File: test_source_space.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (1095 lines) | stat: -rw-r--r-- 40,211 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

from pathlib import Path
from shutil import copytree

import numpy as np
import pytest
from numpy.testing import (
    assert_allclose,
    assert_array_equal,
    assert_array_less,
    assert_equal,
)

import mne
from mne import (
    SourceEstimate,
    add_source_space_distances,
    compute_source_morph,
    get_volume_labels_from_src,
    make_sphere_model,
    morph_source_spaces,
    pick_types,
    read_bem_solution,
    read_bem_surfaces,
    read_freesurfer_lut,
    read_source_spaces,
    read_trans,
    setup_source_space,
    setup_volume_source_space,
    write_source_spaces,
)
from mne._fiff.constants import FIFF
from mne._fiff.pick import _picks_to_idx
from mne.datasets import testing
from mne.fixes import _get_img_fdata
from mne.source_estimate import _get_src_type
from mne.source_space import (
    compute_distance_to_sensors,
    get_decimated_surfaces,
)
from mne.source_space._source_space import _compare_source_spaces
from mne.surface import _accumulate_normals, _triangle_neighbors
from mne.utils import _record_warnings, requires_mne, run_subprocess

data_path = testing.data_path(download=False)
subjects_dir = data_path / "subjects"
fname_mri = data_path / "subjects" / "sample" / "mri" / "T1.mgz"
aseg_fname = data_path / "subjects" / "sample" / "mri" / "aseg.mgz"
fname = subjects_dir / "sample" / "bem" / "sample-oct-6-src.fif"
fname_vol = subjects_dir / "sample" / "bem" / "sample-volume-7mm-src.fif"
fname_bem = data_path / "subjects" / "sample" / "bem" / "sample-1280-bem.fif"
fname_bem_sol = data_path / "subjects" / "sample" / "bem" / "sample-1280-bem-sol.fif"
fname_bem_3 = (
    data_path / "subjects" / "sample" / "bem" / "sample-1280-1280-1280-bem.fif"
)
fname_bem_3_sol = (
    data_path / "subjects" / "sample" / "bem" / "sample-1280-1280-1280-bem-sol.fif"
)
fname_fs = subjects_dir / "fsaverage" / "bem" / "fsaverage-ico-5-src.fif"
fname_morph = subjects_dir / "sample" / "bem" / "sample-fsaverage-ico-5-src.fif"
fname_src = data_path / "subjects" / "sample" / "bem" / "sample-oct-4-src.fif"
fname_fwd = data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-eeg-oct-4-fwd.fif"
trans_fname = data_path / "MEG" / "sample" / "sample_audvis_trunc-trans.fif"
base_dir = Path(__file__).parents[2] / "io" / "tests" / "data"
fname_small = base_dir / "small-src.fif.gz"
fname_ave = base_dir / "test-ave.fif"
rng = np.random.RandomState(0)


@testing.requires_testing_data
@pytest.mark.parametrize(
    "picks, limits",
    [
        ("meg", (0.02, 0.250)),
        (None, (0.01, 0.250)),  # should be same as EEG
        ("eeg", (0.01, 0.250)),
    ],
)
def test_compute_distance_to_sensors(picks, limits):
    """Test computation of distances between vertices and sensors."""
    src = read_source_spaces(fname_src)
    fwd = mne.read_forward_solution(fname_fwd)
    info = fwd["info"]
    trans = read_trans(trans_fname)
    # trans = fwd['info']['mri_head_t']
    if isinstance(picks, str):
        kwargs = dict()
        kwargs[picks] = True
        if picks == "eeg":
            info["dev_head_t"] = None  # should not break anything
        use_picks = pick_types(info, **kwargs, exclude=())
    else:
        use_picks = picks
    n_picks = len(_picks_to_idx(info, use_picks, "data", exclude=()))

    # Make sure same vertices are used in src and fwd
    src[0]["inuse"] = fwd["src"][0]["inuse"]
    src[1]["inuse"] = fwd["src"][1]["inuse"]
    src[0]["nuse"] = fwd["src"][0]["nuse"]
    src[1]["nuse"] = fwd["src"][1]["nuse"]

    n_verts = src[0]["nuse"] + src[1]["nuse"]

    # minimum distances between vertices and sensors
    depths = compute_distance_to_sensors(src, info=info, picks=use_picks, trans=trans)
    assert depths.shape == (n_verts, n_picks)
    assert limits[0] * 5 > depths.min()  # meaningful choice of limits
    assert_array_less(limits[0], depths)
    assert_array_less(depths, limits[1])

    # If source space from Forward Solution and trans=None (i.e. identity) then
    # depths2 should be the same as depth.
    depths2 = compute_distance_to_sensors(
        src=fwd["src"], info=info, picks=use_picks, trans=None
    )
    assert_allclose(depths, depths2, rtol=1e-5)

    if picks != "eeg":
        # this should break things
        info["dev_head_t"] = None
        with pytest.raises(ValueError, match="Transform between meg<->head"):
            compute_distance_to_sensors(src, info, use_picks, trans)


def _read_small_src(remove=True):
    src = read_source_spaces(fname_small)
    if remove:
        for s in src:
            s["nearest"] = None
            s["nearest_dist"] = None
            s["pinfo"] = None
    return src


def test_add_patch_info(monkeypatch):
    """Test adding patch info to source space."""
    # let's setup a small source space
    src = _read_small_src(remove=False)
    src_new = _read_small_src()

