1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import os
import numpy as np
import pytest
from numpy.testing import assert_allclose
from mne import make_fixed_length_epochs
from mne._fiff.constants import FIFF
from mne._fiff.meas_info import _empty_info
from mne.datasets.testing import data_path, requires_testing_data
from mne.io import read_raw_nsx
from mne.io.nsx.nsx import _decode_online_filters, _read_header
from mne.io.tests.test_raw import _test_raw_reader
testing_path = data_path(download=False)
nsx_21_fname = os.path.join(testing_path, "nsx", "test_NEURALSG_raw.ns3")
nsx_22_fname = os.path.join(testing_path, "nsx", "test_NEURALCD_raw.ns3")
nsx_31_fname = os.path.join(testing_path, "nsx", "test_BRSMPGRP_raw.ns3")
nsx_test_fname = os.path.join(testing_path, "nsx", "Test_anonymized.ns3")
edf_test_fname = os.path.join(testing_path, "EDF", "test_reduced.edf")
def test_decode_online_filters():
"""Tests for online low/high-pass filter decoding."""
info = _empty_info(100.0)
highpass = np.array([0.0, 0.1])
lowpass = np.array([50, 50])
with pytest.warns(RuntimeWarning, match="different highpass filters"):
_decode_online_filters(info, highpass, lowpass)
assert info["highpass"] == 0.1
info = _empty_info(100.0)
highpass = np.array([0.0, 0.0])
lowpass = np.array([40, 50])
with pytest.warns(RuntimeWarning, match="different lowpass filters"):
_decode_online_filters(info, highpass, lowpass)
assert info["lowpass"] == 40
info = _empty_info(100.0)
highpass = np.array(["NaN", "NaN"])
lowpass = np.array(["NaN", "NaN"])
_decode_online_filters(info, highpass, lowpass)
assert info["highpass"] == 0.0
assert info["lowpass"] == 50.0
@requires_testing_data
def test_filetype_checks():
"""Tests for various error meaasges for wrong filetypes."""
with pytest.raises(ValueError, match="does not match"):
_read_header(edf_test_fname)
with pytest.raises(NotImplementedError, match="Only NSx files"):
read_raw_nsx(edf_test_fname)
@requires_testing_data
def test_nsx_ver_31():
"""Primary tests for BRSMPGRP reader."""
raw = read_raw_nsx(nsx_31_fname)
assert getattr(raw, "_data", False) is False
assert raw.info["sfreq"] == 2000
# Check info object
assert raw.info["meas_date"].day == 31
assert raw.info["meas_date"].year == 2023
assert raw.info["meas_date"].month == 1
assert raw.info["chs"][0]["cal"] == 0.6103515625
assert raw.info["chs"][0]["range"] == 0.001
# Check raw_extras
for r in raw._raw_extras:
assert r["orig_format"] == raw.orig_format
assert r["orig_nchan"] == 128
assert len(r["timestamp"]) == len(r["nb_data_points"])
assert len(r["timestamp"]) == len(r["offset_to_data_block"])
