1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from contextlib import nullcontext
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_almost_equal, assert_array_equal
import mne
from mne.datasets import testing
from mne.minimum_norm.resolution_matrix import (
_vertices_for_get_psf_ctf,
get_cross_talk,
get_point_spread,
make_inverse_resolution_matrix,
)
data_path = testing.data_path(download=False)
subjects_dir = data_path / "subjects"
fname_evoked = data_path / "MEG" / "sample" / "sample_audvis_trunc-ave.fif"
# Intentional mismatch here!
fname_fwd = data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-eeg-oct-4-fwd.fif"
fname_cov = data_path / "MEG" / "sample" / "sample_audvis_trunc-cov.fif"
fname_label = data_path / "subjects" / "sample" / "label" / "lh.V1.label"
@testing.requires_testing_data
@pytest.mark.parametrize("src_type", ("surface", "volume"))
def test_resolution_matrix_free(src_type, fwd_volume_small):
"""Test make_inverse_resolution_matrix on surfaces."""
# read forward solution
if src_type == "surface":
forward = mne.read_forward_solution(fname_fwd)
verbose = False
# Some arbitrary vertex numbers
idx = [1, 100, 400]
else:
assert src_type == "volume"
forward = fwd_volume_small
verbose = "error" # ignore missing chs in vol
idx = [1, 3, 8]
assert forward["src"].kind == src_type
noise_cov = mne.read_cov(fname_cov)
evoked = mne.read_evokeds(fname_evoked, 0)
# make inverse operator from forward solution
# free source orientation
inverse_operator = mne.minimum_norm.make_inverse_operator(
info=evoked.info,
forward=forward,
noise_cov=noise_cov,
loose=1.0,
depth=None,
verbose=verbose,
)
assert_allclose(inverse_operator["source_nn"], forward["source_nn"])
# regularisation parameter based on SNR
snr = 3.0
lambda2 = 1.0 / snr**2
# resolution matrices for free source orientation
# compute resolution matrix for MNE with free source orientations
rm_mne_free = make_inverse_resolution_matrix(
forward, inverse_operator, method="MNE", lambda2=lambda2, verbose=verbose
)
assert_array_almost_equal(rm_mne_free, rm_mne_free.T)
# check various summary and normalisation options
for mode in [None, "sum", "mean", "maxval", "maxnorm", "pca"]:
n_comps = [1, 3]
if mode in [None, "sum", "mean"]:
n_comps = [1]
for n_comp in n_comps:
for norm in [None, "max", "norm", True]:
# with free orientations and vector source estimates
if src_type == "surface":
ctx = pytest.raises(TypeError, match="vector surface")
else:
ctx = nullcontext()
with ctx:
stc_psf_free = get_point_spread(
rm_mne_free,
forward["src"],
idx,
mode=mode,
n_comp=n_comp,
norm=norm,
return_pca_vars=False,
vector=True,
)
stc_psf_free = get_point_spread(
rm_mne_free,
inverse_operator,
idx,
mode=mode,
n_comp=n_comp,
norm=norm,
return_pca_vars=False,
vector=True,
)
stc_ctf_free = get_cross_talk(
rm_mne_free,
forward,
idx,
mode=mode,
n_comp=n_comp,
norm=norm,
return_pca_vars=False,
vector=True,
)
err_msg = f"mode={mode}, n_comp={n_comp}, norm={norm}"
# There is an ambiguity in the sign flip from the PCA here.
# Ideally we would use the normals to fix it, but it's not
# trivial.
if mode == "pca" and n_comp == 3:
stc_psf_free = abs(stc_psf_free)
stc_ctf_free = abs(stc_psf_free)
assert_array_almost_equal(
stc_psf_free.data, stc_ctf_free.data, err_msg=err_msg
)
# For MNE, PSF and CTF for same vertices should be the same
label = mne.read_label(fname_label)
label = [label]
stc_psf_label_free = get_point_spread(
rm_mne_free, inverse_operator, label, norm="norm", vector=True
)
stc_ctf_label_free = get_cross_talk(
rm_mne_free, inverse_operator, label, norm="norm", vector=True
)
assert_array_almost_equal(stc_psf_label_free.data, stc_ctf_label_free.data)
@testing.requires_testing_data
def test_resolution_matrix_fixed():
"""Test resolution matrices with fixed orientations."""