    # test that no patch info is added for small dist_limit
    add_source_space_distances(src_new, dist_limit=0.00001)
    assert all(s["nearest"] is None for s in src_new)
    assert all(s["nearest_dist"] is None for s in src_new)
    assert all(s["pinfo"] is None for s in src_new)

    # now let's use one that works (and test our warning-throwing)
    with monkeypatch.context() as m:
        m.setattr(mne.source_space._source_space, "_DIST_WARN_LIMIT", 1)
        with pytest.warns(RuntimeWarning, match="Computing distances for 258"):
            add_source_space_distances(src_new)
    _compare_source_spaces(src, src_new, "approx")

    src_nodist = src.copy()
    for s in src_nodist:
        for key in ("dist", "dist_limit"):
            s[key] = None
    add_source_space_distances(src_new, dist_limit=0)
    _compare_source_spaces(src, src_new, "approx")


# We could test "src_py" here, but we can rely on our existing tests to
# make sure the pinfo/patch_inds/nearest match
@testing.requires_testing_data
@pytest.mark.parametrize("src_kind", ["fwd", "src"])
def test_surface_source_space_doc(src_kind):
    """Test surface source space docstring."""
    # make sure we're correct about this stuff for both kinds!
    if src_kind == "fwd":
        src = mne.read_source_spaces(fname_fwd)
    else:
        assert src_kind == "src"
        src = mne.read_source_spaces(fname_src)
    for s in src:
        if src_kind == "src":  # original
            assert len(s["pinfo"]) == s["nuse"]
            assert_array_equal(s["patch_inds"], np.arange(s["nuse"]))
        else:  # pts removed
            assert len(s["pinfo"]) > s["nuse"]
        all_pinfo = np.concatenate(s["pinfo"])
        assert_array_equal(np.sort(all_pinfo), np.arange(s["np"]))
        assert len(s["patch_inds"]) == s["nuse"]
        assert len(s["vertno"]) == s["nuse"]
        assert len(s["patch_inds"]) == s["nuse"]
        for idx in (0, 42, 173):
            this_dense_vertex = s["vertno"][idx]
            # 'pinfo'
            this_vertex_represents = s["pinfo"][s["patch_inds"][idx]]
            assert len(this_vertex_represents) > 1
            # 'nearest'
            for other in this_vertex_represents:
                assert s["nearest"][other] == this_dense_vertex


@testing.requires_testing_data
def test_add_source_space_distances_limited(tmp_path):
    """Test adding distances to source space with a dist_limit."""
    src = read_source_spaces(fname)
    src_new = read_source_spaces(fname)
    del src_new[0]["dist"]
    del src_new[1]["dist"]
    n_do = 200  # limit this for speed
    src_new[0]["vertno"] = src_new[0]["vertno"][:n_do].copy()
    src_new[1]["vertno"] = src_new[1]["vertno"][:n_do].copy()
    out_name = tmp_path / "temp-src.fif"
    add_source_space_distances(src_new, dist_limit=0.007)
    write_source_spaces(out_name, src_new)
    src_new = read_source_spaces(out_name)

    for so, sn in zip(src, src_new):
        assert_array_equal(so["dist_limit"], np.array([-0.007], np.float32))
        assert_array_equal(sn["dist_limit"], np.array([0.007], np.float32))
        do = so["dist"]
        dn = sn["dist"]

        # clean out distances > 0.007 in C code
        do.data[do.data > 0.007] = 0
        do.eliminate_zeros()

        # make sure we have some comparable distances
        assert np.sum(do.data < 0.007) > 400

        # do comparison over the region computed
        d = (do - dn)[: sn["vertno"][n_do - 1]][:, : sn["vertno"][n_do - 1]]
        assert_allclose(np.zeros_like(d.data), d.data, rtol=0, atol=1e-6)


@pytest.mark.slowtest
@testing.requires_testing_data
def test_add_source_space_distances(tmp_path):
    """Test adding distances to source space."""
    src = read_source_spaces(fname)
    src_new = read_source_spaces(fname)
    del src_new[0]["dist"]
    del src_new[1]["dist"]
    n_do = 19  # limit this for speed
    src_new[0]["vertno"] = src_new[0]["vertno"][:n_do].copy()
    src_new[1]["vertno"] = src_new[1]["vertno"][:n_do].copy()
    out_name = tmp_path / "temp-src.fif"
    n_jobs = 2
    assert n_do % n_jobs != 0
    with pytest.raises(ValueError, match="non-negative"):
        add_source_space_distances(src_new, dist_limit=-1)
    add_source_space_distances(src_new, n_jobs=n_jobs)
    write_source_spaces(out_name, src_new)
    src_new = read_source_spaces(out_name)

