1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
"""Test the ieeg projection functions."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import os
from shutil import copyfile
import numpy as np
import pytest
from numpy.testing import assert_allclose
import mne
from mne.datasets import testing
from mne.preprocessing.ieeg import project_sensors_onto_brain
from mne.preprocessing.ieeg._projection import _project_sensors_onto_inflated
from mne.transforms import _get_trans
data_path = testing.data_path(download=False)
subjects_dir = data_path / "subjects"
fname_trans = data_path / "MEG" / "sample" / "sample_audvis_trunc-trans.fif"
fname_raw = data_path / "MEG" / "sample" / "sample_audvis_trunc_raw.fif"
@testing.requires_testing_data
def test_project_sensors_onto_brain(tmp_path):
"""Test projecting sensors onto the brain surface."""
pytest.importorskip("nibabel")
raw = mne.io.read_raw_fif(fname_raw)
trans = _get_trans(fname_trans)[0]
# test informative error for no surface first
with pytest.raises(RuntimeError, match="requires generating a BEM"):
project_sensors_onto_brain(raw.info, trans, "sample", subjects_dir=tmp_path)
brain_surf_fname = tmp_path / "sample" / "bem" / "brain.surf"
if not brain_surf_fname.parent.is_dir():
os.makedirs(brain_surf_fname.parent)
if not brain_surf_fname.is_file():
copyfile(
subjects_dir / "sample" / "bem" / "inner_skull.surf",
brain_surf_fname,
)
# now make realistic ECoG grid
raw.pick("eeg")
raw.load_data()
raw.set_eeg_reference([])
raw.set_channel_types({ch: "ecog" for ch in raw.ch_names})
pos = np.zeros((49, 3))
pos[:, :2] = (
np.array(np.meshgrid(np.linspace(0, 0.02, 7), np.linspace(0, 0.02, 7)))
.reshape(2, -1)
.T
)
pos[:, 2] = 0.12
raw.drop_channels(raw.ch_names[49:])
raw.set_montage(
mne.channels.make_dig_montage(
ch_pos=dict(zip(raw.ch_names[:49], pos)), coord_frame="head"
)
)
raw.info = project_sensors_onto_brain(
raw.info, trans, "sample", subjects_dir=tmp_path
)
# plot to check, should be projected down onto inner skull
# brain = mne.viz.Brain('sample', subjects_dir=subjects_dir, alpha=0.5,
# surf='white')
# brain.add_sensors(raw.info, trans=trans)
test_locs = [
[0.00149, -0.001588, 0.133029],
[0.004302, 0.001959, 0.133922],
[0.008602, 0.00116, 0.133723],
]
montage = raw.get_montage()
assert montage is not None
ch_pos = montage.get_positions()["ch_pos"]
for ch, test_loc in zip(raw.ch_names[:3], test_locs):
assert_allclose(ch_pos[ch], test_loc, atol=0.01)
@testing.requires_testing_data
def test_project_sensors_onto_inflated(tmp_path):
"""Test projecting sEEG sensors onto an inflated brain surface."""
