1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from pathlib import Path
import numpy as np
import pytest
import scipy.io
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
from scipy import linalg
import mne
from mne import Epochs, find_events, pick_types, read_events
from mne._fiff.constants import FIFF
from mne.datasets.testing import requires_testing_data
from mne.io import read_epochs_kit, read_raw_fif, read_raw_kit
from mne.io.kit.constants import KIT
from mne.io.kit.coreg import read_sns
from mne.io.kit.kit import get_kit_info
from mne.io.tests.test_raw import _test_raw_reader
from mne.surface import _get_ico_surface
from mne.transforms import apply_trans
from mne.utils import assert_dig_allclose
data_dir = Path(__file__).parent / "data"
sqd_path = data_dir / "test.sqd"
sqd_umd_path = data_dir / "test_umd-raw.sqd"
epochs_path = data_dir / "test-epoch.raw"
events_path = data_dir / "test-eve.txt"
mrk_path = data_dir / "test_mrk.sqd"
mrk2_path = data_dir / "test_mrk_pre.sqd"
mrk3_path = data_dir / "test_mrk_post.sqd"
elp_txt_path = data_dir / "test_elp.txt"
hsp_txt_path = data_dir / "test_hsp.txt"
elp_path = data_dir / "test.elp"
hsp_path = data_dir / "test.hsp"
data_path = mne.datasets.testing.data_path(download=False)
sqd_as_path = data_path / "KIT" / "test_as-raw.con"
yokogawa_path = data_path / "KIT" / "ArtificalSignalData_Yokogawa_1khz.con"
ricoh_path = data_path / "KIT" / "ArtificalSignalData_RICOH_1khz.con"
ricoh_systems_paths = [data_path / "KIT" / "Example_PQA160C_1001-export_anonymyze.con"]
ricoh_systems_paths += [
data_path / "KIT" / "Example_RICOH160-1_10020-export_anonymyze.con"
]
ricoh_systems_paths += [
data_path / "KIT" / "Example_RICOH160-1_10021-export_anonymyze.con"
]
ricoh_systems_paths += [
data_path / "KIT" / "010409_Motor_task_coregist-export_tiny_1s.con"
]
berlin_path = data_path / "KIT" / "data_berlin.con"
@requires_testing_data
def test_data(tmp_path):
"""Test reading raw kit files."""
pytest.raises(TypeError, read_raw_kit, epochs_path)
pytest.raises(TypeError, read_epochs_kit, sqd_path)
pytest.raises(ValueError, read_raw_kit, sqd_path, mrk_path, elp_txt_path)
pytest.raises(
ValueError, read_raw_kit, sqd_path, None, None, None, list(range(200, 190, -1))
)
pytest.raises(
ValueError,
read_raw_kit,
sqd_path,
None,
None,
None,
list(range(167, 159, -1)),
"*",
1,
True,
)
# check functionality
raw_mrk = read_raw_kit(sqd_path, [mrk2_path, mrk3_path], elp_txt_path, hsp_txt_path)
assert (
raw_mrk.info["description"]
== "NYU 160ch System since Jan24 2009 (34) V2R004 EQ1160C" # noqa: E501
)
raw_py = _test_raw_reader(
read_raw_kit,
input_fname=sqd_path,
mrk=mrk_path,
elp=elp_txt_path,
hsp=hsp_txt_path,
stim=list(range(167, 159, -1)),
slope="+",
stimthresh=1,
)
assert "RawKIT" in repr(raw_py)
assert_equal(raw_mrk.info["kit_system_id"], KIT.SYSTEM_NYU_2010)
# check number/kind of channels
assert_equal(len(raw_py.info["chs"]), 193)
kit_channels = (
(
"kind",
{
FIFF.FIFFV_MEG_CH: 157,
FIFF.FIFFV_REF_MEG_CH: 3,