    # iterate over both hemispheres
    for so, sn in zip(src, src_new):
        v = so["vertno"][:n_do]
        assert_array_equal(so["dist_limit"], np.array([-0.007], np.float32))
        assert_array_equal(sn["dist_limit"], np.array([np.inf], np.float32))
        do = so["dist"]
        dn = sn["dist"]

        # clean out distances > 0.007 in C code (some residual), and Python
        ds = list()
        for d in [do, dn]:
            d.data[d.data > 0.007] = 0
            d = d[v][:, v]
            d.eliminate_zeros()
            ds.append(d)

        # make sure we actually calculated some comparable distances
        assert np.sum(ds[0].data < 0.007) > 10

        # do comparison
        d = ds[0] - ds[1]
        assert_allclose(np.zeros_like(d.data), d.data, rtol=0, atol=1e-9)


@testing.requires_testing_data
@requires_mne
def test_discrete_source_space(tmp_path):
    """Test setting up (and reading/writing) discrete source spaces."""
    pytest.importorskip("nibabel")
    src = read_source_spaces(fname)
    v = src[0]["vertno"]

    # let's make a discrete version with the C code, and with ours
    temp_name = tmp_path / "temp-src.fif"
    # save
    temp_pos = tmp_path / "temp-pos.txt"
    np.savetxt(str(temp_pos), np.c_[src[0]["rr"][v], src[0]["nn"][v]])
    # let's try the spherical one (no bem or surf supplied)
    run_subprocess(
        ["mne_volume_source_space", "--meters", "--pos", temp_pos, "--src", temp_name]
    )
    src_c = read_source_spaces(temp_name)
    pos_dict = dict(rr=src[0]["rr"][v], nn=src[0]["nn"][v])
    src_new = setup_volume_source_space(pos=pos_dict)
    assert src_new.kind == "discrete"
    _compare_source_spaces(src_c, src_new, mode="approx")
    assert_allclose(src[0]["rr"][v], src_new[0]["rr"], rtol=1e-3, atol=1e-6)
    assert_allclose(src[0]["nn"][v], src_new[0]["nn"], rtol=1e-3, atol=1e-6)

    # now do writing
    write_source_spaces(temp_name, src_c, overwrite=True)
    src_c2 = read_source_spaces(temp_name)
    _compare_source_spaces(src_c, src_c2)

    # now do MRI
    with pytest.raises(ValueError, match="Cannot create interpolation"):
        setup_volume_source_space("sample", pos=pos_dict, mri=fname_mri)
    assert repr(src_new).split("~")[0] == repr(src_c).split("~")[0]
    assert " KiB" in repr(src_new)
    assert src_new.kind == "discrete"
    assert _get_src_type(src_new, None) == "discrete"

    with pytest.raises(RuntimeError, match="finite"):
        setup_volume_source_space(pos=dict(rr=[[0, 0, float("inf")]], nn=[[0, 1, 0]]))


@pytest.mark.slowtest
@testing.requires_testing_data
def test_volume_source_space(tmp_path):
    """Test setting up volume source spaces."""
    pytest.importorskip("nibabel")
    src = read_source_spaces(fname_vol)
    temp_name = tmp_path / "temp-src.fif"
    surf = read_bem_surfaces(fname_bem, s_id=FIFF.FIFFV_BEM_SURF_ID_BRAIN)
    surf["rr"] *= 1e3  # convert to mm
    bem_sol = read_bem_solution(fname_bem_3_sol)
    bem = read_bem_solution(fname_bem_sol)
    # The one in the testing dataset (uses bem as bounds)
    for this_bem, this_surf in zip(
        (bem, fname_bem, fname_bem_3, bem_sol, fname_bem_3_sol, None),
        (None, None, None, None, None, surf),
    ):
        src_new = setup_volume_source_space(
            "sample",
            pos=7.0,
            bem=this_bem,
            surface=this_surf,
            subjects_dir=subjects_dir,
        )
        write_source_spaces(temp_name, src_new, overwrite=True)
        src[0]["subject_his_id"] = "sample"  # XXX: to make comparison pass
        _compare_source_spaces(src, src_new, mode="approx")
        del src_new
        src_new = read_source_spaces(temp_name)
        _compare_source_spaces(src, src_new, mode="approx")
    with pytest.raises(OSError, match="surface file.*not exist"):
        setup_volume_source_space(
            "sample", surface="foo", mri=fname_mri, subjects_dir=subjects_dir
        )
    bem["surfs"][-1]["coord_frame"] = FIFF.FIFFV_COORD_HEAD
    with pytest.raises(ValueError, match="BEM is not in MRI coord.* got head"):
        setup_volume_source_space(
            "sample", bem=bem, mri=fname_mri, subjects_dir=subjects_dir
        )
    bem["surfs"] = bem["surfs"][:-1]  # no inner skull surf
    with pytest.raises(ValueError, match="Could not get inner skul.*from BEM"):
        setup_volume_source_space(
            "sample", bem=bem, mri=fname_mri, subjects_dir=subjects_dir
        )
    del bem
    assert repr(src) == repr(src_new)
    assert " MiB" in repr(src)
    assert src.kind == "volume"
    # Spheres
    sphere = make_sphere_model(
        r0=(0.0, 0.0, 0.0),
        head_radius=0.1,
        relative_radii=(0.9, 1.0),
        sigmas=(0.33, 1.0),
    )
    src = setup_volume_source_space(pos=10, sphere=(0.0, 0.0, 0.0, 0.09))
    src_new = setup_volume_source_space(pos=10, sphere=sphere)
    _compare_source_spaces(src, src_new, mode="exact")
    with pytest.raises(ValueError, match="sphere, if str"):
        setup_volume_source_space(sphere="foo")
    # Need a radius
    sphere = make_sphere_model(head_radius=None)
    with pytest.raises(ValueError, match="be spherical with multiple layers"):
        setup_volume_source_space(sphere=sphere)


