File: test_scalp_coupling_index.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (78 lines) | stat: -rw-r--r-- 2,504 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_less

from mne.datasets import testing
from mne.datasets.testing import data_path
from mne.io import read_raw_nirx
from mne.preprocessing.nirs import (
    beer_lambert_law,
    optical_density,
    scalp_coupling_index,
)

fname_nirx_15_0 = (
    data_path(download=False) / "NIRx" / "nirscout" / "nirx_15_0_recording"
)
fname_nirx_15_2 = (
    data_path(download=False) / "NIRx" / "nirscout" / "nirx_15_2_recording"
)
fname_nirx_15_2_short = (
    data_path(download=False) / "NIRx" / "nirscout" / "nirx_15_2_recording_w_short"
)


@testing.requires_testing_data
@pytest.mark.parametrize(
    "fname", ([fname_nirx_15_2_short, fname_nirx_15_2, fname_nirx_15_0])
)
@pytest.mark.parametrize("fmt", ("nirx", "fif"))
def test_scalp_coupling_index(fname, fmt, tmp_path):
    """Test converting NIRX files."""
    assert fmt in ("nirx", "fif")
    raw = read_raw_nirx(fname)
    with pytest.raises(RuntimeError, match="Scalp"):
        scalp_coupling_index(raw)

    raw = optical_density(raw)
    sci = scalp_coupling_index(raw)

    # All values should be between -1 and +1
    assert_array_less(sci, 1.0)
    assert_array_less(sci * -1.0, 1.0)

    # Fill in some data with known correlation values
    rng = np.random.RandomState(0)
    new_data = rng.rand(raw._data[0].shape[0])
    # Set first two channels to perfect correlation
    raw._data[0] = new_data
    raw._data[1] = new_data
    # Set next two channels to perfect correlation
    raw._data[2] = new_data
    raw._data[3] = new_data * 0.3  # check scale invariance
    # Set next two channels to anti correlation
    raw._data[4] = new_data
    raw._data[5] = new_data * -1.0
    # Set next two channels to be uncorrelated
    raw._data[6] = new_data
    raw._data[7] = rng.rand(raw._data[0].shape[0])
    # Set next channel to have zero std
    raw._data[8] = 0.0
    raw._data[9] = 1.0
    raw._data[10] = 2.0
    raw._data[11] = 3.0
    # Check values
    sci = scalp_coupling_index(raw)
    assert_allclose(sci[0:6], [1, 1, 1, 1, -1, -1], atol=0.01)
    assert np.abs(sci[6]) < 0.5
    assert np.abs(sci[7]) < 0.5
    assert_allclose(sci[8:12], 0, atol=1e-10)

    # Ensure function errors if wrong type is passed in
    raw = beer_lambert_law(raw, ppf=6)
    with pytest.raises(RuntimeError, match="Scalp"):
        scalp_coupling_index(raw)