# compute resolution matrix for MNE, fwd fixed and inv free
forward = mne.read_forward_solution(fname_fwd)
forward_fxd = mne.convert_forward_solution(forward, surf_ori=True, force_fixed=True)
noise_cov = mne.read_cov(fname_cov)
evoked = mne.read_evokeds(fname_evoked, 0)
inverse_operator = mne.minimum_norm.make_inverse_operator(
info=evoked.info, forward=forward, noise_cov=noise_cov, loose=1.0, depth=None
)
inverse_operator_fxd = mne.minimum_norm.make_inverse_operator(
info=evoked.info,
forward=forward,
noise_cov=noise_cov,
loose=0.0,
depth=None,
fixed=True,
)
snr = 3.0
lambda2 = 1.0 / snr**2
rm_mne_fxdfree = make_inverse_resolution_matrix(
forward_fxd, inverse_operator, method="MNE", lambda2=lambda2
)
# resolution matrices for fixed source orientation
# compute resolution matrix for MNE
rm_mne = make_inverse_resolution_matrix(
forward_fxd, inverse_operator_fxd, method="MNE", lambda2=lambda2
)
# compute resolution matrix for sLORETA
rm_lor = make_inverse_resolution_matrix(
forward_fxd, inverse_operator_fxd, method="sLORETA", lambda2=lambda2
)
# rectify resolution matrix for sLORETA before determining maxima
rm_lor_abs = np.abs(rm_lor)
# get maxima per column
maxidxs = rm_lor_abs.argmax(axis=0)
# create array with the expected stepwise increase in maximum indices
goodidxs = np.arange(0, len(maxidxs), 1)
# Tests
# Does sLORETA have zero dipole localization error for columns/PSFs?
assert_array_equal(maxidxs, goodidxs)
# MNE resolution matrices symmetric?
assert_array_almost_equal(rm_mne, rm_mne.T)
# Some arbitrary vertex numbers
idx = [1, 100, 400]
# check various summary and normalisation options
for mode in [None, "sum", "mean", "maxval", "maxnorm", "pca"]:
n_comps = [1, 3]
if mode in [None, "sum", "mean"]:
n_comps = [1]
for n_comp in n_comps:
for norm in [None, "max", "norm", True]:
stc_psf = get_point_spread(
rm_mne,
forward_fxd["src"],
idx,
mode=mode,
n_comp=n_comp,
norm=norm,
return_pca_vars=False,
)
stc_ctf = get_cross_talk(
rm_mne,
forward_fxd["src"],
idx,
mode=mode,
n_comp=n_comp,
norm=norm,
return_pca_vars=False,
)
# for MNE, PSF/CTFs for same vertices should be the same
assert_array_almost_equal(stc_psf.data, stc_ctf.data)
# check SVD variances
n_comp = 3
stc_psf, s_vars_psf = get_point_spread(
rm_mne,
forward_fxd["src"],
idx,
mode=mode,
n_comp=n_comp,
norm="norm",
return_pca_vars=True,
)
stc_ctf, s_vars_ctf = get_cross_talk(
rm_mne,
forward_fxd["src"],
idx,
mode=mode,
n_comp=n_comp,
norm="norm",
return_pca_vars=True,
)
assert_array_almost_equal(s_vars_psf, s_vars_ctf)
# variances for SVD components should be ordered
assert s_vars_psf[0] > s_vars_psf[1] > s_vars_psf[2]
# all variances should sum up to 100
assert_allclose(s_vars_psf.sum(), 100.0)
# Test application of free inv to fixed fwd
assert rm_mne_fxdfree.shape == (3 * rm_mne.shape[0], rm_mne.shape[0])
# Test PSF/CTF for labels
label = mne.read_label(fname_label)
# must be list of Label
label = [label]
label2 = 2 * label
# get relevant vertices in source space
verts = _vertices_for_get_psf_ctf(label, forward_fxd["src"])[0]
stc_psf_label = get_point_spread(rm_mne, forward_fxd["src"], label, norm="max")
# for list of indices
stc_psf_idx = get_point_spread(rm_mne, forward_fxd["src"], verts, norm="max")
stc_ctf_label = get_cross_talk(rm_mne, forward_fxd["src"], label, norm="max")
# For MNE, PSF and CTF for same vertices should be the same
assert_array_almost_equal(stc_psf_label.data, stc_ctf_label.data)
# test multiple labels
stc_psf_label2 = get_point_spread(rm_mne, forward_fxd["src"], label2, norm="max")
m, n = stc_psf_label.data.shape
assert_array_equal(stc_psf_label.data, stc_psf_label2[0].data)
assert_array_equal(stc_psf_label.data, stc_psf_label2[1].data)
assert_array_equal(stc_psf_label.data, stc_psf_idx.data)
|