File: _scalp_coupling_index.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (69 lines) | stat: -rw-r--r-- 1,786 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

import numpy as np

from ...io import BaseRaw
from ...utils import _validate_type, verbose
from ..nirs import _validate_nirs_info


@verbose
def scalp_coupling_index(
    raw,
    l_freq=0.7,
    h_freq=1.5,
    l_trans_bandwidth=0.3,
    h_trans_bandwidth=0.3,
    verbose=False,
):
    r"""Calculate scalp coupling index.

    This function calculates the scalp coupling index
    :footcite:`pollonini2014auditory`. This is a measure of the quality of the
    connection between the optode and the scalp.

    Parameters
    ----------
    raw : instance of Raw
        The raw data.
    %(l_freq)s
    %(h_freq)s
    %(l_trans_bandwidth)s
    %(h_trans_bandwidth)s
    %(verbose)s

    Returns
    -------
    sci : array of float
        Array containing scalp coupling index for each channel.

    References
    ----------
    .. footbibliography::
    """
    _validate_type(raw, BaseRaw, "raw")
    picks = _validate_nirs_info(raw.info, fnirs="od", which="Scalp coupling index")

    raw = raw.copy().pick(picks).load_data()
    zero_mask = np.std(raw._data, axis=-1) == 0
    filtered_data = raw.filter(
        l_freq,
        h_freq,
        l_trans_bandwidth=l_trans_bandwidth,
        h_trans_bandwidth=h_trans_bandwidth,
        verbose=verbose,
    ).get_data()

    sci = np.zeros(picks.shape)
    for ii in range(0, len(picks), 2):
        with np.errstate(invalid="ignore"):
            c = np.corrcoef(filtered_data[ii], filtered_data[ii + 1])[0][1]
        if not np.isfinite(c):  # someone had std=0
            c = 0
        sci[ii] = c
        sci[ii + 1] = c
    sci[zero_mask] = 0
    sci = sci[np.argsort(picks)]  # restore original order
    return sci