FIFF.FIFFV_MISC_CH: 32,
FIFF.FIFFV_STIM_CH: 1,
},
),
(
"coil_type",
{
FIFF.FIFFV_COIL_KIT_GRAD: 157,
FIFF.FIFFV_COIL_KIT_REF_MAG: 3,
FIFF.FIFFV_COIL_NONE: 33,
},
),
)
for label, target in kit_channels:
actual = {
id_: sum(ch[label] == id_ for ch in raw_py.info["chs"])
for id_ in target.keys()
}
assert_equal(actual, target)
# Test stim channel
raw_stim = read_raw_kit(
sqd_path, mrk_path, elp_txt_path, hsp_txt_path, stim="<", preload=False
)
for raw in [raw_py, raw_stim, raw_mrk]:
stim_pick = pick_types(
raw.info, meg=False, ref_meg=False, stim=True, exclude="bads"
)
stim1, _ = raw[stim_pick]
stim2 = np.array(raw.read_stim_ch(), ndmin=2)
assert_array_equal(stim1, stim2)
# Binary file only stores the sensor channels
py_picks = pick_types(raw_py.info, meg=True, exclude="bads")
raw_bin = data_dir / "test_bin_raw.fif"
raw_bin = read_raw_fif(raw_bin, preload=True)
bin_picks = pick_types(raw_bin.info, meg=True, stim=True, exclude="bads")
data_bin, _ = raw_bin[bin_picks]
data_py, _ = raw_py[py_picks]
# this .mat was generated using the Yokogawa MEG Reader
data_Ykgw = data_dir / "test_Ykgw.mat"
data_Ykgw = scipy.io.loadmat(data_Ykgw)["data"]
data_Ykgw = data_Ykgw[py_picks]
assert_array_almost_equal(data_py, data_Ykgw)
py_picks = pick_types(
raw_py.info, meg=True, stim=True, ref_meg=False, exclude="bads"
)
data_py, _ = raw_py[py_picks]
assert_array_almost_equal(data_py, data_bin)
# KIT-UMD data
_test_raw_reader(read_raw_kit, input_fname=sqd_umd_path, test_rank="less")
raw = read_raw_kit(sqd_umd_path)
assert (
raw.info["description"]
== "University of Maryland/Kanazawa Institute of Technology/160-channel MEG System (53) V2R004 PQ1160R" # noqa: E501
)
assert_equal(raw.info["kit_system_id"], KIT.SYSTEM_UMD_2014_12)
# check number/kind of channels
assert_equal(len(raw.info["chs"]), 193)
for label, target in kit_channels:
actual = {
id_: sum(ch[label] == id_ for ch in raw.info["chs"])
for id_ in target.keys()
}
assert_equal(actual, target)
# KIT Academia Sinica
raw = read_raw_kit(sqd_as_path, slope="+")
assert (
raw.info["description"]
== "Academia Sinica/Institute of Linguistics//Magnetoencephalograph System (261) V2R004 PQ1160R-N2" # noqa: E501
)
assert_equal(raw.info["kit_system_id"], KIT.SYSTEM_AS_2008)
assert_equal(raw.info["chs"][100]["ch_name"], "MEG 101")
assert_equal(raw.info["chs"][100]["kind"], FIFF.FIFFV_MEG_CH)
assert_equal(raw.info["chs"][100]["coil_type"], FIFF.FIFFV_COIL_KIT_GRAD)
assert_equal(raw.info["chs"][157]["ch_name"], "MEG 158")
assert_equal(raw.info["chs"][157]["kind"], FIFF.FIFFV_REF_MEG_CH)
assert_equal(raw.info["chs"][157]["coil_type"], FIFF.FIFFV_COIL_KIT_REF_MAG)
assert_equal(raw.info["chs"][160]["ch_name"], "EEG 001")
assert_equal(raw.info["chs"][160]["kind"], FIFF.FIFFV_EEG_CH)
assert_equal(raw.info["chs"][160]["coil_type"], FIFF.FIFFV_COIL_EEG)
assert_array_equal(find_events(raw), [[91, 0, 2]])
@requires_testing_data
def test_unknown_format(tmp_path):
"""Test our warning about an unknown format."""
