1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
import pytest
from numpy.testing import assert_allclose
from mne import Epochs, find_events, pick_types
from mne._fiff.constants import FIFF
from mne.datasets import testing
from mne.io import read_raw_fif
from mne.label import BiHemiLabel, read_label
from mne.minimum_norm import (
INVERSE_METHODS,
apply_inverse_epochs,
prepare_inverse_operator,
read_inverse_operator,
)
from mne.minimum_norm.time_frequency import (
compute_source_psd,
compute_source_psd_epochs,
source_band_induced_power,
source_induced_power,
)
from mne.time_frequency.multitaper import psd_array_multitaper
data_path = testing.data_path(download=False)
fname_inv = (
data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-eeg-oct-4-meg-inv.fif"
)
fname_data = data_path / "MEG" / "sample" / "sample_audvis_trunc_raw.fif"
fname_label = data_path / "MEG" / "sample" / "labels" / "Aud-lh.label"
fname_label2 = data_path / "MEG" / "sample" / "labels" / "Aud-rh.label"
@testing.requires_testing_data
@pytest.mark.parametrize("method", INVERSE_METHODS)
def test_tfr_with_inverse_operator(method):
"""Test time freq with MNE inverse computation."""
tmin, tmax, event_id = -0.2, 0.5, 1
# Setup for reading the raw data
raw = read_raw_fif(fname_data)
events = find_events(raw, stim_channel="STI 014")
inv = read_inverse_operator(fname_inv)
inv = prepare_inverse_operator(inv, nave=1, lambda2=1.0 / 9.0, method=method)
raw.info["bads"] += ["MEG 2443", "EEG 053"] # bads + 2 more
# picks MEG gradiometers
picks = pick_types(
raw.info, meg=True, eeg=False, eog=True, stim=False, exclude="bads"
)
# Load condition 1
event_id = 1
events3 = events[:3] # take 3 events to keep the computation time low
epochs = Epochs(
raw,
events3,
event_id,
tmin,
tmax,
picks=picks,
baseline=(None, 0),
reject=dict(grad=4000e-13, eog=150e-6),
preload=True,
)
# Compute a source estimate per frequency band
bands = dict(alpha=[10, 10])
label = read_label(fname_label)
# XXX someday we should refactor this so that you don't have to pass
# method -- maybe `prepare_inverse_operator` should add a `method`
# to it and when `prepared=True` the value passed in can be ignored
# (or better, default method=None means "dSPM if unprepared" and if they
# actually pass a value, we check against `inv['method']`)
stcs = source_band_induced_power(
epochs,
inv,
bands,
method=method,
n_cycles=2,
use_fft=False,
pca=True,
label=label,
prepared=True,
)
stc = stcs["alpha"]
assert len(stcs) == len(list(bands.keys()))
assert np.all(stc.data > 0)
assert_allclose(stc.times, epochs.times, atol=1e-6)
stcs_no_pca = source_band_induced_power(
epochs,
inv,
bands,
method=method,
n_cycles=2,
use_fft=False,
pca=False,
label=label,
prepared=True,
)
assert_allclose(stcs["alpha"].data, stcs_no_pca["alpha"].data)
# Compute a source estimate per frequency band
epochs = Epochs(
raw,
events[:10],
event_id,
tmin,
tmax,
picks=picks,
baseline=(None, 0),
reject=dict(grad=4000e-13, eog=150e-6),
preload=True,
)
freqs = np.arange(7, 30, 2) # define frequencies of interest
power, phase_lock = source_induced_power(
epochs,
inv,
freqs,
label,
baseline=(-0.1, 0),
baseline_mode="percent",
n_cycles=2,
n_jobs=None,
method=method,
prepared=True,
)
assert power.shape == phase_lock.shape
assert np.all(phase_lock > 0)
assert np.all(phase_lock <= 1)
assert 5 < np.max(power) < 7
# fairly precise spot check that our values match what we had on 2023/09/28
if method != "eLORETA":
# check phase-lock using arbitrary index value since pl max is 1
assert_allclose(phase_lock[1, 0, 0], 0.576, rtol=1e-3)
# check power
max_inds = np.unravel_index(np.argmax(power), power.shape)
assert_allclose(max_inds, [0, 11, 135])
assert_allclose(power[max_inds], 6.05, rtol=1e-3)
@testing.requires_testing_data
def test_tfr_multi_label():
"""Test multi-label functionality."""
