1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_less
from mne import pick_types
from mne._fiff.tag import _loc_to_coil_trans
from mne.datasets import testing
from mne.io import read_raw_ctf, read_raw_fif, read_raw_fil, read_raw_kit
from mne.preprocessing import (
compute_fine_calibration,
maxwell_filter,
read_fine_calibration,
write_fine_calibration,
)
from mne.preprocessing.tests.test_maxwell import _assert_shielding
from mne.transforms import _angle_dist_between_rigid
from mne.utils import object_diff
# Define fine calibration filepaths
data_path = testing.data_path(download=False)
fine_cal_fname = data_path / "SSS" / "sss_cal_3053.dat"
fine_cal_fname_3d = data_path / "SSS" / "sss_cal_3053_3d.dat"
erm_fname = data_path / "SSS" / "141027_cropped_90Hz_raw.fif"
ctc = data_path / "SSS" / "ct_sparse.fif"
cal_mf_fname = data_path / "SSS" / "141027.dat"
triux_path = data_path / "SSS" / "TRIUX"
tri_fname = triux_path / "triux_bmlhus_erm_raw.fif"
tri_cal_fname = triux_path / "sss_cal_BMLHUS.dat"
ctf_fname_continuous = data_path / "CTF" / "testdata_ctf.ds"
io_dir = Path(__file__).parents[2] / "io"
kit_dir = io_dir / "kit" / "tests" / "data"
sqd_path = kit_dir / "test.sqd"
mrk_path = kit_dir / "test_mrk.sqd"
elp_path = kit_dir / "test_elp.txt"
hsp_path = kit_dir / "test_hsp.txt"
fil_fname = data_path / "FIL" / "sub-noise_ses-001_task-noise220622_run-001_meg.bin"
td_mark = testing._pytest_mark()
@pytest.mark.parametrize("fname", (cal_mf_fname, fine_cal_fname, fine_cal_fname_3d))
@testing.requires_testing_data
def test_fine_cal_io(tmp_path, fname):
"""Test round trip reading/writing of fine calibration .dat file."""
temp_fname = tmp_path / "fine_cal_temp.dat"
# Load fine calibration file
fine_cal_dict = read_fine_calibration(fname)
# Save temp version of fine calibration file
write_fine_calibration(temp_fname, fine_cal_dict)
fine_cal_dict_reload = read_fine_calibration(temp_fname)
# Load temp version of fine calibration file and compare hashes
assert object_diff(fine_cal_dict, fine_cal_dict_reload) == ""
@testing.requires_testing_data
@pytest.mark.parametrize(
"kind",
[
pytest.param("VectorView", marks=pytest.mark.ultraslowtest), # ~7s
pytest.param("TRIUX", marks=pytest.mark.ultraslowtest), # ~14s
],
)
def test_compute_fine_cal(kind):
"""Test computing fine calibration coefficients."""
cl = dict(mag=(0.99, 1.01), grad=(0.99, 1.01))
if kind == "VectorView":
erm = erm_fname
cal = cal_mf_fname
err_limit = 5
angle_limit = 5
gwoma = [66, 68]
ggoma = [55, 150]
ggwma = [62, 86]
sfs = [26, 27, 61, 63, 61, 63, 68, 70]
cl3 = [0.6, 0.7]
else:
assert kind == "TRIUX"
erm = tri_fname
cal = tri_cal_fname
err_limit = 10
angle_limit = 10
cl["grad"] = (0.0, 0.1)
gwoma = [48, 52]
ggoma = [13, 67]
ggwma = [13, 120]
sfs = [34, 35, 27, 28, 50, 53, 75, 79] # ours is better!
cl3 = [-0.3, -0.1]
raw = read_raw_fif(erm)
want_cal = read_fine_calibration(cal)
with pytest.raises(ValueError, match="err_limit.*greater.*0"):
compute_fine_calibration(raw, err_limit=-1)
with pytest.raises(ValueError, match="angle_limit.*greater.*0"):
compute_fine_calibration(raw, angle_limit=-1)
got_cal, counts = compute_fine_calibration(
raw,
cross_talk=ctc,
n_imbalance=1,
err_limit=err_limit,
angle_limit=angle_limit,
verbose=True,
)
assert counts == 1
assert set(got_cal.keys()) == set(want_cal.keys())
assert got_cal["ch_names"] == want_cal["ch_names"]
