File: test_projection.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (208 lines) | stat: -rw-r--r-- 7,611 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
"""Test the ieeg projection functions."""

# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

import os
from shutil import copyfile

import numpy as np
import pytest
from numpy.testing import assert_allclose

import mne
from mne.datasets import testing
from mne.preprocessing.ieeg import project_sensors_onto_brain
from mne.preprocessing.ieeg._projection import _project_sensors_onto_inflated
from mne.transforms import _get_trans

data_path = testing.data_path(download=False)
subjects_dir = data_path / "subjects"
fname_trans = data_path / "MEG" / "sample" / "sample_audvis_trunc-trans.fif"
fname_raw = data_path / "MEG" / "sample" / "sample_audvis_trunc_raw.fif"


@testing.requires_testing_data
def test_project_sensors_onto_brain(tmp_path):
    """Test projecting sensors onto the brain surface."""
    pytest.importorskip("nibabel")
    raw = mne.io.read_raw_fif(fname_raw)
    trans = _get_trans(fname_trans)[0]
    # test informative error for no surface first
    with pytest.raises(RuntimeError, match="requires generating a BEM"):
        project_sensors_onto_brain(raw.info, trans, "sample", subjects_dir=tmp_path)
    brain_surf_fname = tmp_path / "sample" / "bem" / "brain.surf"
    if not brain_surf_fname.parent.is_dir():
        os.makedirs(brain_surf_fname.parent)
    if not brain_surf_fname.is_file():
        copyfile(
            subjects_dir / "sample" / "bem" / "inner_skull.surf",
            brain_surf_fname,
        )
    # now make realistic ECoG grid
    raw.pick("eeg")
    raw.load_data()
    raw.set_eeg_reference([])
    raw.set_channel_types({ch: "ecog" for ch in raw.ch_names})
    pos = np.zeros((49, 3))
    pos[:, :2] = (
        np.array(np.meshgrid(np.linspace(0, 0.02, 7), np.linspace(0, 0.02, 7)))
        .reshape(2, -1)
        .T
    )
    pos[:, 2] = 0.12
    raw.drop_channels(raw.ch_names[49:])
    raw.set_montage(
        mne.channels.make_dig_montage(
            ch_pos=dict(zip(raw.ch_names[:49], pos)), coord_frame="head"
        )
    )
    raw.info = project_sensors_onto_brain(
        raw.info, trans, "sample", subjects_dir=tmp_path
    )
    # plot to check, should be projected down onto inner skull
    # brain = mne.viz.Brain('sample', subjects_dir=subjects_dir, alpha=0.5,
    #                       surf='white')
    # brain.add_sensors(raw.info, trans=trans)
    test_locs = [
        [0.00149, -0.001588, 0.133029],
        [0.004302, 0.001959, 0.133922],
        [0.008602, 0.00116, 0.133723],
    ]
    montage = raw.get_montage()
    assert montage is not None
    ch_pos = montage.get_positions()["ch_pos"]
    for ch, test_loc in zip(raw.ch_names[:3], test_locs):
        assert_allclose(ch_pos[ch], test_loc, atol=0.01)


