1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_almost_equal, assert_array_equal
from mne import create_info
from mne._fiff.constants import FIFF
from mne._fiff.pick import _picks_to_idx
from mne.datasets import testing
from mne.datasets.testing import data_path
from mne.io import RawArray, read_raw_nirx
from mne.preprocessing.nirs import (
_channel_chromophore,
_channel_frequencies,
_check_channels_ordered,
_fnirs_optode_names,
_fnirs_spread_bads,
_optode_position,
_validate_nirs_info,
beer_lambert_law,
optical_density,
scalp_coupling_index,
tddr,
)
fname_nirx_15_0 = (
data_path(download=False) / "NIRx" / "nirscout" / "nirx_15_0_recording"
)
fname_nirx_15_2 = (
data_path(download=False) / "NIRx" / "nirscout" / "nirx_15_2_recording"
)
fname_nirx_15_2_short = (
data_path(download=False) / "NIRx" / "nirscout" / "nirx_15_2_recording_w_short"
)
@testing.requires_testing_data
def test_fnirs_picks():
"""Test picking of fnirs types after different conversions."""
raw = read_raw_nirx(fname_nirx_15_0)
picks = _picks_to_idx(raw.info, "fnirs_cw_amplitude")
assert len(picks) == len(raw.ch_names)
raw_subset = raw.copy().pick(picks="fnirs_cw_amplitude")
for ch in raw_subset.info["chs"]:
assert ch["coil_type"] == FIFF.FIFFV_COIL_FNIRS_CW_AMPLITUDE
picks = _picks_to_idx(raw.info, ["fnirs_cw_amplitude", "fnirs_od"])
assert len(picks) == len(raw.ch_names)
picks = _picks_to_idx(raw.info, ["fnirs_cw_amplitude", "fnirs_od", "hbr"])
assert len(picks) == len(raw.ch_names)
pytest.raises(ValueError, _picks_to_idx, raw.info, "fnirs_od")
pytest.raises(ValueError, _picks_to_idx, raw.info, "hbo")
pytest.raises(ValueError, _picks_to_idx, raw.info, ["hbr"])
pytest.raises(ValueError, _picks_to_idx, raw.info, "fnirs_fd_phase")
pytest.raises(ValueError, _picks_to_idx, raw.info, "junk")
raw = optical_density(raw)
picks = _picks_to_idx(raw.info, "fnirs_od")
assert len(picks) == len(raw.ch_names)
raw_subset = raw.copy().pick(picks="fnirs_od")
for ch in raw_subset.info["chs"]:
assert ch["coil_type"] == FIFF.FIFFV_COIL_FNIRS_OD
picks = _picks_to_idx(raw.info, ["fnirs_cw_amplitude", "fnirs_od"])
assert len(picks) == len(raw.ch_names)
picks = _picks_to_idx(raw.info, ["fnirs_cw_amplitude", "fnirs_od", "hbr"])
assert len(picks) == len(raw.ch_names)
pytest.raises(ValueError, _picks_to_idx, raw.info, "fnirs_cw_amplitude")
pytest.raises(ValueError, _picks_to_idx, raw.info, "hbo")
pytest.raises(ValueError, _picks_to_idx, raw.info, "hbr")
pytest.raises(ValueError, _picks_to_idx, raw.info, "fnirs_fd_phase")
pytest.raises(ValueError, _picks_to_idx, raw.info, "junk")
raw = beer_lambert_law(raw)
picks = _picks_to_idx(raw.info, "hbo")
assert len(picks) == len(raw.ch_names) / 2
raw_subset = raw.copy().pick(picks="hbo")
for ch in raw_subset.info["chs"]:
assert ch["coil_type"] == FIFF.FIFFV_COIL_FNIRS_HBO
picks = _picks_to_idx(raw.info, ["hbr"])
assert len(picks) == len(raw.ch_names) / 2
raw_subset = raw.copy().pick(picks=["hbr"])
for ch in raw_subset.info["chs"]:
assert ch["coil_type"] == FIFF.FIFFV_COIL_FNIRS_HBR
picks = _picks_to_idx(raw.info, ["hbo", "hbr"])
assert len(picks) == len(raw.ch_names)
picks = _picks_to_idx(raw.info, ["hbo", "fnirs_od", "hbr"])
assert len(picks) == len(raw.ch_names)
picks = _picks_to_idx(raw.info, ["hbo", "fnirs_od"])
assert len(picks) == len(raw.ch_names) / 2
pytest.raises(ValueError, _picks_to_idx, raw.info, "fnirs_cw_amplitude")
pytest.raises(ValueError, _picks_to_idx, raw.info, ["fnirs_od"])
pytest.raises(ValueError, _picks_to_idx, raw.info, "junk")
pytest.raises(ValueError, _picks_to_idx, raw.info, "fnirs_fd_phase")
# Backward compat wrapper for simplicity below
def _fnirs_check_bads(info):
_validate_nirs_info(info)
@testing.requires_testing_data
@pytest.mark.parametrize(
"fname", ([fname_nirx_15_2_short, fname_nirx_15_2, fname_nirx_15_0])
)
def test_fnirs_check_bads(fname):
"""Test checking of bad markings."""
