KIT.CONTINUOUS:
# samples_count, = np.fromfile(fid, INT32, 1)
fid.seek(KIT.INT, SEEK_CUR)
(sqd["n_samples"],) = np.fromfile(fid, INT32, 1)
elif acq_type == KIT.EVOKED or acq_type == KIT.EPOCHS:
(sqd["frame_length"],) = np.fromfile(fid, INT32, 1)
(sqd["pretrigger_length"],) = np.fromfile(fid, INT32, 1)
(sqd["average_count"],) = np.fromfile(fid, INT32, 1)
(sqd["n_epochs"],) = np.fromfile(fid, INT32, 1)
if acq_type == KIT.EVOKED:
sqd["n_samples"] = sqd["frame_length"]
else:
sqd["n_samples"] = sqd["frame_length"] * sqd["n_epochs"]
else:
raise OSError(
f"Invalid acquisition type: {acq_type}. Your file is neither "
"continuous nor epoched data."
)
#
# digitization information (12 and 26)
#
dig_dir = dirs[KIT.DIR_INDEX_DIG_POINTS]
cor_dir = dirs[KIT.DIR_INDEX_COREG]
dig = dict()
hsp = list()
if dig_dir["count"] > 0 and cor_dir["count"] > 0:
# directories (0)
fid.seek(dig_dir["offset"])
for _ in range(dig_dir["count"]):
name = _read_name(fid, n=8).strip()
# Sometimes there are mismatches (e.g., AFz vs AFZ) between
# the channel name and its digitized, name, so let's be case
# insensitive. It will also prevent collisions with HSP
name = name.lower()
rr = np.fromfile(fid, FLOAT64, 3)
if name:
assert name not in dig
dig[name] = rr
else:
hsp.append(rr)
# nasion, lpa, rpa, HPI in native space
elp = []
for key in (
"fidnz",
"fidt9",
"fidt10",
"hpi_1",
"hpi_2",
"hpi_3",
"hpi_4",
"hpi_5",
):
if key in dig and np.isfinite(dig[key]).all():
elp.append(dig.pop(key))
elp = np.array(elp)
hsp = np.array(hsp, float).reshape(-1, 3)
if elp.shape not in ((6, 3), (7, 3), (8, 3)):
raise RuntimeError(f"Fewer than 3 HPI coils found, got {len(elp) - 3}")
# coregistration
fid.seek(cor_dir["offset"])
mrk = np.zeros((elp.shape[0] - 3, 3))
meg_done = [True] * 5
for _ in range(cor_dir["count"]):
done = np.fromfile(fid, INT32, 1)[0]
fid.seek(
16 * KIT.DOUBLE + 16 * KIT.DOUBLE, # meg_to_mri # mri_to_meg
SEEK_CUR,
)
marker_count = np.fromfile(fid, INT32, 1)[0]
if not done:
continue
assert marker_count >= len(mrk)
for mi in range(len(mrk)):
mri_type, meg_type, mri_done, this_meg_done = np.fromfile(
fid, INT32, 4
)
del mri_type, meg_type, mri_done
meg_done[mi] = bool(this_meg_done)
fid.seek(3 * KIT.DOUBLE, SEEK_CUR) # mri_pos
mrk[mi] = np.fromfile(fid, FLOAT64, 3)
fid.seek(256, SEEK_CUR) # marker_file (char)
if not all(meg_done):
logger.info(
f"Keeping {sum(meg_done)}/{len(meg_done)} HPI "
"coils that were digitized"
)
elp = elp[[True] * 3 + meg_done]
mrk = mrk[meg_done]
sqd.update(hsp=hsp, elp=elp, mrk=mrk)
# precompute conversion factor for reading data
if unsupported_format:
if sysid not in LEGACY_AMP_PARAMS:
raise OSError(f"Legacy parameters for system ID {sysid} unavailable.")
adc_range, adc_stored = LEGACY_AMP_PARAMS[sysid]
is_meg = np.array([ch["type"] in KIT.CHANNELS_MEG for ch in channels])
ad_to_volt = adc_range / (2.0**adc_stored)
ad_to_tesla = ad_to_volt / amp_gain * channel_gain
conv_factor = np.where(is_meg, ad_to_tesla, ad_to_volt)
# XXX this is a bit of a hack. Should probably do this more cleanly at
# some point... the 2 ** (adc_stored - 14) was empirically determined using
# the test files with known amplitudes. The conv_factors need to be
# replaced by these values otherwise we're off by a factor off 5000.0
# for the EEG data.
is_exg = [ch["type"] in (KIT.CHANNEL_EEG, KIT.CHANNEL_ECG) for ch in channels]
exg_gains /= 2.0 ** (adc_stored - 14)
exg_gains[exg_gains == 0] = ad_to_volt
conv_factor[is_exg] = exg_gains
sqd["conv_factor"] = conv_factor[:, np.newaxis]
# Create raw.info dict for raw fif object with SQD data
info = _empty_info(float(sqd["sfreq"]))
info.update(
meas_date=_stamp_to_dt((create_time, 0)),
lowpass=sqd["lowpass"],
highpass=sqd["highpass"],
kit_system_id=sysid,
description=description,
)
# Creates a list of dicts of meg channels for raw.info
logger.info("Setting channel info structure...")