@testing.requires_testing_data
@requires_mne
def test_other_volume_source_spaces(tmp_path):
    """Test setting up other volume source spaces."""
    # these are split off because they require the MNE tools, and
    # Travis doesn't seem to like them
    pytest.importorskip("nibabel")

    # let's try the spherical one (no bem or surf supplied)
    temp_name = tmp_path / "temp-src.fif"
    run_subprocess(
        [
            "mne_volume_source_space",
            "--grid",
            "7.0",
            "--src",
            temp_name,
            "--mri",
            fname_mri,
        ]
    )
    src = read_source_spaces(temp_name)
    sphere = (0.0, 0.0, 0.0, 0.09)
    src_new = setup_volume_source_space(
        None, pos=7.0, mri=fname_mri, subjects_dir=subjects_dir, sphere=sphere
    )
    # we use a more accurate elimination criteria, so let's fix the MNE-C
    # source space
    assert len(src_new[0]["vertno"]) == 7497
    assert len(src) == 1
    assert len(src_new) == 1
    good_mask = np.isin(src[0]["vertno"], src_new[0]["vertno"])
    src[0]["inuse"][src[0]["vertno"][~good_mask]] = 0
    assert src[0]["inuse"].sum() == 7497
    src[0]["vertno"] = src[0]["vertno"][good_mask]
    assert len(src[0]["vertno"]) == 7497
    src[0]["nuse"] = len(src[0]["vertno"])
    assert src[0]["nuse"] == 7497
    _compare_source_spaces(src_new, src, mode="approx")
    assert "volume, shape" in repr(src)
    del src
    del src_new
    pytest.raises(
        ValueError,
        setup_volume_source_space,
        "sample",
        pos=7.0,
        sphere=[1.0, 1.0],
        mri=fname_mri,  # bad sphere
        subjects_dir=subjects_dir,
    )

    # now without MRI argument, it should give an error when we try
    # to read it
    run_subprocess(["mne_volume_source_space", "--grid", "7.0", "--src", temp_name])
    pytest.raises(ValueError, read_source_spaces, temp_name)


@pytest.mark.timeout(60)  # can be slow on OSX Travis
@pytest.mark.slowtest
@testing.requires_testing_data
def test_triangle_neighbors():
    """Test efficient vertex neighboring triangles for surfaces."""
    this = read_source_spaces(fname)[0]
    this["neighbor_tri"] = [list() for _ in range(this["np"])]
    for p in range(this["ntri"]):
        verts = this["tris"][p]
        this["neighbor_tri"][verts[0]].append(p)
        this["neighbor_tri"][verts[1]].append(p)
        this["neighbor_tri"][verts[2]].append(p)
    this["neighbor_tri"] = [np.array(nb, int) for nb in this["neighbor_tri"]]

    neighbor_tri = _triangle_neighbors(this["tris"], this["np"])
    assert all(
        np.array_equal(nt1, nt2) for nt1, nt2 in zip(neighbor_tri, this["neighbor_tri"])
    )


def test_accumulate_normals():
    """Test efficient normal accumulation for surfaces."""
    # set up comparison
    n_pts = int(1.6e5)  # approx number in sample source space
    n_tris = int(3.2e5)
    # use all positive to make a worst-case for cumulative summation
    # (real "nn" vectors will have both positive and negative values)
    tris = (rng.rand(n_tris, 1) * (n_pts - 2)).astype(int)
    tris = np.c_[tris, tris + 1, tris + 2]
    tri_nn = rng.rand(n_tris, 3)
    this = dict(tris=tris, np=n_pts, ntri=n_tris, tri_nn=tri_nn)

    # cut-and-paste from original code in surface.py:
    #    Find neighboring triangles and accumulate vertex normals
    this["nn"] = np.zeros((this["np"], 3))
    for p in range(this["ntri"]):
        # vertex normals
        verts = this["tris"][p]
        this["nn"][verts, :] += this["tri_nn"][p, :]
    nn = _accumulate_normals(this["tris"], this["tri_nn"], this["np"])