# No bad channels, so these should all pass
raw = read_raw_nirx(fname)
_fnirs_check_bads(raw.info)
raw = optical_density(raw)
_fnirs_check_bads(raw.info)
raw = beer_lambert_law(raw)
_fnirs_check_bads(raw.info)
# Mark pairs of bad channels, so these should all pass
raw = read_raw_nirx(fname)
raw.info["bads"] = raw.ch_names[0:2]
_fnirs_check_bads(raw.info)
raw = optical_density(raw)
_fnirs_check_bads(raw.info)
raw = beer_lambert_law(raw)
_fnirs_check_bads(raw.info)
# Mark single channel as bad, so these should all fail
raw = read_raw_nirx(fname)
raw.info["bads"] = raw.ch_names[0:1]
pytest.raises(RuntimeError, _fnirs_check_bads, raw.info)
with pytest.raises(RuntimeError, match="bad labelling"):
raw = optical_density(raw)
raw.info["bads"] = []
raw = optical_density(raw)
raw.info["bads"] = raw.ch_names[0:1]
pytest.raises(RuntimeError, _fnirs_check_bads, raw.info)
with pytest.raises(RuntimeError, match="bad labelling"):
raw = beer_lambert_law(raw)
pytest.raises(RuntimeError, _fnirs_check_bads, raw.info)
@testing.requires_testing_data
@pytest.mark.parametrize(
"fname", ([fname_nirx_15_2_short, fname_nirx_15_2, fname_nirx_15_0])
)
def test_fnirs_spread_bads(fname):
"""Test checking of bad markings."""
# Test spreading upwards in frequency and on raw data
raw = read_raw_nirx(fname)
raw.info["bads"] = ["S1_D1 760"]
info = _fnirs_spread_bads(raw.info)
assert info["bads"] == ["S1_D1 760", "S1_D1 850"]
# Test spreading downwards in frequency and on od data
raw = optical_density(raw)
raw.info["bads"] = raw.ch_names[5:6]
info = _fnirs_spread_bads(raw.info)
assert info["bads"] == raw.ch_names[4:6]
# Test spreading multiple bads and on chroma data
raw = beer_lambert_law(raw)
raw.info["bads"] = [raw.ch_names[x] for x in [1, 8]]
info = _fnirs_spread_bads(raw.info)
assert info["bads"] == [info.ch_names[x] for x in [0, 1, 8, 9]]
@testing.requires_testing_data
@pytest.mark.parametrize(
"fname", ([fname_nirx_15_2_short, fname_nirx_15_2, fname_nirx_15_0])
)
def test_fnirs_channel_naming_and_order_readers(fname):
"""Ensure fNIRS channel checking on standard readers."""