tmin, tmax, event_id = -0.2, 0.5, 1
# Setup for reading the raw data
raw = read_raw_fif(fname_data)
events = find_events(raw, stim_channel="STI 014")
inv = read_inverse_operator(fname_inv)
inv = prepare_inverse_operator(inv, nave=1, lambda2=1.0 / 9.0, method="dSPM")
raw.info["bads"] += ["MEG 2443", "EEG 053"] # bads + 2 more
# picks MEG gradiometers
picks = pick_types(
raw.info, meg=True, eeg=False, eog=True, stim=False, exclude="bads"
)
# Load condition 1
event_id = 1
epochs = Epochs(
raw,
events[:3], # take 3 events to keep the computation time low
event_id,
tmin,
tmax,
picks=picks,
baseline=(None, 0),
reject=dict(grad=4000e-13, eog=150e-6),
preload=True,
)
freqs = np.arange(7, 30, 2)
n_times = len(epochs.times)
n_freqs = len(freqs)
# prepare labels
label = read_label(fname_label) # lh Aud
label2 = read_label(fname_label2) # rh Aud
labels = [label, label2]
bad_lab = label.copy()
bad_lab.vertices = np.hstack((label.vertices, [2121])) # add 1 unique vert
bad_lbls = [label, bad_lab]
nverts_lh = len(np.intersect1d(inv["src"][0]["vertno"], label.vertices))
nverts_rh = len(np.intersect1d(inv["src"][1]["vertno"], label2.vertices))
assert nverts_lh + 1 == nverts_rh == 3
# prepare instances of BiHemiLabel
fname_lvis = data_path / "MEG" / "sample" / "labels" / "Vis-lh.label"
fname_rvis = data_path / "MEG" / "sample" / "labels" / "Vis-rh.label"
lvis = read_label(fname_lvis)
rvis = read_label(fname_rvis)
bihl = BiHemiLabel(lh=label, rh=label2) # auditory labels
bihl.name = "Aud"
bihl2 = BiHemiLabel(lh=lvis, rh=rvis) # visual labels
bihl2.name = "Vis"
bihls = [bihl, bihl2]
bad_bihl = BiHemiLabel(lh=bad_lab, rh=rvis) # 1 unique vert on lh, rh ok
bad_bihls = [bihl, bad_bihl]
print("BiHemi label verts:", bihl.lh.vertices.shape, bihl.rh.vertices.shape)
# check error handling
sip_kwargs = dict(
baseline=(-0.1, 0),
baseline_mode="mean",
n_cycles=2,
n_jobs=None,
return_plv=False,
method="dSPM",
prepared=True,
)
# label input errors
with pytest.raises(TypeError, match="Label or BiHemi"):
source_induced_power(epochs, inv, freqs, label="bad_input", **sip_kwargs)
with pytest.raises(TypeError, match="Label or BiHemi"):
source_induced_power(
epochs, inv, freqs, label=[label, "bad_input"], **sip_kwargs
)
# error handling for multi-label and plv
sip_kwargs_bad = sip_kwargs.copy()
sip_kwargs_bad["return_plv"] = True
with pytest.raises(RuntimeError, match="value cannot be calculated"):
source_induced_power(epochs, inv, freqs, labels, **sip_kwargs_bad)
# check multi-label handling
label_sets = dict(Label=(labels, bad_lbls), BiHemi=(bihls, bad_bihls))
for ltype, lab_set in label_sets.items():
n_verts = nverts_lh if ltype == "Label" else nverts_lh + nverts_rh
# check overlapping verts error handling
with pytest.raises(RuntimeError, match="overlapping vertices"):
source_induced_power(epochs, inv, freqs, lab_set[1], **sip_kwargs)
# TODO someday, eliminate both levels of this nested for-loop and use
# pytest.mark.parametrize, but not unless/until the data IO and the loading /
# preparing of the inverse operator have been made into fixtures (the overhead
# of those operations makes it a bad idea to parametrize now)
for ori in (None, "normal"): # check loose and normal orientations
sip_kwargs.update(pick_ori=ori)
lbl = lab_set[0][0]
# check label=Label vs label=[Label]
no_list_pow = source_induced_power(
epochs, inv, freqs, label=lbl, **sip_kwargs
)
assert no_list_pow.shape == (n_verts, n_freqs, n_times)
list_pow = source_induced_power(
epochs, inv, freqs, label=[lbl], **sip_kwargs
)
assert list_pow.shape == (1, n_freqs, n_times)
nlp_ave = np.mean(no_list_pow, axis=0)
assert_allclose(nlp_ave, list_pow[0], rtol=1e-3)
# check label=[Label1, Label2]
multi_lab_pow = source_induced_power(
epochs, inv, freqs, label=lab_set[0], **sip_kwargs
)
assert multi_lab_pow.shape == (2, n_freqs, n_times)
@testing.requires_testing_data
@pytest.mark.parametrize("method", INVERSE_METHODS)
@pytest.mark.parametrize("pick_ori", (None, "normal")) # XXX vector someday?