info["chs"] = fiff_channels = []
channel_index = defaultdict(lambda: 0)
sqd["eeg_dig"] = OrderedDict()
for idx, ch in enumerate(channels, 1):
if ch["type"] in KIT.CHANNELS_MEG:
ch_name = ch.get("name", "")
if ch_name == "" or standardize_names:
ch_name = f"MEG {idx:03d}"
# create three orthogonal vector
# ch_angles[0]: theta, ch_angles[1]: phi
theta, phi = np.radians(ch["loc"][3:])
x = sin(theta) * cos(phi)
y = sin(theta) * sin(phi)
z = cos(theta)
vec_z = np.array([x, y, z])
vec_z /= np.linalg.norm(vec_z)
vec_x = np.zeros(vec_z.size, dtype=np.float64)
if vec_z[1] < vec_z[2]:
if vec_z[0] < vec_z[1]:
vec_x[0] = 1.0
else:
vec_x[1] = 1.0
elif vec_z[0] < vec_z[2]:
vec_x[0] = 1.0
else:
vec_x[2] = 1.0
vec_x -= np.sum(vec_x * vec_z) * vec_z
vec_x /= np.linalg.norm(vec_x)
vec_y = np.cross(vec_z, vec_x)
# transform to Neuromag like coordinate space
vecs = np.vstack((ch["loc"][:3], vec_x, vec_y, vec_z))
vecs = apply_trans(als_ras_trans, vecs)
unit = FIFF.FIFF_UNIT_T
loc = vecs.ravel()
else:
ch_type_label = KIT.CH_LABEL[ch["type"]]
channel_index[ch_type_label] += 1
ch_type_index = channel_index[ch_type_label]
ch_name = ch.get("name", "")
eeg_name = ch_name.lower()
# some files have all EEG labeled as EEG
if ch_name in ("", "EEG") or standardize_names:
ch_name = f"{ch_type_label} {ch_type_index:03d}"
unit = FIFF.FIFF_UNIT_V
loc = np.zeros(12)
if eeg_name and eeg_name in dig:
loc[:3] = sqd["eeg_dig"][eeg_name] = dig[eeg_name]
fiff_channels.append(
dict(
cal=KIT.CALIB_FACTOR,
logno=idx,
scanno=idx,
range=KIT.RANGE,
unit=unit,
unit_mul=KIT.UNIT_MUL,
ch_name=ch_name,
coord_frame=FIFF.FIFFV_COORD_DEVICE,
coil_type=KIT.CH_TO_FIFF_COIL[ch["type"]],
kind=KIT.CH_TO_FIFF_KIND[ch["type"]],
loc=loc,
)
)
info._unlocked = False
info._update_redundant()
return info, sqd
def _read_name(fid, ch_type=None, n=None):
n = n if ch_type is None else KIT.CHANNEL_NAME_NCHAR[ch_type]
return fid.read(n).split(b"\x00")[0].decode("utf-8")
@fill_doc
def read_raw_kit(
input_fname,
mrk=None,
elp=None,
hsp=None,
stim=">",
slope="-",
stimthresh=1,
preload=False,
stim_code="binary",
allow_unknown_format=False,
standardize_names=False,
*,
bad_coils=(),
verbose=None,
) -> RawKIT:
r"""Reader function for Ricoh/KIT conversion to FIF.
Parameters
----------
input_fname : path-like
Path to the SQD file.
%(kit_mrk)s
%(kit_elp)s
%(kit_hsp)s
%(kit_stim)s
%(kit_slope)s
%(kit_stimthresh)s
%(preload)s
%(kit_stimcode)s
allow_unknown_format : bool
Force reading old data that is not officially supported. Alternatively,
read and re-save the data with the KIT MEG Laboratory application.
%(standardize_names)s
%(kit_badcoils)s
%(verbose)s
Returns
-------
raw : instance of RawKIT
A Raw object containing KIT data.
See :class:`mne.io.Raw` for documentation of attributes and methods.
See Also
--------
mne.io.Raw : Documentation of attributes and methods of RawKIT.
Notes
-----
``elp`` and ``hsp`` are usually the exported text files (\*.txt) from the
Polhemus FastScan system. ``hsp`` refers to the headshape surface points.
``elp`` refers to the points in head-space that corresponds to the HPI
points.
If ``mrk``\, ``hsp`` or ``elp`` are :term:`array_like` inputs, then the
numbers in xyz coordinates should be in units of meters.
"""
return RawKIT(
input_fname=input_fname,
mrk=mrk,
elp=elp,
hsp=hsp,
stim=stim,
slope=slope,
stimthresh=stimthresh,
preload=preload,
stim_code=stim_code,
allow_unknown_format=allow_unknown_format,
standardize_names=standardize_names,
bad_coils=bad_coils,
verbose=verbose,
)
@fill_doc
def read_epochs_kit(
input_fname,
events,
event_id=None,
mrk=None,
elp=None,
hsp=None,
allow_unknown_format=False,
standardize_names=False,
verbose=None,
) -> EpochsKIT:
"""Reader function for Ricoh/KIT epochs files.
Parameters
----------
input_fname : path-like
Path to the SQD file.
events : array of int, shape (n_events, 3) | path-like
The array of :term:`events`. The first column contains the event time
in samples, with :term:`first_samp` included. The third column contains
the event id. If a path, must yield a ``.txt`` file containing the
events.
If some events don't match the events of interest as specified by
``event_id``, they will be marked as ``IGNORED`` in the drop log.
%(event_id)s
%(kit_mrk)s
%(kit_elp)s
%(kit_hsp)s
allow_unknown_format : bool
Force reading old data that is not officially supported. Alternatively,
read and re-save the data with the KIT MEG Laboratory application.
%(standardize_names)s
%(verbose)s
Returns
-------
EpochsKIT : instance of BaseEpochs
The epochs.
See Also
--------
mne.Epochs : Documentation of attributes and methods.
Notes
-----
.. versionadded:: 0.9.0
"""
epochs = EpochsKIT(
input_fname=input_fname,
events=events,
event_id=event_id,
mrk=mrk,
elp=elp,
hsp=hsp,
allow_unknown_format=allow_unknown_format,
standardize_names=standardize_names,
verbose=verbose,
)
return epochs
|