    # the moment of truth (or reckoning)
    assert_allclose(nn, this["nn"], rtol=1e-7, atol=1e-7)


@pytest.mark.slowtest
@testing.requires_testing_data
def test_setup_source_space(tmp_path):
    """Test setting up ico, oct, and all source spaces."""
    pytest.importorskip("nibabel")
    fname_ico = data_path / "subjects" / "fsaverage" / "bem" / "fsaverage-ico-5-src.fif"
    # first lets test some input params
    for spacing in ("oct", "oct6e"):
        with pytest.raises(ValueError, match="subdivision must be an integer"):
            setup_source_space(
                "sample", spacing=spacing, add_dist=False, subjects_dir=subjects_dir
            )
    for spacing in ("oct0", "oct-4"):
        with pytest.raises(ValueError, match="oct subdivision must be >= 1"):
            setup_source_space(
                "sample", spacing=spacing, add_dist=False, subjects_dir=subjects_dir
            )
    with pytest.raises(ValueError, match="ico subdivision must be >= 0"):
        setup_source_space(
            "sample", spacing="ico-4", add_dist=False, subjects_dir=subjects_dir
        )
    with pytest.raises(ValueError, match="must be a string with values"):
        setup_source_space(
            "sample", spacing="7emm", add_dist=False, subjects_dir=subjects_dir
        )
    with pytest.raises(ValueError, match="must be a string with values"):
        setup_source_space(
            "sample", spacing="ally", add_dist=False, subjects_dir=subjects_dir
        )

    # ico 5 (fsaverage) - write to temp file
    src = read_source_spaces(fname_ico)
    with _record_warnings():  # sklearn equiv neighbors
        src_new = setup_source_space(
            "fsaverage", spacing="ico5", subjects_dir=subjects_dir, add_dist=False
        )
    _compare_source_spaces(src, src_new, mode="approx")
    assert repr(src).split("~")[0] == repr(src_new).split("~")[0]
    assert repr(src).count("surface (") == 2
    assert_array_equal(src[0]["vertno"], np.arange(10242))
    assert_array_equal(src[1]["vertno"], np.arange(10242))

    # oct-6 (sample) - auto filename + IO
    src = read_source_spaces(fname)
    temp_name = tmp_path / "temp-src.fif"
    with _record_warnings():  # sklearn equiv neighbors
        src_new = setup_source_space(
            "sample", spacing="oct6", subjects_dir=subjects_dir, add_dist=False
        )
        write_source_spaces(temp_name, src_new, overwrite=True)
    assert_equal(src_new[0]["nuse"], 4098)
    _compare_source_spaces(src, src_new, mode="approx", nearest=False)
    src_new = read_source_spaces(temp_name)
    _compare_source_spaces(src, src_new, mode="approx", nearest=False)

    # all source points - no file writing
    src_new = setup_source_space(
        "sample", spacing="all", subjects_dir=subjects_dir, add_dist=False
    )
    assert src_new[0]["nuse"] == len(src_new[0]["rr"])
    assert src_new[1]["nuse"] == len(src_new[1]["rr"])

    # dense source space to hit surf['inuse'] lines of _create_surf_spacing
    pytest.raises(
        RuntimeError,
        setup_source_space,
        "sample",
        spacing="ico6",
        subjects_dir=subjects_dir,
        add_dist=False,
    )


@testing.requires_testing_data
@requires_mne
@pytest.mark.slowtest
@pytest.mark.timeout(60)
@pytest.mark.parametrize("spacing", [2, 7])
def test_setup_source_space_spacing(tmp_path, spacing, monkeypatch):
    """Test setting up surface source spaces using a given spacing."""
    pytest.importorskip("nibabel")
    copytree(subjects_dir / "sample", tmp_path / "sample")
    args = [] if spacing == 7 else ["--spacing", str(spacing)]
    monkeypatch.setenv("SUBJECTS_DIR", str(tmp_path))
    monkeypatch.setenv("SUBJECT", "sample")
    run_subprocess(["mne_setup_source_space"] + args)
    src = read_source_spaces(tmp_path / "sample" / "bem" / f"sample-{spacing}-src.fif")
    # No need to pass subjects_dir here because we've setenv'ed it
    src_new = setup_source_space("sample", spacing=spacing, add_dist=False)
    _compare_source_spaces(src, src_new, mode="approx", nearest=True)
    # Degenerate conditions
    with pytest.raises(TypeError, match="spacing must be.*got.*float.*"):
        setup_source_space("sample", 7.0)
    with pytest.raises(ValueError, match="spacing must be >= 2, got 1"):
        setup_source_space("sample", 1)


@testing.requires_testing_data
def test_read_source_spaces():
    """Test reading of source space meshes."""
    src = read_source_spaces(fname, patch_stats=True)

    # 3D source space
    lh_points = src[0]["rr"]
    lh_faces = src[0]["tris"]
    lh_use_faces = src[0]["use_tris"]
    rh_points = src[1]["rr"]
    rh_faces = src[1]["tris"]
    rh_use_faces = src[1]["use_tris"]
    assert lh_faces.min() == 0
    assert lh_faces.max() == lh_points.shape[0] - 1
    assert lh_use_faces.min() >= 0
    assert lh_use_faces.max() <= lh_points.shape[0] - 1
    assert rh_faces.min() == 0
    assert rh_faces.max() == rh_points.shape[0] - 1
    assert rh_use_faces.min() >= 0
    assert rh_use_faces.max() <= rh_points.shape[0] - 1


