File: test_nsx.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (282 lines) | stat: -rw-r--r-- 10,612 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

import os

import numpy as np
import pytest
from numpy.testing import assert_allclose

from mne import make_fixed_length_epochs
from mne._fiff.constants import FIFF
from mne._fiff.meas_info import _empty_info
from mne.datasets.testing import data_path, requires_testing_data
from mne.io import read_raw_nsx
from mne.io.nsx.nsx import _decode_online_filters, _read_header
from mne.io.tests.test_raw import _test_raw_reader

testing_path = data_path(download=False)
nsx_21_fname = os.path.join(testing_path, "nsx", "test_NEURALSG_raw.ns3")
nsx_22_fname = os.path.join(testing_path, "nsx", "test_NEURALCD_raw.ns3")
nsx_31_fname = os.path.join(testing_path, "nsx", "test_BRSMPGRP_raw.ns3")
nsx_test_fname = os.path.join(testing_path, "nsx", "Test_anonymized.ns3")
edf_test_fname = os.path.join(testing_path, "EDF", "test_reduced.edf")


def test_decode_online_filters():
    """Tests for online low/high-pass filter decoding."""
    info = _empty_info(100.0)
    highpass = np.array([0.0, 0.1])
    lowpass = np.array([50, 50])
    with pytest.warns(RuntimeWarning, match="different highpass filters"):
        _decode_online_filters(info, highpass, lowpass)
    assert info["highpass"] == 0.1

    info = _empty_info(100.0)
    highpass = np.array([0.0, 0.0])
    lowpass = np.array([40, 50])
    with pytest.warns(RuntimeWarning, match="different lowpass filters"):
        _decode_online_filters(info, highpass, lowpass)
    assert info["lowpass"] == 40

    info = _empty_info(100.0)
    highpass = np.array(["NaN", "NaN"])
    lowpass = np.array(["NaN", "NaN"])
    _decode_online_filters(info, highpass, lowpass)
    assert info["highpass"] == 0.0
    assert info["lowpass"] == 50.0


@requires_testing_data
def test_filetype_checks():
    """Tests for various error meaasges for wrong filetypes."""
    with pytest.raises(ValueError, match="does not match"):
        _read_header(edf_test_fname)
    with pytest.raises(NotImplementedError, match="Only NSx files"):
        read_raw_nsx(edf_test_fname)


@requires_testing_data
def test_nsx_ver_31():
    """Primary tests for BRSMPGRP reader."""
    raw = read_raw_nsx(nsx_31_fname)
    assert getattr(raw, "_data", False) is False
    assert raw.info["sfreq"] == 2000

    # Check info object
    assert raw.info["meas_date"].day == 31
    assert raw.info["meas_date"].year == 2023
    assert raw.info["meas_date"].month == 1
    assert raw.info["chs"][0]["cal"] == 0.6103515625
    assert raw.info["chs"][0]["range"] == 0.001

    # Check raw_extras
    for r in raw._raw_extras:
        assert r["orig_format"] == raw.orig_format
        assert r["orig_nchan"] == 128
        assert len(r["timestamp"]) == len(r["nb_data_points"])
        assert len(r["timestamp"]) == len(r["offset_to_data_block"])

    # Check annotations
    assert raw.annotations[0]["onset"] * raw.info["sfreq"] == 101
    assert raw.annotations[0]["duration"] * raw.info["sfreq"] == 49

    # Ignore following RuntimeWarning in mne/io/base.py in _write_raw_data
    # "Acquisition skips detected but did not fit evenly into output"
    # "buffer_size, will be written as zeroes."
    with pytest.warns(RuntimeWarning, match="skips detected"):
        raw = _test_raw_reader(
            read_raw_nsx,
            input_fname=nsx_31_fname,
            eog=None,
            misc=None,
            test_scaling=False,
            test_rank=False,
        )
    raw_data, _ = raw[:]
    n_channels, n_times = raw_data.shape
    assert n_times == 300
    assert n_channels == 128

