1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from ...channels import DigMontage, make_dig_montage
from ...surface import _voxel_neighbors
from ...transforms import Transform, _frame_to_str, apply_trans
from ...utils import _check_option, _pl, _require_version, _validate_type, verbose, warn
@verbose
def warp_montage(montage, moving, static, reg_affine, sdr_morph, verbose=None):
"""Warp a montage to a template with image volumes using SDR.
.. note:: This is likely only applicable for channels inside the brain
(intracranial electrodes).
Parameters
----------
montage : instance of mne.channels.DigMontage
The montage object containing the channels.
%(moving)s
%(static)s
%(reg_affine)s
%(sdr_morph)s
%(verbose)s
Returns
-------
montage_warped : mne.channels.DigMontage
The modified montage object containing the channels.
"""
_require_version("nibabel", "warp montage", "2.1.0")
_require_version("dipy", "warping points using SDR", "1.6.0")
from dipy.align.imwarp import DiffeomorphicMap
from nibabel import MGHImage
from nibabel.spatialimages import SpatialImage
_validate_type(moving, SpatialImage, "moving")
_validate_type(static, SpatialImage, "static")
_validate_type(reg_affine, np.ndarray, "reg_affine")
_check_option("reg_affine.shape", reg_affine.shape, ((4, 4),))
_validate_type(sdr_morph, (DiffeomorphicMap, None), "sdr_morph")
_validate_type(montage, DigMontage, "montage")
moving_mgh = MGHImage(np.array(moving.dataobj).astype(np.float32), moving.affine)
static_mgh = MGHImage(np.array(static.dataobj).astype(np.float32), static.affine)
del moving, static
# get montage channel coordinates
ch_dict = montage.get_positions()
if ch_dict["coord_frame"] != "mri":
bad_coord_frames = np.unique([d["coord_frame"] for d in montage.dig])
bad_coord_frames = ", ".join(
[
_frame_to_str[cf] if cf in _frame_to_str else str(cf)
for cf in bad_coord_frames
]
)
raise RuntimeError(
f'Coordinate frame not supported, expected "mri", got {bad_coord_frames}'
)
ch_names = list(ch_dict["ch_pos"].keys())
ch_coords = np.array([ch_dict["ch_pos"][name] for name in ch_names])
ch_coords = apply_trans( # convert to moving voxel space
np.linalg.inv(moving_mgh.header.get_vox2ras_tkr()), ch_coords * 1000
)
# next, to moving scanner RAS
ch_coords = apply_trans(moving_mgh.header.get_vox2ras(), ch_coords)
# now, apply reg_affine
ch_coords = apply_trans(
Transform( # to static ras
fro="ras", to="ras", trans=np.linalg.inv(reg_affine)
),
ch_coords,
)
# now, apply SDR morph
if sdr_morph is not None:
ch_coords = sdr_morph.transform_points(
ch_coords,
coord2world=sdr_morph.domain_grid2world,
world2coord=sdr_morph.domain_world2grid,
)
# back to voxels but now for the static image
ch_coords = apply_trans(np.linalg.inv(static_mgh.header.get_vox2ras()), ch_coords)
# finally, back to surface RAS
ch_coords = apply_trans(static_mgh.header.get_vox2ras_tkr(), ch_coords) / 1000
# make warped montage
montage_warped = make_dig_montage(dict(zip(ch_names, ch_coords)), coord_frame="mri")
return montage_warped
def _warn_missing_chs(info, dig_image, after_warp=False):
"""Warn that channels are missing."""
# ensure that each electrode contact was marked in at least one voxel
missing = set(np.arange(1, len(info.ch_names) + 1)).difference(
set(np.unique(np.array(dig_image.dataobj)))
)
missing_ch = [info.ch_names[idx - 1] for idx in missing]
if missing_ch:
warn(
f"Channel{_pl(missing_ch)} "
f'{", ".join(repr(ch) for ch in missing_ch)} not assigned '
"voxels " + (f" after applying {after_warp}" if after_warp else "")
)
@verbose
def make_montage_volume(
montage,
base_image,
thresh=0.5,
max_peak_dist=1,
voxels_max=100,
use_min=False,
verbose=None,
):
"""Make a volume from intracranial electrode contact locations.