# Check annotations
assert raw.annotations[0]["onset"] * raw.info["sfreq"] == 101
assert raw.annotations[0]["duration"] * raw.info["sfreq"] == 49
# Ignore following RuntimeWarning in mne/io/base.py in _write_raw_data
# "Acquisition skips detected but did not fit evenly into output"
# "buffer_size, will be written as zeroes."
with pytest.warns(RuntimeWarning, match="skips detected"):
raw = _test_raw_reader(
read_raw_nsx,
input_fname=nsx_31_fname,
eog=None,
misc=None,
test_scaling=False,
test_rank=False,
)
raw_data, _ = raw[:]
n_channels, n_times = raw_data.shape
assert n_times == 300
assert n_channels == 128
# Check data
# There are two contiguous data packets (samples 0--100 and
# samples 150--300. Each data was generated as:
# ```data = np.ones((n_samples, ch_count))
# data[n_samples // 2] = np.arange(ch_count) + 10
# data[:, ch_count // 2] = np.arange(n_samples) + 100```
orig_data = raw_data / (raw.info["chs"][0]["cal"] * raw.info["chs"][0]["range"])
assert_allclose(sum(orig_data[:, 50] - 10 - np.arange(n_channels)), 76.0)
assert_allclose(orig_data[n_channels // 2, :100] - 100, np.arange(100))
assert_allclose(orig_data[n_channels // 2, 150:] - 100, np.arange(150))
data, times = raw.get_data(start=10, stop=20, return_times=True)
assert 128, 10 == data.shape
data, times = raw.get_data(start=50, stop=110, return_times=True)
assert 128, 50 == data.shape
data, times = raw.get_data(start=130, stop=170, return_times=True)
assert 128, 40 == data.shape
data, times = raw.get_data(start=200, stop=350, return_times=True)
assert 128, 100 == data.shape
data, times = raw.get_data(start=0, stop=300, return_times=True)
epochs = make_fixed_length_epochs(raw, duration=0.05, preload=False)
assert len(epochs.events) == 3
epochs = make_fixed_length_epochs(raw, duration=0.05, preload=True)
assert len(epochs) == 2
assert "BAD_ACQ_SKIP" in epochs.drop_log[1]
@requires_testing_data
def test_nsx_ver_22():
"""Primary tests for NEURALCD reader."""
raw = read_raw_nsx(
nsx_22_fname,
)
assert getattr(raw, "_data", False) is False
assert raw.info["sfreq"] == 2000
# Check info object
assert raw.info["meas_date"].day == 31
assert raw.info["meas_date"].year == 2023
assert raw.info["meas_date"].month == 1
assert raw.info["chs"][0]["cal"] == 0.6103515625
assert raw.info["chs"][0]["range"] == 0.001
# check raw_extras
for r in raw._raw_extras:
assert r["orig_format"] == raw.orig_format
assert r["orig_nchan"] == 128
assert len(r["timestamp"]) == len(r["nb_data_points"])
assert len(r["timestamp"]) == len(r["offset_to_data_block"])
# Check annotations
assert len(raw.annotations) == 0
raw = _test_raw_reader(
read_raw_nsx,
input_fname=nsx_22_fname,
eog=None,
misc=None,
test_scaling=False, # XXX this should be True
test_rank=False,
)
raw_data, _ = raw[:]
n_channels, n_times = raw_data.shape
assert n_times == 100
assert n_channels == 128
# Check data
# There is only one contiguous data packet, samples 0--100. Data
# was generated as:
# ```data = np.ones((n_samples, ch_count))
# data[n_samples // 2] = np.arange(ch_count) + 10
# data[:, ch_count // 2] = np.arange(n_samples) + 100```
orig_data = raw_data / (raw.info["chs"][0]["cal"] * raw.info["chs"][0]["range"])
assert_allclose(sum(orig_data[:, 50] - 10 - np.arange(n_channels)), 76.0)
assert_allclose(orig_data[n_channels // 2, :100] - 100, np.arange(100))
data, _ = raw.get_data(start=10, stop=20, return_times=True)
assert 128, 10 == data.shape
data, _ = raw.get_data(start=0, stop=300, return_times=True)
assert 128, 100 == data.shape
epochs = make_fixed_length_epochs(raw, duration=0.05, preload=True, id=1)
assert len(epochs) == 1
assert epochs.event_id["1"] == 1
with pytest.raises(ValueError, match="No events produced"):
_ = make_fixed_length_epochs(raw, duration=0.5, preload=True)
@requires_testing_data
def test_stim_eog_misc_chs_in_nsx():
"""Test stim/misc/eog channel assignments."""