    # Check data
    # There are two contiguous data packets (samples 0--100 and
    # samples 150--300. Each data was generated as:
    #     ```data = np.ones((n_samples, ch_count))
    #        data[n_samples // 2] = np.arange(ch_count) + 10
    #        data[:, ch_count // 2] = np.arange(n_samples) + 100```
    orig_data = raw_data / (raw.info["chs"][0]["cal"] * raw.info["chs"][0]["range"])
    assert_allclose(sum(orig_data[:, 50] - 10 - np.arange(n_channels)), 76.0)

    assert_allclose(orig_data[n_channels // 2, :100] - 100, np.arange(100))
    assert_allclose(orig_data[n_channels // 2, 150:] - 100, np.arange(150))

    data, times = raw.get_data(start=10, stop=20, return_times=True)
    assert 128, 10 == data.shape

    data, times = raw.get_data(start=50, stop=110, return_times=True)
    assert 128, 50 == data.shape

    data, times = raw.get_data(start=130, stop=170, return_times=True)
    assert 128, 40 == data.shape

    data, times = raw.get_data(start=200, stop=350, return_times=True)
    assert 128, 100 == data.shape

    data, times = raw.get_data(start=0, stop=300, return_times=True)
    epochs = make_fixed_length_epochs(raw, duration=0.05, preload=False)
    assert len(epochs.events) == 3
    epochs = make_fixed_length_epochs(raw, duration=0.05, preload=True)
    assert len(epochs) == 2
    assert "BAD_ACQ_SKIP" in epochs.drop_log[1]


@requires_testing_data
def test_nsx_ver_22():
    """Primary tests for NEURALCD reader."""
    raw = read_raw_nsx(
        nsx_22_fname,
    )
    assert getattr(raw, "_data", False) is False
    assert raw.info["sfreq"] == 2000

    # Check info object
    assert raw.info["meas_date"].day == 31
    assert raw.info["meas_date"].year == 2023
    assert raw.info["meas_date"].month == 1
    assert raw.info["chs"][0]["cal"] == 0.6103515625
    assert raw.info["chs"][0]["range"] == 0.001

    # check raw_extras
    for r in raw._raw_extras:
        assert r["orig_format"] == raw.orig_format
        assert r["orig_nchan"] == 128
        assert len(r["timestamp"]) == len(r["nb_data_points"])
        assert len(r["timestamp"]) == len(r["offset_to_data_block"])

    # Check annotations
    assert len(raw.annotations) == 0

    raw = _test_raw_reader(
        read_raw_nsx,
        input_fname=nsx_22_fname,
        eog=None,
        misc=None,
        test_scaling=False,  # XXX this should be True
        test_rank=False,
    )
    raw_data, _ = raw[:]
    n_channels, n_times = raw_data.shape
    assert n_times == 100
    assert n_channels == 128

    # Check data
    # There is only one contiguous data packet, samples 0--100. Data
    # was generated as:
    #     ```data = np.ones((n_samples, ch_count))
    #        data[n_samples // 2] = np.arange(ch_count) + 10
    #        data[:, ch_count // 2] = np.arange(n_samples) + 100```
    orig_data = raw_data / (raw.info["chs"][0]["cal"] * raw.info["chs"][0]["range"])
    assert_allclose(sum(orig_data[:, 50] - 10 - np.arange(n_channels)), 76.0)

    assert_allclose(orig_data[n_channels // 2, :100] - 100, np.arange(100))

    data, _ = raw.get_data(start=10, stop=20, return_times=True)
    assert 128, 10 == data.shape

    data, _ = raw.get_data(start=0, stop=300, return_times=True)
    assert 128, 100 == data.shape

    epochs = make_fixed_length_epochs(raw, duration=0.05, preload=True, id=1)
    assert len(epochs) == 1
    assert epochs.event_id["1"] == 1
    with pytest.raises(ValueError, match="No events produced"):
        _ = make_fixed_length_epochs(raw, duration=0.5, preload=True)