@pytest.mark.slowtest
@testing.requires_testing_data
def test_write_source_space(tmp_path):
    """Test reading and writing of source spaces."""
    src0 = read_source_spaces(fname, patch_stats=False)
    temp_fname = tmp_path / "tmp-src.fif"
    write_source_spaces(temp_fname, src0)
    src1 = read_source_spaces(temp_fname, patch_stats=False)
    _compare_source_spaces(src0, src1)

    # test warnings on bad filenames
    src_badname = tmp_path / "test-bad-name.fif.gz"
    with pytest.warns(RuntimeWarning, match="-src.fif"):
        write_source_spaces(src_badname, src0)
    with pytest.warns(RuntimeWarning, match="-src.fif"):
        read_source_spaces(src_badname)


@testing.requires_testing_data
@pytest.mark.parametrize("pass_ids", (True, False))
def test_source_space_from_label(tmp_path, pass_ids):
    """Test generating a source space from volume label."""
    pytest.importorskip("nibabel")
    aseg_short = "aseg.mgz"
    atlas_ids, _ = read_freesurfer_lut()
    volume_label = "Left-Cerebellum-Cortex"

    # Test pos as dict
    pos = dict()
    with pytest.raises(ValueError, match="mri must be None if pos is a dict"):
        setup_volume_source_space(
            "sample",
            pos=pos,
            volume_label=volume_label,
            mri=aseg_short,
            subjects_dir=subjects_dir,
        )

    # Test T1.mgz provided
    with pytest.raises(RuntimeError, match=r"Must use a \*aseg.mgz file"):
        setup_volume_source_space(
            "sample", mri="T1.mgz", volume_label=volume_label, subjects_dir=subjects_dir
        )

    # Test invalid volume label
    mri = aseg_short
    with pytest.raises(ValueError, match="'Left-Cerebral' not found.*Did you"):
        setup_volume_source_space(
            "sample", volume_label="Left-Cerebral", mri=mri, subjects_dir=subjects_dir
        )

    # These should be equivalent
    if pass_ids:
        use_volume_label = {volume_label: atlas_ids[volume_label]}
    else:
        use_volume_label = volume_label

    # ensure it works even when not provided (detect that it should be aseg)
    src = setup_volume_source_space(
        "sample",
        volume_label=use_volume_label,
        add_interpolator=False,
        subjects_dir=subjects_dir,
    )
    assert_equal(volume_label, src[0]["seg_name"])
    assert src[0]["nuse"] == 404  # for our given pos and label

    # test reading and writing
    out_name = tmp_path / "temp-src.fif"
    write_source_spaces(out_name, src)
    src_from_file = read_source_spaces(out_name)
    _compare_source_spaces(src, src_from_file, mode="approx")


@pytest.mark.slowtest
@testing.requires_testing_data
def test_source_space_exclusive_complete(src_volume_labels):
    """Test that we produce exclusive and complete labels."""
    # these two are neighbors and are quite large, so let's use them to
    # ensure no overlaps
    pytest.importorskip("nibabel")
    src, volume_labels, _ = src_volume_labels
    ii = volume_labels.index("Left-Cerebral-White-Matter")
    jj = volume_labels.index("Left-Cerebral-Cortex")
    assert src[ii]["nuse"] == 755  # 2034 with pos=5, was 2832
    assert src[jj]["nuse"] == 616  # 1520 with pos=5, was 2623
    src_full = read_source_spaces(fname_vol)
    # This implicitly checks for overlap because np.sort would preserve
    # duplicates, and it checks for completeness because the sets should match
    assert_array_equal(
        src_full[0]["vertno"], np.sort(np.concatenate([s["vertno"] for s in src]))
    )
    for si, s in enumerate(src):
        assert_allclose(src_full[0]["rr"], s["rr"], atol=1e-6)
    # also check single_volume=True -- should be the same result
    with (
        _record_warnings(),
        pytest.warns(RuntimeWarning, match="Found no usable.*Left-vessel.*"),
    ):
        src_single = setup_volume_source_space(
            src[0]["subject_his_id"],
            7.0,
            "aseg.mgz",
            bem=fname_bem,
            volume_label=volume_labels,
            single_volume=True,
            add_interpolator=False,
            subjects_dir=subjects_dir,
        )
    assert len(src_single) == 1
    assert "Unknown+Left-Cerebral-White-Matter+Left-" in repr(src_single)
    assert_array_equal(src_full[0]["vertno"], src_single[0]["vertno"])


@pytest.mark.timeout(60)  # ~24 s on Travis
@pytest.mark.slowtest
@testing.requires_testing_data
def test_read_volume_from_src():
    """Test reading volumes from a mixed source space."""
    pytest.importorskip("nibabel")
    labels_vol = ["Left-Amygdala", "Brain-Stem", "Right-Amygdala"]

    src = read_source_spaces(fname)