# fNIRS data requires specific channel naming and ordering.
# All standard readers should pass tests
raw = read_raw_nirx(fname)
freqs = np.unique(_channel_frequencies(raw.info))
assert_array_equal(freqs, [760, 850])
chroma = np.unique(_channel_chromophore(raw.info))
assert len(chroma) == 0
picks = _check_channels_ordered(raw.info, freqs)
assert len(picks) == len(raw.ch_names) # as all fNIRS only data
# Check that dropped channels are detected
# For each source detector pair there must be two channels,
# removing one should throw an error.
raw_dropped = raw.copy().drop_channels(raw.ch_names[4])
with pytest.raises(ValueError, match="not ordered correctly"):
_check_channels_ordered(raw_dropped.info, freqs)
# The ordering must be increasing for the pairs, if provided
raw_names_reversed = raw.copy().ch_names
raw_names_reversed.reverse()
raw_reversed = raw.copy().pick(raw_names_reversed)
with pytest.raises(ValueError, match="The frequencies.*sorted.*"):
_check_channels_ordered(raw_reversed.info, [850, 760])
# So if we flip the second argument it should pass again
picks = _check_channels_ordered(raw_reversed.info, freqs)
got_first = set(raw_reversed.ch_names[pick].split()[1] for pick in picks[::2])
assert got_first == {"760"}
got_second = set(raw_reversed.ch_names[pick].split()[1] for pick in picks[1::2])
assert got_second == {"850"}
# Check on OD data
raw = optical_density(raw)
freqs = np.unique(_channel_frequencies(raw.info))
assert_array_equal(freqs, [760, 850])
chroma = np.unique(_channel_chromophore(raw.info))
assert len(chroma) == 0
picks = _check_channels_ordered(raw.info, freqs)
assert len(picks) == len(raw.ch_names) # as all fNIRS only data
# Check on haemoglobin data
raw = beer_lambert_law(raw)
freqs = np.unique(_channel_frequencies(raw.info))
assert len(freqs) == 0
assert len(_channel_chromophore(raw.info)) == len(raw.ch_names)
chroma = np.unique(_channel_chromophore(raw.info))
assert_array_equal(chroma, ["hbo", "hbr"])
picks = _check_channels_ordered(raw.info, chroma)
assert len(picks) == len(raw.ch_names)
with pytest.raises(ValueError, match="chromophore in info"):
_check_channels_ordered(raw.info, ["hbr", "hbo"])
def test_fnirs_channel_naming_and_order_custom_raw():
"""Ensure fNIRS channel checking on manually created data."""
data = np.random.normal(size=(6, 10))
# Start with a correctly named raw intensity dataset
# These are the steps required to build an fNIRS Raw object from scratch
ch_names = [
"S1_D1 760",
"S1_D1 850",
"S2_D1 760",
"S2_D1 850",
"S3_D1 760",
"S3_D1 850",
]
ch_types = np.repeat("fnirs_cw_amplitude", 6)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
freqs = np.tile([760, 850], 3)
for idx, f in enumerate(freqs):
raw.info["chs"][idx]["loc"][9] = f
freqs = np.unique(_channel_frequencies(raw.info))
picks = _check_channels_ordered(raw.info, freqs)
assert len(picks) == len(raw.ch_names)
assert len(picks) == 6
# Different systems use different frequencies, so ensure that works
ch_names = [
"S1_D1 920",
"S1_D1 850",
"S2_D1 920",
"S2_D1 850",
"S3_D1 920",
"S3_D1 850",
]
ch_types = np.repeat("fnirs_cw_amplitude", 6)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
freqs = np.tile([920, 850], 3)
for idx, f in enumerate(freqs):
raw.info["chs"][idx]["loc"][9] = f
picks = _check_channels_ordered(raw.info, [850, 920])
assert len(picks) == len(raw.ch_names)
assert len(picks) == 6
# Catch expected errors
# The frequencies named in the channel names must match the info loc field
ch_names = [
"S1_D1 760",
"S1_D1 850",
"S2_D1 760",
"S2_D1 850",
"S3_D1 760",
"S3_D1 850",
]
ch_types = np.repeat("fnirs_cw_amplitude", 6)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
freqs = np.tile([920, 850], 3)
for idx, f in enumerate(freqs):
raw.info["chs"][idx]["loc"][9] = f
with pytest.raises(ValueError, match="not ordered"):
_check_channels_ordered(raw.info, [850, 920])
# Catch if someone doesn't set the info field
ch_names = [
"S1_D1 760",
"S1_D1 850",
"S2_D1 760",
"S2_D1 850",
"S3_D1 760",
"S3_D1 850",
]
ch_types = np.repeat("fnirs_cw_amplitude", 6)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
with pytest.raises(ValueError, match="missing wavelength information"):
_check_channels_ordered(raw.info, [850, 920])