Find areas of the input volume with intensity greater than
a threshold surrounding local extrema near the channel location.
Monotonicity from the peak is enforced to prevent channels
bleeding into each other.
Parameters
----------
montage : instance of mne.channels.DigMontage
The montage object containing the channels.
base_image : path-like | nibabel.spatialimages.SpatialImage
Path to a volumetric scan (e.g. CT) of the subject. Can be in any
format readable by nibabel. Can also be a nibabel image object.
Local extrema (max or min) should be nearby montage channel locations.
thresh : float
The threshold relative to the peak to determine the size
of the sensors on the volume.
max_peak_dist : int
The number of voxels away from the channel location to
look in the ``image``. This will depend on the accuracy of
the channel locations, the default (one voxel in all directions)
will work only with localizations that are that accurate.
voxels_max : int
The maximum number of voxels for each channel.
use_min : bool
Whether to hypointensities in the volume as channel locations.
Default False uses hyperintensities.
%(verbose)s
Returns
-------
elec_image : nibabel.spatialimages.SpatialImage
An image in Freesurfer surface RAS space with voxel values
corresponding to the index of the channel. The background
is 0s and this index starts at 1.
"""
_require_version("nibabel", "montage volume", "2.1.0")
import nibabel as nib
_validate_type(montage, DigMontage, "montage")
_validate_type(base_image, nib.spatialimages.SpatialImage, "base_image")
_validate_type(thresh, float, "thresh")
if thresh < 0 or thresh >= 1:
raise ValueError(f"`thresh` must be between 0 and 1, got {thresh}")
_validate_type(max_peak_dist, int, "max_peak_dist")
_validate_type(voxels_max, int, "voxels_max")
_validate_type(use_min, bool, "use_min")
# load image and make sure it's in surface RAS
if not isinstance(base_image, nib.spatialimages.SpatialImage):
base_image = nib.load(base_image)
base_image_mgh = nib.MGHImage(
np.array(base_image.dataobj).astype(np.float32), base_image.affine
)
del base_image
# get montage channel coordinates
ch_dict = montage.get_positions()
if ch_dict["coord_frame"] != "mri":
bad_coord_frames = np.unique([d["coord_frame"] for d in montage.dig])
bad_coord_frames = ", ".join(
[
_frame_to_str[cf] if cf in _frame_to_str else str(cf)
for cf in bad_coord_frames
]
)
raise RuntimeError(
f'Coordinate frame not supported, expected "mri", got {bad_coord_frames}'
)
ch_names = list(ch_dict["ch_pos"].keys())
ch_coords = np.array([ch_dict["ch_pos"][name] for name in ch_names])
# convert to voxel space
ch_coords = apply_trans(
np.linalg.inv(base_image_mgh.header.get_vox2ras_tkr()), ch_coords * 1000
)
# take channel coordinates and use the image to transform them
# into a volume where all the voxels over a threshold nearby
# are labeled with an index
image_data = np.array(base_image_mgh.dataobj)
if use_min:
image_data *= -1
elec_image = np.zeros(base_image_mgh.shape, dtype=int)
for i, ch_coord in enumerate(ch_coords):
if np.isnan(ch_coord).any():
continue
# this looks up to a voxel away, it may be marked imperfectly
volume = _voxel_neighbors(
ch_coord,
image_data,
thresh=thresh,
max_peak_dist=max_peak_dist,
voxels_max=voxels_max,
)
for voxel in volume:
if elec_image[voxel] != 0:
# some voxels ambiguous because the contacts are bridged on
# the image so assign the voxel to the nearest contact location
dist_old = np.sqrt(
(ch_coords[elec_image[voxel] - 1] - voxel) ** 2
).sum()
dist_new = np.sqrt((ch_coord - voxel) ** 2).sum()
if dist_new < dist_old:
elec_image[voxel] = i + 1
else:
elec_image[voxel] = i + 1
# assemble the volume
elec_image = nib.spatialimages.SpatialImage(elec_image, base_image_mgh.affine)
_warn_missing_chs(montage, elec_image, after_warp=False)
return elec_image
|