    # Setup a volume source space
    vol_src = setup_volume_source_space(
        "sample",
        mri=aseg_fname,
        pos=5.0,
        bem=fname_bem,
        volume_label=labels_vol,
        subjects_dir=subjects_dir,
    )
    # Generate the mixed source space, testing some list methods
    assert src.kind == "surface"
    assert vol_src.kind == "volume"
    src += vol_src
    assert src.kind == "mixed"
    assert vol_src.kind == "volume"
    assert src[:2].kind == "surface"
    assert src[2:].kind == "volume"
    assert src[:].kind == "mixed"
    with pytest.raises(RuntimeError, match="Invalid source space"):
        src[::2]

    volume_src = get_volume_labels_from_src(src, "sample", subjects_dir)
    volume_label = volume_src[0].name
    volume_label = "Left-" + volume_label.replace("-lh", "")

    # Test
    assert_equal(volume_label, src[2]["seg_name"])

    assert_equal(src[2]["type"], "vol")


@testing.requires_testing_data
def test_combine_source_spaces(tmp_path):
    """Test combining source spaces."""
    nib = pytest.importorskip("nibabel")
    rng = np.random.RandomState(2)
    volume_labels = ["Brain-Stem", "Right-Hippocampus"]  # two fairly large

    # create a sparse surface source space to ensure all get mapped
    # when mri_resolution=False
    srf = setup_source_space(
        "sample", "oct3", add_dist=False, subjects_dir=subjects_dir
    )

    # setup 2 volume source spaces
    vol = setup_volume_source_space(
        "sample",
        subjects_dir=subjects_dir,
        volume_label=volume_labels[0],
        mri=aseg_fname,
        add_interpolator=False,
    )

    # setup a discrete source space
    rr = rng.randint(0, 11, (20, 3)) * 5e-3
    nn = np.zeros(rr.shape)
    nn[:, -1] = 1
    pos = {"rr": rr, "nn": nn}
    disc = setup_volume_source_space(
        "sample", subjects_dir=subjects_dir, pos=pos, verbose="error"
    )

    # combine source spaces
    assert srf.kind == "surface"
    assert vol.kind == "volume"
    assert disc.kind == "discrete"
    src = srf + vol + disc
    assert src.kind == "mixed"
    assert srf.kind == "surface"
    assert vol.kind == "volume"
    assert disc.kind == "discrete"

    # test addition of source spaces
    assert len(src) == 4

    # test reading and writing
    src_out_name = tmp_path / "temp-src.fif"
    src.save(src_out_name)
    src_from_file = read_source_spaces(src_out_name)
    _compare_source_spaces(src, src_from_file, mode="approx")
    assert repr(src).split("~")[0] == repr(src_from_file).split("~")[0]
    assert_equal(src.kind, "mixed")

    # test that all source spaces are in MRI coordinates
    coord_frames = np.array([s["coord_frame"] for s in src])
    assert (coord_frames == FIFF.FIFFV_COORD_MRI).all()

    # test errors for export_volume
    image_fname = tmp_path / "temp-image.mgz"

    # source spaces with no volume
    with pytest.raises(ValueError, match="at least one volume"):
        srf.export_volume(image_fname, verbose="error")

    # unrecognized source type
    disc2 = disc.copy()
    disc2[0]["type"] = "kitty"
    with pytest.raises(ValueError, match="Invalid value"):
        src + disc2
    del disc2

    # unrecognized file type
    bad_image_fname = tmp_path / "temp-image.png"
    # vertices outside vol space warning
    pytest.raises(ValueError, src.export_volume, bad_image_fname, verbose="error")

    # mixed coordinate frames
    disc3 = disc.copy()
    disc3[0]["coord_frame"] = 10
    src_mixed_coord = src + disc3
    with pytest.raises(ValueError, match="must be in head coordinates"):
        src_mixed_coord.export_volume(image_fname, verbose="error")

    # now actually write it
    fname_img = tmp_path / "img.nii"
    for mri_resolution in (False, "sparse", True):
        for src, up in ((vol, 705), (srf + vol, 27272), (disc + vol, 705)):
            src.export_volume(
                fname_img, use_lut=False, mri_resolution=mri_resolution, overwrite=True
            )
            img_data = _get_img_fdata(nib.load(str(fname_img)))
            n_src = img_data.astype(bool).sum()
            n_want = sum(s["nuse"] for s in src)
            if mri_resolution is True:
                n_want += up
            assert n_src == n_want, src

    # gh-8004
    temp_aseg = tmp_path / "aseg.mgz"
    aseg_img = nib.load(aseg_fname)
    aseg_affine = aseg_img.affine
    aseg_affine[:3, :3] *= 0.7
    new_aseg = nib.MGHImage(aseg_img.dataobj, aseg_affine)
    nib.save(new_aseg, str(temp_aseg))
    lh_cereb = mne.setup_volume_source_space(
        "sample",
        mri=temp_aseg,
        volume_label="Left-Cerebellum-Cortex",
        add_interpolator=False,
        subjects_dir=subjects_dir,
    )
    src = srf + lh_cereb
    with pytest.warns(RuntimeWarning, match="2 surf vertices lay outside"):
        src.export_volume(image_fname, mri_resolution="sparse", overwrite=True)