fname = tmp_path / ricoh_path.name
_, kit_info = get_kit_info(ricoh_path, allow_unknown_format=False)
n_before = kit_info["dirs"][KIT.DIR_INDEX_SYSTEM]["offset"]
with open(fname, "wb") as fout:
with open(ricoh_path, "rb") as fin:
fout.write(fin.read(n_before))
version, revision = np.fromfile(fin, "<i4", 2)
assert version > 2 # good
version = 1 # bad
np.array([version, revision], "<i4").tofile(fout)
fout.write(fin.read())
with pytest.raises(ValueError, match="SQD file format V1R000 is not offi"):
read_raw_kit(fname)
# it's not actually an old file, so it actually raises an exception later
# about an unknown datatype
with pytest.raises(Exception):
with pytest.warns(RuntimeWarning, match="Force loading"):
read_raw_kit(fname, allow_unknown_format=True)
def _assert_sinusoid(data, t, freq, amp, msg):
__tracebackhide__ = True
sinusoid = np.exp(2j * np.pi * freq * t) * amp
phase = np.angle(np.dot(data, sinusoid))
sinusoid = np.cos(2 * np.pi * freq * t - phase) * amp
assert_allclose(data, sinusoid, rtol=0.05, atol=amp * 1e-3, err_msg=msg)
@requires_testing_data
@pytest.mark.parametrize(
"fname, desc",
[
(yokogawa_path, "Meg160/Analysis (1001) V3R000 PQA160C"),
(ricoh_path, "Meg160/Analysis (1001) V3R000 PQA160C"),
],
)
def test_ricoh_data(tmp_path, fname, desc):
"""Test reading channel names and dig information from Ricoh systems."""
raw = read_raw_kit(fname, standardize_names=True)
assert raw.ch_names[0] == "MEG 001"
raw = read_raw_kit(fname, standardize_names=False, verbose="debug")
assert raw.info["description"] == desc
assert_allclose(raw.times[-1], 5.0 - 1.0 / raw.info["sfreq"])
assert raw.ch_names[0] == "LF31"
eeg_picks = pick_types(raw.info, meg=False, eeg=True)
assert len(eeg_picks) == 45
assert len(raw.info["dig"]) == 8 + len(eeg_picks) - 2 # EKG+ and E no pos
bad_dig = [
ch["ch_name"]
for ci, ch in enumerate(raw.info["chs"])
if ci in eeg_picks and (ch["loc"][:3] == 0).all()
]
assert bad_dig == ["EKG+", "E"]
assert not any(np.allclose(d["r"], 0.0) for d in raw.info["dig"])
assert_allclose(
raw.info["dev_head_t"]["trans"],
[
[0.998311, -0.056923, 0.01164, 0.001403],
[0.054469, 0.986653, 0.153458, 0.0044],
[-0.02022, -0.152564, 0.988087, 0.018634],
[0.0, 0.0, 0.0, 1.0],
],
atol=1e-5,
)
data = raw.get_data()
# 1 pT 10 Hz on the first channel
assert raw.info["chs"][0]["coil_type"] == FIFF.FIFFV_COIL_KIT_GRAD
_assert_sinusoid(data[0], raw.times, 10, 1e-12, "1 pT 10 Hz MEG")
assert_allclose(data[1:160], 0.0, atol=1e-13)
# 1 V 5 Hz analog
assert raw.info["chs"][186]["coil_type"] == FIFF.FIFFV_COIL_EEG
_assert_sinusoid(data[160], raw.times, 5, 1, "1 V 5 Hz analog")
assert_allclose(data[161:185], 0.0, atol=1e-20)
# 50 uV 8 Hz plus 1.6 mV offset
assert raw.info["chs"][186]["coil_type"] == FIFF.FIFFV_COIL_EEG
eeg_data = data[186]
assert_allclose(eeg_data.mean(), 1.6e-3, atol=1e-5) # offset
eeg_data = eeg_data - eeg_data.mean()
_assert_sinusoid(eeg_data, raw.times, 8, 50e-6, "50 uV 8 Hz EEG")
assert_allclose(data[187:-1], 0.0, atol=1e-20)
assert_allclose(data[-1], 254.5, atol=0.51)
def test_epochs():
"""Test reading epoched SQD file."""