pytest.importorskip("nibabel")
raw = mne.io.read_raw_fif(fname_raw)
trans = _get_trans(fname_trans)[0]
for subject in ("sample", "fsaverage"):
os.makedirs(tmp_path / subject / "surf", exist_ok=True)
for hemi in ("lh", "rh"):
# fake white surface for pial
copyfile(
subjects_dir / subject / "surf" / f"{hemi}.white",
tmp_path / subject / "surf" / f"{hemi}.pial",
)
copyfile(
subjects_dir / subject / "surf" / f"{hemi}.curv",
tmp_path / subject / "surf" / f"{hemi}.curv",
)
copyfile(
subjects_dir / subject / "surf" / f"{hemi}.inflated",
tmp_path / subject / "surf" / f"{hemi}.inflated",
)
if subject == "fsaverage":
copyfile(
subjects_dir / subject / "surf" / f"{hemi}.cortex.patch.flat",
tmp_path / subject / "surf" / f"{hemi}.cortex.patch.flat",
)
copyfile(
subjects_dir / subject / "surf" / f"{hemi}.sphere",
tmp_path / subject / "surf" / f"{hemi}.sphere",
)
# now make realistic sEEG locations, picked from T1
raw.pick("eeg")
raw.load_data()
raw.set_eeg_reference([])
raw.set_channel_types({ch: "seeg" for ch in raw.ch_names})
pos = (
np.array(
[
[25.85, 9.04, -5.38],
[33.56, 9.04, -5.63],
[40.44, 9.04, -5.06],
[46.75, 9.04, -6.78],
[-30.08, 9.04, 28.23],
[-32.95, 9.04, 37.99],
[-36.39, 9.04, 46.03],
]
)
/ 1000
)
raw.drop_channels(raw.ch_names[len(pos) :])
raw.set_montage(
mne.channels.make_dig_montage(
ch_pos=dict(zip(raw.ch_names, pos)), coord_frame="head"
)
)
proj_info = _project_sensors_onto_inflated(
raw.info, trans, "sample", subjects_dir=tmp_path
)
assert_allclose(
proj_info["chs"][0]["loc"][:3],
np.array([0.0555809, 0.0034069, -0.04593032]),
rtol=0.01,
)
# check all on inflated surface
x_dir = np.array([1.0, 0.0, 0.0])
head_mri_t = mne.transforms.invert_transform(trans) # need head->mri
for hemi in ("lh", "rh"):
coords, faces = mne.surface.read_surface(
tmp_path / "sample" / "surf" / f"{hemi}.inflated"
)
x_ = coords @ x_dir
coords -= np.max(x_) * x_dir if hemi == "lh" else np.min(x_) * x_dir
coords /= 1000 # mm -> m
for ch in proj_info["chs"]:
loc = ch["loc"][:3]
if not np.isnan(loc).any() and (loc[0] <= 0) == (hemi == "lh"):
assert (
np.linalg.norm(
coords - mne.transforms.apply_trans(head_mri_t, loc), axis=1
).min()
< 1e-16
)
# test flat map
montage = raw.get_montage()
montage.apply_trans(mne.transforms.invert_transform(trans))
mri_mni_t = mne.read_talxfm("sample", subjects_dir)
montage.apply_trans(mri_mni_t) # mri to mni_tal (MNI Taliarach)
montage.apply_trans(
mne.transforms.Transform(fro="mni_tal", to="mri", trans=np.eye(4))
)
raw.set_montage(montage)
trans = mne.channels.compute_native_head_t(montage)
flat_proj_info = _project_sensors_onto_inflated(
raw.info,
trans=trans,
subject="fsaverage",
subjects_dir=tmp_path,
flat=True,
)
# check all on flat surface
x_dir = np.array([1.0, 0.0, 0.0])
head_mri_t = mne.transforms.invert_transform(trans) # need head->mri
for hemi in ("lh", "rh"):
coords, faces, _ = mne.surface._read_patch(
tmp_path / "fsaverage" / "surf" / f"{hemi}.cortex.patch.flat"
)
coords = coords[:, [1, 0, 2]]
coords[:, 1] *= -1
x_ = coords @ x_dir
coords -= np.max(x_) * x_dir if hemi == "lh" else np.min(x_) * x_dir
coords /= 1000 # mm -> m
for ch in flat_proj_info["chs"]:
loc = ch["loc"][:3]
if not np.isnan(loc).any() and (loc[0] <= 0) == (hemi == "lh"):
assert (
np.linalg.norm(
coords - mne.transforms.apply_trans(head_mri_t, loc), axis=1
).min()
< 1e-16
)
# plot to check
# brain = mne.viz.Brain('fsaverage', subjects_dir=tempdir, alpha=0.5,
# surf='flat')
# brain.add_sensors(flat_proj_info, trans=trans)
|