File: test_volume.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (129 lines) | stat: -rw-r--r-- 4,743 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""Test ieeg volume functions."""

# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

import numpy as np
import pytest

from mne.channels import make_dig_montage
from mne.coreg import get_mni_fiducials
from mne.datasets import testing
from mne.preprocessing.ieeg import make_montage_volume, warp_montage
from mne.transforms import apply_trans, compute_volume_registration

data_path = testing.data_path(download=False)
subjects_dir = data_path / "subjects"


@pytest.mark.slowtest
@testing.requires_testing_data
def test_warp_montage():
    """Test warping an montage based on intracranial electrode positions."""
    nib = pytest.importorskip("nibabel")
    pytest.importorskip("dipy")
    subject_brain = nib.load(subjects_dir / "sample" / "mri" / "brain.mgz")
    template_brain = nib.load(subjects_dir / "fsaverage" / "mri" / "brain.mgz")
    zooms = dict(translation=10, rigid=10, sdr=10)
    reg_affine, sdr_morph = compute_volume_registration(
        subject_brain,
        template_brain,
        zooms=zooms,
        niter=[3, 3, 3],
        pipeline=("translation", "rigid", "sdr"),
    )
    # make an info object with three channels with positions
    ch_coords = np.array(
        [
            [-8.7040273, 17.99938754, 10.29604017],
            [-14.03007764, 19.69978401, 12.07236939],
            [-21.1130506, 21.98310911, 13.25658887],
        ]
    )
    ch_pos = dict(zip(["1", "2", "3"], ch_coords / 1000))  # mm -> m
    lpa, nasion, rpa = get_mni_fiducials("sample", subjects_dir)
    montage = make_dig_montage(
        ch_pos, lpa=lpa["r"], nasion=nasion["r"], rpa=rpa["r"], coord_frame="mri"
    )
    montage_warped = warp_montage(
        montage, subject_brain, template_brain, reg_affine, sdr_morph
    )
    # checked with nilearn plot from `tut-ieeg-localize`
    # check montage in surface RAS
    ground_truth_warped = np.array(
        [
            [-0.009, -0.00133333, -0.033],
            [-0.01445455, 0.00127273, -0.03163636],
            [-0.022, 0.00285714, -0.031],
        ]
    )
    for i, d in enumerate(montage_warped.dig):
        assert (
            np.linalg.norm(d["r"] - ground_truth_warped[i])  # off by less than 1 cm
            < 0.01
        )

    bad_montage = montage.copy()
    for d in bad_montage.dig:
        d["coord_frame"] = 99
    with pytest.raises(RuntimeError, match="Coordinate frame not supported"):
        warp_montage(bad_montage, subject_brain, template_brain, reg_affine, sdr_morph)


@pytest.mark.slowtest
@testing.requires_testing_data
def test_make_montage_volume():
    """Test making a montage image based on intracranial electrodes."""
    nib = pytest.importorskip("nibabel")
    pytest.importorskip("dipy")
    subject_brain = nib.load(subjects_dir / "sample" / "mri" / "brain.mgz")
    # make an info object with three channels with positions
    ch_coords = np.array(
        [
            [-8.7040273, 17.99938754, 10.29604017],
            [-14.03007764, 19.69978401, 12.07236939],
            [-21.1130506, 21.98310911, 13.25658887],
        ]
    )
    ch_pos = dict(zip(["1", "2", "3"], ch_coords / 1000))  # mm -> m
    lpa, nasion, rpa = get_mni_fiducials("sample", subjects_dir)
    montage = make_dig_montage(
        ch_pos, lpa=lpa["r"], nasion=nasion["r"], rpa=rpa["r"], coord_frame="mri"
    )
    # make fake image based on the info
    CT_data = np.zeros(subject_brain.shape)
    # convert to voxels
    ch_coords_vox = apply_trans(
        np.linalg.inv(subject_brain.header.get_vox2ras_tkr()), ch_coords
    )
    for x, y, z in ch_coords_vox.round().astype(int):
        # make electrode contact hyperintensities
        # first, make the surrounding voxels high intensity
        CT_data[x - 1 : x + 2, y - 1 : y + 2, z - 1 : z + 2] = 500
        # then, make the center even higher intensity
        CT_data[x, y, z] = 1000
    CT = nib.Nifti1Image(CT_data, subject_brain.affine)

    elec_image = make_montage_volume(montage, CT, thresh=0.25)
    elec_image_data = np.array(elec_image.dataobj)

    # check elec image, center should be no more than half a voxel away
    for i in range(len(montage.ch_names)):
        assert (
            np.linalg.norm(
                np.array(np.where(elec_image_data == i + 1)).mean(axis=1)
                - ch_coords_vox[i]
            )
            < 0.5
        )

    # test inputs
    with pytest.raises(ValueError, match="`thresh` must be between 0 and 1"):
        make_montage_volume(montage, CT, thresh=11.0)

    bad_montage = montage.copy()
    for d in bad_montage.dig:
        d["coord_frame"] = 99
    with pytest.raises(RuntimeError, match="Coordinate frame not supported"):
        make_montage_volume(bad_montage, CT)