raw = read_raw_kit(sqd_path, stim=None)
events = read_events(events_path)
raw_epochs = Epochs(raw, events, None, tmin=0, tmax=0.099, baseline=None)
data1 = raw_epochs.get_data(copy=False)
epochs = read_epochs_kit(epochs_path, events_path)
data11 = epochs.get_data(copy=False)
assert_array_equal(data1, data11)
def test_raw_events():
"""Test creating stim channel from raw SQD file."""
def evts(a, b, c, d, e, f=None):
out = [[269, a, b], [281, b, c], [1552, c, d], [1564, d, e]]
if f is not None:
out.append([2000, e, f])
return out
raw = read_raw_kit(sqd_path)
assert_array_equal(
find_events(raw, output="step", consecutive=True),
evts(255, 254, 255, 254, 255, 0),
)
raw = read_raw_kit(sqd_path, slope="+")
assert_array_equal(
find_events(raw, output="step", consecutive=True), evts(0, 1, 0, 1, 0)
)
raw = read_raw_kit(sqd_path, stim="<", slope="+")
assert_array_equal(
find_events(raw, output="step", consecutive=True), evts(0, 128, 0, 128, 0)
)
raw = read_raw_kit(sqd_path, stim="<", slope="+", stim_code="channel")
assert_array_equal(
find_events(raw, output="step", consecutive=True), evts(0, 160, 0, 160, 0)
)
raw = read_raw_kit(sqd_path, stim=range(160, 162), slope="+", stim_code="channel")
assert_array_equal(
find_events(raw, output="step", consecutive=True), evts(0, 160, 0, 160, 0)
)
def test_ch_loc():
"""Test raw kit loc."""
raw_py = read_raw_kit(sqd_path, mrk_path, elp_txt_path, hsp_txt_path, stim="<")
raw_bin = read_raw_fif(data_dir / "test_bin_raw.fif")
ch_py = np.array([ch["loc"] for ch in raw_py._raw_extras[0]["channels"][:160]])
# ch locs stored as m, not mm
ch_py[:, :3] *= 1e3
ch_sns = read_sns(data_dir / "sns.txt")
assert_array_almost_equal(ch_py, ch_sns, 2)
assert_array_almost_equal(
raw_py.info["dev_head_t"]["trans"], raw_bin.info["dev_head_t"]["trans"], 4
)
for py_ch, bin_ch in zip(raw_py.info["chs"], raw_bin.info["chs"]):
if bin_ch["ch_name"].startswith("MEG"):
# the stored ch locs have more precision than the sns.txt
assert_array_almost_equal(py_ch["loc"], bin_ch["loc"], decimal=2)
# test when more than one marker file provided
mrks = [mrk_path, mrk2_path, mrk3_path]
read_raw_kit(sqd_path, mrks, elp_txt_path, hsp_txt_path, preload=False)
# this dataset does not have the equivalent set of points
with raw_bin.info._unlock():
raw_bin.info["dig"] = raw_bin.info["dig"][:8]
with raw_py.info._unlock():
raw_py.info["dig"] = raw_py.info["dig"][:8]
assert_dig_allclose(raw_py.info, raw_bin.info)
def test_hsp_elp():
"""Test KIT usage of *.elp and *.hsp files against *.txt files."""