# I have seen data encoded not in alternating frequency, but blocked.
ch_names = [
"S1_D1 760",
"S2_D1 760",
"S3_D1 760",
"S1_D1 850",
"S2_D1 850",
"S3_D1 850",
]
ch_types = np.repeat("fnirs_cw_amplitude", 6)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
freqs = np.repeat([760, 850], 3)
for idx, f in enumerate(freqs):
raw.info["chs"][idx]["loc"][9] = f
_check_channels_ordered(raw.info, [760, 850])
def test_fnirs_channel_naming_and_order_custom_optical_density():
"""Ensure fNIRS channel checking on manually created data."""
data = np.random.normal(size=(6, 10))
# Start with a correctly named raw intensity dataset
# These are the steps required to build an fNIRS Raw object from scratch
ch_names = [
"S1_D1 760",
"S1_D1 850",
"S2_D1 760",
"S2_D1 850",
"S3_D1 760",
"S3_D1 850",
]
ch_types = np.repeat("fnirs_od", 6)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
freqs = np.tile([760, 850], 3)
for idx, f in enumerate(freqs):
raw.info["chs"][idx]["loc"][9] = f
freqs = np.unique(_channel_frequencies(raw.info))
picks = _check_channels_ordered(raw.info, freqs)
assert len(picks) == len(raw.ch_names)
assert len(picks) == 6
# Check block naming for optical density
ch_names = [
"S1_D1 760",
"S2_D1 760",
"S3_D1 760",
"S1_D1 850",
"S2_D1 850",
"S3_D1 850",
]
ch_types = np.repeat("fnirs_od", 6)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
freqs = np.repeat([760, 850], 3)
for idx, f in enumerate(freqs):
raw.info["chs"][idx]["loc"][9] = f
# no problems here
_check_channels_ordered(raw.info, [760, 850])
# or with this (nirx) reordering
raw.pick(picks=[0, 3, 1, 4, 2, 5])
_check_channels_ordered(raw.info, [760, 850])
# Check that if you mix types you get an error
ch_names = [
"S1_D1 hbo",
"S1_D1 hbr",
"S2_D1 hbo",
"S2_D1 hbr",
"S3_D1 hbo",
"S3_D1 hbr",
]
ch_types = np.tile(["hbo", "hbr"], 3)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw2 = RawArray(data, info, verbose=True)
raw.add_channels([raw2])
with pytest.raises(ValueError, match="does not support a combination"):
_check_channels_ordered(raw.info, [760, 850])
def test_fnirs_channel_naming_and_order_custom_chroma():
"""Ensure fNIRS channel checking on manually created data."""
data = np.random.RandomState(0).randn(6, 10)
# Start with a correctly named raw intensity dataset
# These are the steps required to build an fNIRS Raw object from scratch
ch_names = [
"S1_D1 hbo",
"S1_D1 hbr",
"S2_D1 hbo",
"S2_D1 hbr",
"S3_D1 hbo",
"S3_D1 hbr",
]
ch_types = np.tile(["hbo", "hbr"], 3)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
chroma = np.unique(_channel_chromophore(raw.info))
picks = _check_channels_ordered(raw.info, chroma)
assert len(picks) == len(raw.ch_names)
assert len(picks) == 6
# Test block creation fails
ch_names = [
"S1_D1 hbo",
"S2_D1 hbo",
"S3_D1 hbo",
"S1_D1 hbr",
"S2_D1 hbr",
"S3_D1 hbr",
]
ch_types = np.repeat(["hbo", "hbr"], 3)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
# no issue here
_check_channels_ordered(raw.info, ["hbo", "hbr"])
# reordering okay, too
raw.pick(picks=[0, 3, 1, 4, 2, 5])
_check_channels_ordered(raw.info, ["hbo", "hbr"])
# Wrong names should fail
with pytest.raises(ValueError, match="chromophore in info"):
_check_channels_ordered(raw.info, ["hbb", "hbr"])
# Test weird naming
ch_names = [
"S1_D1 hbb",
"S1_D1 hbr",
"S2_D1 hbb",
"S2_D1 hbr",
"S3_D1 hbb",
"S3_D1 hbr",
]
ch_types = np.tile(["hbo", "hbr"], 3)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
with pytest.raises(ValueError, match="naming conventions"):
_check_channels_ordered(raw.info, ["hbo", "hbr"])
# Check more weird naming
ch_names = [
"S1_DX hbo",
"S1_DX hbr",
"S2_D1 hbo",
"S2_D1 hbr",
"S3_D1 hbo",
"S3_D1 hbr",
]
ch_types = np.tile(["hbo", "hbr"], 3)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
with pytest.raises(ValueError, match="can not be parsed"):
_check_channels_ordered(raw.info, ["hbo", "hbr"])
def test_optode_names():
"""Ensure optode name extraction is correct."""