# in practice these should never be exactly 1.
assert sum([(ic == 1.0).any() for ic in want_cal["imb_cals"]]) == 0
assert sum([(ic == 1.0).any() for ic in got_cal["imb_cals"]]) == 0
got_imb = np.array(got_cal["imb_cals"], float)
want_imb = np.array(want_cal["imb_cals"], float)
assert got_imb.shape == want_imb.shape == (306, 1)
got_imb, want_imb = got_imb[:, 0], want_imb[:, 0]
meg_picks = pick_types(raw.info, meg=True, ref_meg=False, exclude=())
orig_locs = np.array([raw.info["chs"][pick]["loc"] for pick in meg_picks])
want_locs = want_cal["locs"]
got_locs = got_cal["locs"]
assert want_locs.shape == got_locs.shape
orig_trans = _loc_to_coil_trans(orig_locs)
want_trans = _loc_to_coil_trans(want_locs)
got_trans = _loc_to_coil_trans(got_locs)
want_orig_angles, want_orig_dist = _angle_dist_between_rigid(
want_trans,
orig_trans,
angle_units="deg",
distance_units="mm",
)
got_want_angles, got_want_dist = _angle_dist_between_rigid(
got_trans,
want_trans,
angle_units="deg",
distance_units="mm",
)
got_orig_angles, got_orig_dist = _angle_dist_between_rigid(
got_trans,
orig_trans,
angle_units="deg",
distance_units="mm",
)
assert_array_less(got_want_dist, 0.01)
assert_array_less(got_orig_dist, 0.01)
for key in ("mag", "grad"):
# imb_cals value
p = np.searchsorted(meg_picks, pick_types(raw.info, meg=key, exclude=()))
r2 = np.dot(got_imb[p], want_imb[p]) / (
np.linalg.norm(want_imb[p]) * np.linalg.norm(got_imb[p])
)
assert cl[key][0] < r2 <= cl[key][1], f"{key}: {r2:0.3f}"
# rotation angles
want_orig_max_angle = want_orig_angles[p].max()
got_orig_max_angle = got_orig_angles[p].max()
got_want_max_angle = got_want_angles[p].max()
if key == "mag":
assert 8 < want_orig_max_angle < 11, want_orig_max_angle
assert 1 < got_orig_max_angle < 8, got_orig_max_angle
assert 8 < got_want_max_angle < 11, got_want_max_angle
else:
# Some of these angles are large, but mostly this has to do with
# processing a very short (one 10-s segment), downsampled (90 Hz)
# file
assert gwoma[0] < want_orig_max_angle < gwoma[1]
assert ggoma[0] < got_orig_max_angle < ggoma[1]
assert ggwma[0] < got_want_max_angle < ggwma[1]
kwargs = dict(bad_condition="warning", cross_talk=ctc, coord_frame="meg")
raw_sss = maxwell_filter(raw, **kwargs)
raw_sss_mf = maxwell_filter(raw, calibration=cal_mf_fname, **kwargs)
raw_sss_py = maxwell_filter(raw, calibration=got_cal, **kwargs)
_assert_shielding(raw_sss, raw, *sfs[0:2])
_assert_shielding(raw_sss_mf, raw, *sfs[2:4])
_assert_shielding(raw_sss_py, raw, *sfs[4:6])
# redoing with given mag data should yield same result
got_cal_redo, _ = compute_fine_calibration(
raw, cross_talk=ctc, n_imbalance=1, calibration=got_cal, verbose="debug"
)
assert got_cal["ch_names"] == got_cal_redo["ch_names"]
assert_allclose(got_cal["imb_cals"], got_cal_redo["imb_cals"], atol=5e-5)
assert_allclose(got_cal["locs"], got_cal_redo["locs"], atol=1e-6)
assert sum([(ic == 1.0).any() for ic in got_cal["imb_cals"]]) == 0
# redoing with 3 imlabance parameters should improve the shielding factor
grad_subpicks = np.searchsorted(meg_picks, pick_types(raw.info, meg="grad"))
assert len(grad_subpicks) == 204 and grad_subpicks[0] in (0, 1)
got_grad_imbs = np.array([got_cal["imb_cals"][pick] for pick in grad_subpicks])
assert got_grad_imbs.shape == (204, 1)
got_cal_3, _ = compute_fine_calibration(
raw, cross_talk=ctc, n_imbalance=3, calibration=got_cal, verbose="debug"
)
got_grad_3_imbs = np.array([got_cal_3["imb_cals"][pick] for pick in grad_subpicks])
assert got_grad_3_imbs.shape == (204, 3)
corr = np.corrcoef(got_grad_3_imbs[:, 0], got_grad_imbs[:, 0])[0, 1]
assert cl3[0] < corr < cl3[1]
raw_sss_py = maxwell_filter(raw, calibration=got_cal_3, **kwargs)
_assert_shielding(raw_sss_py, raw, *sfs[6:8])
@pytest.mark.parametrize(
"system",
[
pytest.param("kit", marks=[pytest.mark.ultraslowtest]), # ~6s
pytest.param("ctf", marks=[td_mark, pytest.mark.ultraslowtest]), # ~13s
pytest.param("fil", marks=[td_mark]), # ~3s
pytest.param("triux", marks=[td_mark, pytest.mark.slowtest]), # ~7s
],
)
def test_fine_cal_systems(system, tmp_path):
"""Test fine calibration with different systems."""