raw_txt = read_raw_kit(sqd_path, mrk_path, elp_txt_path, hsp_txt_path)
raw_elp = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
# head points
pts_txt = np.array([dig_point["r"] for dig_point in raw_txt.info["dig"]])
pts_elp = np.array([dig_point["r"] for dig_point in raw_elp.info["dig"]])
assert_array_almost_equal(pts_elp, pts_txt, decimal=5)
# transforms
trans_txt = raw_txt.info["dev_head_t"]["trans"]
trans_elp = raw_elp.info["dev_head_t"]["trans"]
assert_array_almost_equal(trans_elp, trans_txt, decimal=5)
# head points in device space
pts_txt_in_dev = apply_trans(linalg.inv(trans_txt), pts_txt)
pts_elp_in_dev = apply_trans(linalg.inv(trans_elp), pts_elp)
assert_array_almost_equal(pts_elp_in_dev, pts_txt_in_dev, decimal=5)
def test_decimate(tmp_path):
"""Test decimation of digitizer headshapes with too many points."""
# load headshape and convert to meters
hsp_mm = _get_ico_surface(5)["rr"] * 100
hsp_m = hsp_mm / 1000.0
# save headshape to a file in mm in temporary directory
sphere_hsp_path = tmp_path / "test_sphere.txt"
np.savetxt(sphere_hsp_path, hsp_mm)
# read in raw data using spherical hsp, and extract new hsp
with pytest.warns(
RuntimeWarning, match="was automatically downsampled .* FastScan"
):
raw = read_raw_kit(sqd_path, mrk_path, elp_txt_path, sphere_hsp_path)
# collect headshape from raw (should now be in m)
hsp_dec = np.array([dig["r"] for dig in raw.info["dig"]])[8:]
# with 10242 points and _decimate_points set to resolution of 5 mm, hsp_dec
# should be a bit over 5000 points. If not, something is wrong or
# decimation resolution has been purposefully changed
assert len(hsp_dec) > 5000
# should have similar size, distance from center
dist = np.sqrt(np.sum((hsp_m - np.mean(hsp_m, axis=0)) ** 2, axis=1))
dist_dec = np.sqrt(np.sum((hsp_dec - np.mean(hsp_dec, axis=0)) ** 2, axis=1))
hsp_rad = np.mean(dist)
hsp_dec_rad = np.mean(dist_dec)
assert_array_almost_equal(hsp_rad, hsp_dec_rad, decimal=3)
@requires_testing_data
@pytest.mark.parametrize(
"fname, desc, system_id",
[
(ricoh_systems_paths[0], "Meg160/Analysis (1001) V2R004 PQA160C", 1001),
(ricoh_systems_paths[1], "RICOH MEG System (10020) V3R000 RICOH160-1", 10020),
(ricoh_systems_paths[2], "RICOH MEG System (10021) V3R000 RICOH160-1", 10021),
(
ricoh_systems_paths[3],
"Yokogawa Electric Corporation/MEG device for infants/151-channel MEG "
"System (903) V2R004 PQ1151R",
903,
),
],
)
def test_raw_system_id(fname, desc, system_id):
"""Test reading basics and system IDs."""
raw = _test_raw_reader(read_raw_kit, input_fname=fname)
assert raw.info["description"] == desc
assert raw.info["kit_system_id"] == system_id
@requires_testing_data
def test_berlin():
"""Test data from Berlin."""
# gh-8535
raw = read_raw_kit(berlin_path)
assert (
raw.info["description"]
== "Physikalisch Technische Bundesanstalt, Berlin/128-channel MEG System (124) V2R004 PQ1128R-N2" # noqa: E501
)
assert raw.info["kit_system_id"] == 124
assert raw.info["highpass"] == 0.0
assert raw.info["lowpass"] == 200.0
assert raw.info["sfreq"] == 500.0
n = int(round(28.77 * raw.info["sfreq"]))
meg = raw.get_data("MEG 003", n, n + 1)[0, 0]
assert_allclose(meg, -8.89e-12, rtol=1e-3)
eeg = raw.get_data("E14", n, n + 1)[0, 0]
assert_allclose(eeg, -2.55, rtol=1e-3)
|