@testing.requires_testing_data
def test_project_sensors_onto_inflated(tmp_path):
    """Test projecting sEEG sensors onto an inflated brain surface."""
    pytest.importorskip("nibabel")
    raw = mne.io.read_raw_fif(fname_raw)
    trans = _get_trans(fname_trans)[0]
    for subject in ("sample", "fsaverage"):
        os.makedirs(tmp_path / subject / "surf", exist_ok=True)
        for hemi in ("lh", "rh"):
            # fake white surface for pial
            copyfile(
                subjects_dir / subject / "surf" / f"{hemi}.white",
                tmp_path / subject / "surf" / f"{hemi}.pial",
            )
            copyfile(
                subjects_dir / subject / "surf" / f"{hemi}.curv",
                tmp_path / subject / "surf" / f"{hemi}.curv",
            )
            copyfile(
                subjects_dir / subject / "surf" / f"{hemi}.inflated",
                tmp_path / subject / "surf" / f"{hemi}.inflated",
            )
            if subject == "fsaverage":
                copyfile(
                    subjects_dir / subject / "surf" / f"{hemi}.cortex.patch.flat",
                    tmp_path / subject / "surf" / f"{hemi}.cortex.patch.flat",
                )
                copyfile(
                    subjects_dir / subject / "surf" / f"{hemi}.sphere",
                    tmp_path / subject / "surf" / f"{hemi}.sphere",
                )
    # now make realistic sEEG locations, picked from T1
    raw.pick("eeg")
    raw.load_data()
    raw.set_eeg_reference([])
    raw.set_channel_types({ch: "seeg" for ch in raw.ch_names})
    pos = (
        np.array(
            [
                [25.85, 9.04, -5.38],
                [33.56, 9.04, -5.63],
                [40.44, 9.04, -5.06],
                [46.75, 9.04, -6.78],
                [-30.08, 9.04, 28.23],
                [-32.95, 9.04, 37.99],
                [-36.39, 9.04, 46.03],
            ]
        )
        / 1000
    )
    raw.drop_channels(raw.ch_names[len(pos) :])
    raw.set_montage(
        mne.channels.make_dig_montage(
            ch_pos=dict(zip(raw.ch_names, pos)), coord_frame="head"
        )
    )
    proj_info = _project_sensors_onto_inflated(
        raw.info, trans, "sample", subjects_dir=tmp_path
    )
    assert_allclose(
        proj_info["chs"][0]["loc"][:3],
        np.array([0.0555809, 0.0034069, -0.04593032]),
        rtol=0.01,
    )
    # check all on inflated surface
    x_dir = np.array([1.0, 0.0, 0.0])
    head_mri_t = mne.transforms.invert_transform(trans)  # need head->mri
    for hemi in ("lh", "rh"):
        coords, faces = mne.surface.read_surface(
            tmp_path / "sample" / "surf" / f"{hemi}.inflated"
        )
        x_ = coords @ x_dir
        coords -= np.max(x_) * x_dir if hemi == "lh" else np.min(x_) * x_dir
        coords /= 1000  # mm -> m
        for ch in proj_info["chs"]:
            loc = ch["loc"][:3]
            if not np.isnan(loc).any() and (loc[0] <= 0) == (hemi == "lh"):
                assert (
                    np.linalg.norm(
                        coords - mne.transforms.apply_trans(head_mri_t, loc), axis=1
                    ).min()
                    < 1e-16
                )

    # test flat map
    montage = raw.get_montage()
    montage.apply_trans(mne.transforms.invert_transform(trans))
    mri_mni_t = mne.read_talxfm("sample", subjects_dir)
    montage.apply_trans(mri_mni_t)  # mri to mni_tal (MNI Taliarach)
    montage.apply_trans(
        mne.transforms.Transform(fro="mni_tal", to="mri", trans=np.eye(4))
    )
    raw.set_montage(montage)
    trans = mne.channels.compute_native_head_t(montage)

    flat_proj_info = _project_sensors_onto_inflated(
        raw.info,
        trans=trans,
        subject="fsaverage",
        subjects_dir=tmp_path,
        flat=True,
    )

    # check all on flat surface
    x_dir = np.array([1.0, 0.0, 0.0])
    head_mri_t = mne.transforms.invert_transform(trans)  # need head->mri
    for hemi in ("lh", "rh"):
        coords, faces, _ = mne.surface._read_patch(
            tmp_path / "fsaverage" / "surf" / f"{hemi}.cortex.patch.flat"
        )
        coords = coords[:, [1, 0, 2]]
        coords[:, 1] *= -1
        x_ = coords @ x_dir
        coords -= np.max(x_) * x_dir if hemi == "lh" else np.min(x_) * x_dir
        coords /= 1000  # mm -> m
        for ch in flat_proj_info["chs"]:
            loc = ch["loc"][:3]
            if not np.isnan(loc).any() and (loc[0] <= 0) == (hemi == "lh"):
                assert (
                    np.linalg.norm(
                        coords - mne.transforms.apply_trans(head_mri_t, loc), axis=1
                    ).min()
                    < 1e-16
                )

    # plot to check
    # brain = mne.viz.Brain('fsaverage', subjects_dir=tempdir, alpha=0.5,
    #                       surf='flat')
    # brain.add_sensors(flat_proj_info, trans=trans)