@pytest.mark.parametrize("pca", (True, False))
def test_source_psd(method, pick_ori, pca):
"""Test source PSD computation from raw."""
raw = read_raw_fif(fname_data)
raw.crop(0, 5).load_data()
inverse_operator = read_inverse_operator(fname_inv)
fmin, fmax = 40, 65 # Hz
n_fft = 512
assert inverse_operator["source_ori"] == FIFF.FIFFV_MNE_FREE_ORI
stc, ev = compute_source_psd(
raw,
inverse_operator,
lambda2=1.0 / 9.0,
method=method,
fmin=fmin,
fmax=fmax,
pick_ori=pick_ori,
n_fft=n_fft,
overlap=0.0,
return_sensor=True,
pca=pca,
dB=True,
)
assert ev.data.shape == (len(ev.info["ch_names"]), len(stc.times))
assert ev.times[0] >= fmin
assert ev.times[-1] <= fmax
# Time max at line frequency (60 Hz in US)
assert 58 <= ev.times[np.argmax(np.sum(ev.data, axis=0))] <= 61
assert ev.nave == 2
assert stc.shape[0] == inverse_operator["nsource"]
assert stc.times[0] >= fmin
assert stc.times[-1] <= fmax
assert 58 <= stc.times[np.argmax(np.sum(stc.data, axis=0))] <= 61
if method in ("sLORETA", "dSPM"):
stc_dspm = stc
stc_mne, _ = compute_source_psd(
raw,
inverse_operator,
lambda2=1.0 / 9.0,
method="MNE",
fmin=fmin,
fmax=fmax,
pick_ori=pick_ori,
n_fft=n_fft,
overlap=0.0,
return_sensor=True,
dB=True,
)
# normalize each source point by its power after undoing the dB
stc_dspm.data = 10 ** (stc_dspm.data / 10.0)
stc_dspm /= stc_dspm.mean()
stc_mne.data = 10 ** (stc_mne.data / 10.0)
stc_mne /= stc_mne.mean()
assert_allclose(stc_dspm.data, stc_mne.data, atol=1e-4)
@testing.requires_testing_data
@pytest.mark.parametrize("method", INVERSE_METHODS)
def test_source_psd_epochs(method):
"""Test multi-taper source PSD computation in label from epochs."""
raw = read_raw_fif(fname_data)
inverse_operator = read_inverse_operator(fname_inv)
label = read_label(fname_label)
label2 = read_label(fname_label2)
event_id, tmin, tmax = 1, -0.2, 0.5
lambda2 = 1.0 / 9.0
bandwidth = 8.0
fmin, fmax = 0, 100
picks = pick_types(
raw.info,
meg=True,
eeg=False,
stim=True,
ecg=True,
eog=True,
include=["STI 014"],
exclude="bads",
)
reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)
events = find_events(raw, stim_channel="STI 014")
epochs = Epochs(
raw,
events,
event_id,
tmin,
tmax,
picks=picks,
baseline=(None, 0),
reject=reject,
)
# only look at one epoch
epochs.drop_bad()
one_epochs = epochs[:1]
inv = prepare_inverse_operator(
inverse_operator, nave=1, lambda2=1.0 / 9.0, method="dSPM"
)
# return list
stc_psd = compute_source_psd_epochs(
one_epochs,
inv,
lambda2=lambda2,
method=method,
pick_ori="normal",
label=label,
bandwidth=bandwidth,
fmin=fmin,
fmax=fmax,
prepared=True,
)[0]
# return generator
stcs = compute_source_psd_epochs(
one_epochs,
inv,
lambda2=lambda2,
method=method,
pick_ori="normal",
label=label,
bandwidth=bandwidth,
fmin=fmin,
fmax=fmax,
return_generator=True,
prepared=True,
)
for stc in stcs:
stc_psd_gen = stc
assert_allclose(stc_psd.data, stc_psd_gen.data, atol=1e-7)
# compare with direct computation
stc = apply_inverse_epochs(
one_epochs,
inv,
lambda2=lambda2,
method=method,
pick_ori="normal",
label=label,
prepared=True,
)[0]
sfreq = epochs.info["sfreq"]
psd, freqs = psd_array_multitaper(
stc.data, sfreq=sfreq, bandwidth=bandwidth, fmin=fmin, fmax=fmax
)
assert_allclose(psd, stc_psd.data, atol=1e-7)
assert_allclose(freqs, stc_psd.times)
# Check corner cases caused by tiny bandwidth
with pytest.raises(ValueError, match="use a value of at least"):
compute_source_psd_epochs(
one_epochs,
inv,
lambda2=lambda2,
method=method,
pick_ori="normal",
label=label,
bandwidth=0.01,
low_bias=True,
fmin=fmin,
fmax=fmax,
return_generator=False,
prepared=True,
)
# check error handling for label
with pytest.raises(TypeError, match="Label or BiHemi"):
compute_source_psd_epochs(one_epochs, inv, label=[label, label2])
|