1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal, assert_array_less
from mne import pick_types
from mne.datasets import testing
from mne.io import read_raw_fif
from mne.preprocessing import (
EOGRegression,
create_eog_epochs,
read_eog_regression,
regress_artifact,
)
data_path = testing.data_path(download=False)
raw_fname = data_path / "MEG" / "sample" / "sample_audvis_trunc_raw.fif"
@testing.requires_testing_data
def test_regress_artifact():
"""Test regressing artifact data."""
raw = read_raw_fif(raw_fname).pick(["eeg", "eog"])
raw.load_data()
epochs = create_eog_epochs(raw)
epochs.apply_baseline((None, None))
orig_data = epochs.get_data("eeg")
orig_norm = np.linalg.norm(orig_data)
epochs_clean, betas = regress_artifact(epochs)
regress_artifact(epochs, betas=betas, copy=False) # inplace, and w/betas
assert_allclose(epochs_clean.get_data(copy=False), epochs.get_data(copy=False))
clean_data = epochs_clean.get_data("eeg")
clean_norm = np.linalg.norm(clean_data)
assert orig_norm / 2 > clean_norm > orig_norm / 10
with pytest.raises(ValueError, match=r"Invalid value.*betas\.shape.*"):
regress_artifact(epochs, betas=betas[:-1])
# Regressing channels onto themselves should work
epochs, betas = regress_artifact(epochs, picks="eog", picks_artifact="eog")
assert np.ptp(epochs.get_data("eog")) < 1e-15 # constant value
assert_allclose(betas, 1)
# proj should only be required of channels being processed
raw = read_raw_fif(raw_fname).crop(0, 1).load_data()
raw.del_proj()
raw.set_eeg_reference(projection=True)
model = EOGRegression(proj=False, picks="meg", picks_artifact="eog")
model.fit(raw)
model.apply(raw)
model = EOGRegression(proj=False, picks="eeg", picks_artifact="eog")
with pytest.raises(RuntimeError, match="Projections need to be applied"):
model.fit(raw)
raw.del_proj()
with pytest.raises(RuntimeError, match="No average reference for the EEG"):
model.fit(raw)
@testing.requires_testing_data
def test_eog_regression():
"""Test regressing artifact data using the EOGRegression class."""
raw_meg_eeg = read_raw_fif(raw_fname)
raw = raw_meg_eeg.copy().pick(["eeg", "eog", "stim"])
# Test various errors
with pytest.raises(RuntimeError, match="Projections need to be applied"):
model = EOGRegression(proj=False).fit(raw)
with pytest.raises(RuntimeError, match="requires raw data to be loaded"):
model = EOGRegression().fit(raw)
raw.load_data()
# Test regression on raw data
model = EOGRegression()
assert str(model) == "<EOGRegression | not fitted>"
model.fit(raw)
assert str(model) == "<EOGRegression | fitted to 1 artifact channel>"
assert model.coef_.shape == (59, 1) # 59 EEG channels, 1 EOG channel
raw_clean = model.apply(raw)
# Some signal must have been removed
assert np.ptp(raw_clean.get_data("eeg")) < np.ptp(raw.get_data("eeg"))
# Test regression on epochs
epochs = create_eog_epochs(raw)
model = EOGRegression().fit(epochs)
epochs = model.apply(epochs)
# Since these were blinks, they should be mostly gone
assert np.ptp(epochs.get_data("eeg")) < 1e-4
# Test regression on evoked
evoked = epochs.average("all")
model = EOGRegression().fit(evoked)
evoked = model.apply(evoked)
assert model.coef_.shape == (59, 1)