ch_names = [
"S11_D2 760",
"S11_D2 850",
"S3_D1 760",
"S3_D1 850",
"S2_D13 760",
"S2_D13 850",
]
ch_types = np.repeat("fnirs_od", 6)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
src_names, det_names = _fnirs_optode_names(info)
assert_array_equal(src_names, [f"S{n}" for n in ["2", "3", "11"]])
assert_array_equal(det_names, [f"D{n}" for n in ["1", "2", "13"]])
ch_names = [
"S1_D11 hbo",
"S1_D11 hbr",
"S2_D17 hbo",
"S2_D17 hbr",
"S3_D1 hbo",
"S3_D1 hbr",
]
ch_types = np.tile(["hbo", "hbr"], 3)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
src_names, det_names = _fnirs_optode_names(info)
assert_array_equal(src_names, [f"S{n}" for n in range(1, 4)])
assert_array_equal(det_names, [f"D{n}" for n in ["1", "11", "17"]])
@testing.requires_testing_data
def test_optode_loc():
"""Ensure optode location extraction is correct."""
raw = read_raw_nirx(fname_nirx_15_2_short)
loc = _optode_position(raw.info, "D3")
assert_array_almost_equal(loc, [0.082804, 0.01573, 0.024852])
def test_order_agnostic(nirx_snirf):
"""Test that order does not matter to (pre)processing results."""
raw_nirx, raw_snirf = nirx_snirf
raw_random = raw_nirx.copy().pick(
np.random.RandomState(0).permutation(len(raw_nirx.ch_names))
)
raws = dict(nirx=raw_nirx, snirf=raw_snirf, random=raw_random)
del raw_nirx, raw_snirf, raw_random
orders = dict()
# continuous wave
for key, r in raws.items():
assert set(r.get_channel_types()) == {"fnirs_cw_amplitude"}
orders[key] = [r.ch_names.index(name) for name in raws["nirx"].ch_names]
assert_array_equal(raws["nirx"].ch_names, np.array(r.ch_names)[orders[key]])
assert_allclose(raws["nirx"].get_data(), r.get_data(orders[key]), err_msg=key)
assert_array_equal(orders["nirx"], np.arange(len(raws["nirx"].ch_names)))
# optical density
for key, r in raws.items():
raws[key] = r = optical_density(r)
assert_allclose(raws["nirx"].get_data(), r.get_data(orders[key]), err_msg=key)
assert set(r.get_channel_types()) == {"fnirs_od"}
# scalp-coupling index
sci = dict()
for key, r in raws.items():
sci[key] = r = scalp_coupling_index(r)
assert_allclose(sci["nirx"], r[orders[key]], err_msg=key, rtol=0.01)
# TDDR (on optical)
tddrs = dict()
for key, r in raws.items():
tddrs[key] = r = tddr(r)
assert_allclose(
tddrs["nirx"].get_data(), r.get_data(orders[key]), err_msg=key, atol=1e-4
)
assert set(r.get_channel_types()) == {"fnirs_od"}
# beer-lambert
for key, r in raws.items():
raws[key] = r = beer_lambert_law(r)
assert_allclose(
raws["nirx"].get_data(), r.get_data(orders[key]), err_msg=key, rtol=2e-7
)
assert set(r.get_channel_types()) == {"hbo", "hbr"}
# TDDR (on haemo)
tddrs = dict()
for key, r in raws.items():
tddrs[key] = r = tddr(r)
assert_allclose(
tddrs["nirx"].get_data(), r.get_data(orders[key]), err_msg=key, atol=1e-9
)
assert set(r.get_channel_types()) == {"hbo", "hbr"}
|