int_order = 8
n_ref = 0
if system == "kit":
raw = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
angle_limit = 170
err_limit = 500
n_ref = 3
corrs = (0.58, 0.61, 0.57)
sfs = [0.9, 1.1, 2.3, 2.8]
corr_tol = 0.3
elif system == "ctf":
raw = read_raw_ctf(ctf_fname_continuous).crop(0, 1)
raw.apply_gradient_compensation(0)
angle_limit = 170
err_limit = 6000
n_ref = 28
corrs = (0.19, 0.41, 0.49)
sfs = [0.5, 0.7, 0.9, 1.5]
corr_tol = 0.55
elif system == "fil":
raw = read_raw_fil(fil_fname, verbose="error")
raw.info["bads"] = [f"G2-{a}-{b}" for a in ("MW", "DS", "DT") for b in "YZ"]
raw.pick("mag", exclude="bads") # no sensor positions
raw.crop(1, 2)
angle_limit = 55
err_limit = 15
int_order = 5
corrs = (0.13, 0.0, 0.12)
sfs = [4, 5, 125, 145]
corr_tol = 0.15
else:
assert system == "triux", f"Unknown system {system}"
raw = read_raw_fif(tri_fname)
angle_limit = 7
err_limit = 10
corrs = (-0.13, 0.01, 0.11)
sfs = [26, 28, 100, 110]
corr_tol = 0.05
raw.info["dev_head_t"] = None # fake empty-room even if it's not
# avoid line noise and speed up computation
raw.load_data().resample(50, method="polyphase")
fc, n = compute_fine_calibration(
raw,
angle_limit=angle_limit,
err_limit=err_limit,
verbose=True,
)
assert n == 1
# ensure ref sensors not in fine calibration
ref_picks = pick_types(raw.info, meg=False, ref_meg=True)
assert len(ref_picks) == n_ref
for pick in ref_picks:
assert raw.info["ch_names"][pick] not in fc["ch_names"]
# write it, read it back, ensure it can be applied
fname = tmp_path / "fc.dat"
write_fine_calibration(fname, fc)
fc_in = read_fine_calibration(fname)
kwargs = dict(
coord_frame="meg",
origin=(0.0, 0.0, 0.0),
ignore_ref=True,
regularize=None,
bad_condition="ignore",
int_order=int_order,
)
raw_sss = maxwell_filter(raw, **kwargs)
_assert_shielding(raw_sss, raw, *sfs[0:2])
raw_sss_cal = maxwell_filter(raw, calibration=fc_in, **kwargs)
_assert_shielding(raw_sss_cal, raw, *sfs[2:4])
raw_data = raw.get_data("mag").ravel()
raw_sss_data = raw_sss.get_data("mag").ravel()
raw_sss_cal_data = raw_sss_cal.get_data("mag").ravel()
got_corrs = np.corrcoef([raw_data, raw_sss_data, raw_sss_cal_data])
got_corrs = got_corrs[np.triu_indices(3, 1)]
assert_allclose(got_corrs, corrs, atol=corr_tol)
|