# Since this was a blink evoked, signal should be mostly gone
assert np.ptp(evoked.get_data("eeg")) < 1e-4
# Test regression on evoked and applying to raw, with different ordering of
# channels. This should not work.
raw_ = raw.copy().drop_channels(["EEG 001"])
raw_ = raw_.add_channels([raw.copy().pick(["EEG 001"])])
model = EOGRegression().fit(evoked)
with pytest.raises(ValueError, match="data channels are not compatible"):
model.apply(raw_)
# Test in-place operation
raw_ = model.apply(raw, copy=False)
assert raw_ is raw
assert raw_._data is raw._data
raw_ = model.apply(raw, copy=True)
assert raw_ is not raw
assert raw_._data is not raw._data
# Test plotting with one channel type
fig = model.plot()
assert len(fig.axes) == 2 # (one topomap and one colorbar)
assert fig.axes[0].title.get_text() == "eeg/EOG 061"
# Test plotting with multiple channel types
raw_meg_eeg.load_data()
fig = EOGRegression().fit(raw_meg_eeg).plot()
assert len(fig.axes) == 6 # (3 topomaps and 3 colorbars)
assert fig.axes[0].title.get_text() == "grad/EOG 061"
assert fig.axes[1].title.get_text() == "mag/EOG 061"
assert fig.axes[2].title.get_text() == "eeg/EOG 061"
# Test plotting with multiple channel types, multiple regressors)
m = EOGRegression(picks_artifact=["EEG 001", "EOG 061"]).fit(raw_meg_eeg)
assert str(m) == "<EOGRegression | fitted to 2 artifact channels>"
fig = m.plot()
assert len(fig.axes) == 12 # (6 topomaps and 3 colorbars)
assert fig.axes[0].title.get_text() == "grad/EEG 001"
assert fig.axes[1].title.get_text() == "mag/EEG 001"
assert fig.axes[4].title.get_text() == "mag/EOG 061"
assert fig.axes[5].title.get_text() == "eeg/EOG 061"
@testing.requires_testing_data
def test_read_eog_regression(tmp_path):
"""Test saving and loading an EOGRegression object."""
pytest.importorskip("h5io")
raw = read_raw_fif(raw_fname).pick(["eeg", "eog"])
raw.load_data()
model = EOGRegression().fit(raw)
model.save(tmp_path / "weights.h5", overwrite=True)
model2 = read_eog_regression(tmp_path / "weights.h5")
assert_array_equal(model.picks, model2.picks)
assert_array_equal(model.picks_artifact, model2.picks_artifact)
assert_array_equal(model.exclude, model2.exclude)
assert_array_equal(model.coef_, model2.coef_)
assert model.proj == model2.proj
assert model.info_.keys() == model2.info_.keys()
@testing.requires_testing_data
def test_regress_artifact_bads():
"""Test that bad channels are handled properly."""
# Pick the first few EEG channels
raw = read_raw_fif(raw_fname).del_proj().set_eeg_reference(projection=True)
picks_all = np.concatenate(
[
pick_types(raw.info, meg=True)[:4],
pick_types(raw.info, eeg=True)[:8],
pick_types(raw.info, eog=True)[:1],
]
)
raw.pick(picks_all).load_data()
assert len(raw.ch_names) == 13 # 4 MEG, 8 EEG, 1 EOG
del picks_all
picks = pick_types(raw.info, eeg=True)
assert_array_equal(picks, np.arange(4, 12))
norms = np.linalg.norm(raw.get_data(picks), axis=1)
raw_reg, _ = regress_artifact(raw, picks=picks, picks_artifact="eog")
assert_allclose(raw_reg.get_data("meg"), raw.get_data("meg")) # unchanged
data_reg = raw_reg.get_data()
norms_reg = np.linalg.norm(data_reg[picks], axis=1)
suppression = 20 * np.log10(norms / norms_reg)
assert_array_less(3, suppression) # at least 3 dB suppression
# Adding some bad channels shouldn't affect anything when we supply picks
raw.info["bads"] = raw.ch_names[:2] + raw.ch_names[-2:-1]
raw_reg, _ = regress_artifact(raw, picks=picks, picks_artifact="eog")
data_reg_new = raw_reg.get_data()
assert_allclose(data_reg, data_reg_new)
|