@requires_testing_data
def test_stim_eog_misc_chs_in_nsx():
    """Test stim/misc/eog channel assignments."""
    raw = read_raw_nsx(nsx_22_fname, stim_channel="elec127", eog=["elec126"])
    assert raw.info["chs"][127]["kind"] == FIFF.FIFFV_STIM_CH
    assert raw.info["chs"][126]["kind"] == FIFF.FIFFV_EOG_CH
    raw = read_raw_nsx(nsx_22_fname, stim_channel=["elec127"], eog=["elec126"])
    assert raw.info["chs"][127]["kind"] == FIFF.FIFFV_STIM_CH
    assert raw.info["chs"][126]["kind"] == FIFF.FIFFV_EOG_CH
    raw = read_raw_nsx(nsx_22_fname, stim_channel=127, eog=["elec126"])
    assert raw.info["chs"][127]["kind"] == FIFF.FIFFV_STIM_CH
    assert raw.info["chs"][126]["kind"] == FIFF.FIFFV_EOG_CH
    raw = read_raw_nsx(nsx_22_fname, stim_channel=[127], eog=["elec126"])
    assert raw.info["chs"][127]["kind"] == FIFF.FIFFV_STIM_CH
    assert raw.info["chs"][126]["kind"] == FIFF.FIFFV_EOG_CH
    stims = [ch_info["kind"] == FIFF.FIFFV_STIM_CH for ch_info in raw.info["chs"]]
    assert np.any(stims)
    assert raw.info["chs"][126]["kind"] == FIFF.FIFFV_EOG_CH
    with pytest.raises(ValueError, match="Invalid stim_channel"):
        raw = read_raw_nsx(nsx_22_fname, stim_channel=["elec128", 129], eog=["elec126"])
    with pytest.raises(ValueError, match="Invalid stim_channel"):
        raw = read_raw_nsx(nsx_22_fname, stim_channel=("elec128",), eog=["elec126"])

    raw = read_raw_nsx(nsx_22_fname, stim_channel="elec127", misc=["elec126", "elec1"])
    assert raw.info["chs"][126]["kind"] == FIFF.FIFFV_MISC_CH
    assert raw.info["chs"][1]["kind"] == FIFF.FIFFV_MISC_CH


@requires_testing_data
def test_nsx_ver_21():
    """Primary tests for NEURALSG reader."""
    with pytest.raises(NotImplementedError, match="(= NEURALSG)*not supported"):
        read_raw_nsx(nsx_21_fname)


@requires_testing_data
def test_nsx():
    """Tests for NEURALCD reader using real anonymized data."""
    raw = read_raw_nsx(
        nsx_test_fname,
    )
    assert getattr(raw, "_data", False) is False
    assert raw.info["sfreq"] == 2000

    # Check info object
    assert raw.info["meas_date"].day == 13
    assert raw.info["meas_date"].year == 2000
    assert raw.info["meas_date"].month == 6
    assert raw.info["lowpass"] == 1000
    assert raw.info["highpass"] == 0.3
    assert raw.info["chs"][0]["cal"] == 0.25
    assert raw.info["chs"][0]["range"] == 1e-6

    # check raw_extras
    for r in raw._raw_extras:
        assert r["orig_format"] == raw.orig_format
        assert r["orig_nchan"] == 5
        assert len(r["timestamp"]) == len(r["nb_data_points"])
        assert len(r["timestamp"]) == len(r["offset_to_data_block"])

    # Check annotations
    assert len(raw.annotations) == 0

    raw = _test_raw_reader(
        read_raw_nsx,
        input_fname=nsx_test_fname,
        eog=None,
        misc=None,
    )
    raw_data, times = raw[:]
    n_channels, n_times = raw_data.shape
    assert n_times == 100
    assert times.shape[0] == n_times
    assert n_channels == 5
    # Check data
    assert_allclose(
        raw_data.mean(axis=-1),
        np.array([-52.6375, 88.57, 70.5825, -22.055, -166.5]) * 1e-6,  # uV
    )
    assert raw.first_time == 3.8

    epochs = make_fixed_length_epochs(raw, duration=0.05, preload=True, id=1)
    assert len(epochs) == 1
    assert epochs.event_id["1"] == 1
    with pytest.raises(ValueError, match="No events produced"):
        _ = make_fixed_length_epochs(raw, duration=0.5, preload=True)