raw = read_raw_nsx(nsx_22_fname, stim_channel="elec127", eog=["elec126"])
assert raw.info["chs"][127]["kind"] == FIFF.FIFFV_STIM_CH
assert raw.info["chs"][126]["kind"] == FIFF.FIFFV_EOG_CH
raw = read_raw_nsx(nsx_22_fname, stim_channel=["elec127"], eog=["elec126"])
assert raw.info["chs"][127]["kind"] == FIFF.FIFFV_STIM_CH
assert raw.info["chs"][126]["kind"] == FIFF.FIFFV_EOG_CH
raw = read_raw_nsx(nsx_22_fname, stim_channel=127, eog=["elec126"])
assert raw.info["chs"][127]["kind"] == FIFF.FIFFV_STIM_CH
assert raw.info["chs"][126]["kind"] == FIFF.FIFFV_EOG_CH
raw = read_raw_nsx(nsx_22_fname, stim_channel=[127], eog=["elec126"])
assert raw.info["chs"][127]["kind"] == FIFF.FIFFV_STIM_CH
assert raw.info["chs"][126]["kind"] == FIFF.FIFFV_EOG_CH
stims = [ch_info["kind"] == FIFF.FIFFV_STIM_CH for ch_info in raw.info["chs"]]
assert np.any(stims)
assert raw.info["chs"][126]["kind"] == FIFF.FIFFV_EOG_CH
with pytest.raises(ValueError, match="Invalid stim_channel"):
raw = read_raw_nsx(nsx_22_fname, stim_channel=["elec128", 129], eog=["elec126"])
with pytest.raises(ValueError, match="Invalid stim_channel"):
raw = read_raw_nsx(nsx_22_fname, stim_channel=("elec128",), eog=["elec126"])
raw = read_raw_nsx(nsx_22_fname, stim_channel="elec127", misc=["elec126", "elec1"])
assert raw.info["chs"][126]["kind"] == FIFF.FIFFV_MISC_CH
assert raw.info["chs"][1]["kind"] == FIFF.FIFFV_MISC_CH
@requires_testing_data
def test_nsx_ver_21():
"""Primary tests for NEURALSG reader."""
with pytest.raises(NotImplementedError, match="(= NEURALSG)*not supported"):
read_raw_nsx(nsx_21_fname)
@requires_testing_data
def test_nsx():
"""Tests for NEURALCD reader using real anonymized data."""
raw = read_raw_nsx(
nsx_test_fname,
)
assert getattr(raw, "_data", False) is False
assert raw.info["sfreq"] == 2000
# Check info object
assert raw.info["meas_date"].day == 13
assert raw.info["meas_date"].year == 2000
assert raw.info["meas_date"].month == 6
assert raw.info["lowpass"] == 1000
assert raw.info["highpass"] == 0.3
assert raw.info["chs"][0]["cal"] == 0.25
assert raw.info["chs"][0]["range"] == 1e-6
# check raw_extras
for r in raw._raw_extras:
assert r["orig_format"] == raw.orig_format
assert r["orig_nchan"] == 5
assert len(r["timestamp"]) == len(r["nb_data_points"])
assert len(r["timestamp"]) == len(r["offset_to_data_block"])
# Check annotations
assert len(raw.annotations) == 0
raw = _test_raw_reader(
read_raw_nsx,
input_fname=nsx_test_fname,
eog=None,
misc=None,
)
raw_data, times = raw[:]
n_channels, n_times = raw_data.shape
assert n_times == 100
assert times.shape[0] == n_times
assert n_channels == 5
# Check data
assert_allclose(
raw_data.mean(axis=-1),
np.array([-52.6375, 88.57, 70.5825, -22.055, -166.5]) * 1e-6, # uV
)
assert raw.first_time == 3.8
epochs = make_fixed_length_epochs(raw, duration=0.05, preload=True, id=1)
assert len(epochs) == 1
assert epochs.event_id["1"] == 1
with pytest.raises(ValueError, match="No events produced"):
_ = make_fixed_length_epochs(raw, duration=0.5, preload=True)
|