    # gh-12495
    image_fname = tmp_path / "temp-image.nii"
    lh_cereb = mne.setup_volume_source_space(
        "sample",
        mri=aseg_fname,
        volume_label="Left-Cerebellum-Cortex",
        add_interpolator=False,
        subjects_dir=subjects_dir,
    )
    lh_cereb.export_volume(image_fname, mri_resolution=True)
    aseg = nib.load(str(aseg_fname))
    out = nib.load(str(image_fname))
    assert_allclose(out.affine, aseg.affine)
    src_data = _get_img_fdata(out).astype(bool)
    aseg_data = _get_img_fdata(aseg) == 8
    n_src = src_data.sum()
    n_aseg = aseg_data.sum()
    assert n_aseg == n_src
    n_overlap = (src_data & aseg_data).sum()
    assert n_src == n_overlap


@testing.requires_testing_data
def test_morph_source_spaces():
    """Test morphing of source spaces."""
    pytest.importorskip("nibabel")
    src = read_source_spaces(fname_fs)
    src_morph = read_source_spaces(fname_morph)
    src_morph_py = morph_source_spaces(src, "sample", subjects_dir=subjects_dir)
    _compare_source_spaces(src_morph, src_morph_py, mode="approx")


@pytest.mark.timeout(60)  # can be slow on OSX Travis
@pytest.mark.slowtest
@testing.requires_testing_data
def test_morphed_source_space_return():
    """Test returning a morphed source space to the original subject."""
    # let's create some random data on fsaverage
    pytest.importorskip("nibabel")
    data = rng.randn(20484, 1)
    tmin, tstep = 0, 1.0
    src_fs = read_source_spaces(fname_fs)
    stc_fs = SourceEstimate(
        data, [s["vertno"] for s in src_fs], tmin, tstep, "fsaverage"
    )
    n_verts_fs = sum(len(s["vertno"]) for s in src_fs)

    # Create our morph source space
    src_morph = morph_source_spaces(src_fs, "sample", subjects_dir=subjects_dir)
    n_verts_sample = sum(len(s["vertno"]) for s in src_morph)
    assert n_verts_fs == n_verts_sample

    # Morph the data over using standard methods
    stc_morph = compute_source_morph(
        src_fs,
        "fsaverage",
        "sample",
        spacing=[s["vertno"] for s in src_morph],
        smooth=1,
        subjects_dir=subjects_dir,
        warn=False,
    ).apply(stc_fs)
    assert stc_morph.data.shape[0] == n_verts_sample

    # We can now pretend like this was real data we got e.g. from an inverse.
    # To be complete, let's remove some vertices
    keeps = [
        np.sort(rng.permutation(np.arange(len(v)))[: len(v) - 10])
        for v in stc_morph.vertices
    ]
    stc_morph = SourceEstimate(
        np.concatenate([stc_morph.lh_data[keeps[0]], stc_morph.rh_data[keeps[1]]]),
        [v[k] for v, k in zip(stc_morph.vertices, keeps)],
        tmin,
        tstep,
        "sample",
    )

    # Return it to the original subject
    stc_morph_return = stc_morph.to_original_src(src_fs, subjects_dir=subjects_dir)

    # This should fail (has too many verts in SourceMorph)
    with pytest.warns(RuntimeWarning, match="vertices not included"):
        morph = compute_source_morph(
            src_morph,
            subject_from="sample",
            spacing=stc_morph_return.vertices,
            smooth=1,
            subjects_dir=subjects_dir,
        )
    with pytest.raises(ValueError, match="vertices do not match"):
        morph.apply(stc_morph)

    # Compare to the original data
    with pytest.warns(RuntimeWarning, match="vertices not included"):
        stc_morph_morph = compute_source_morph(
            src=stc_morph,
            subject_from="sample",
            spacing=stc_morph_return.vertices,
            smooth=1,
            subjects_dir=subjects_dir,
        ).apply(stc_morph)

    assert_equal(stc_morph_return.subject, stc_morph_morph.subject)
    for ii in range(2):
        assert_array_equal(stc_morph_return.vertices[ii], stc_morph_morph.vertices[ii])
    # These will not match perfectly because morphing pushes data around
    corr = np.corrcoef(stc_morph_return.data[:, 0], stc_morph_morph.data[:, 0])[0, 1]
    assert corr > 0.99, corr

    # Explicitly test having two vertices map to the same target vertex. We
    # simulate this by having two vertices be at the same position.
    src_fs2 = src_fs.copy()
    vert1, vert2 = src_fs2[0]["vertno"][:2]
    src_fs2[0]["rr"][vert1] = src_fs2[0]["rr"][vert2]
    stc_morph_return = stc_morph.to_original_src(src_fs2, subjects_dir=subjects_dir)

    # test to_original_src method result equality
    for ii in range(2):
        assert_array_equal(stc_morph_return.vertices[ii], stc_morph_morph.vertices[ii])

    # These will not match perfectly because morphing pushes data around
    corr = np.corrcoef(stc_morph_return.data[:, 0], stc_morph_morph.data[:, 0])[0, 1]
    assert corr > 0.99, corr

    # Degenerate cases
    stc_morph.subject = None  # no .subject provided
    pytest.raises(
        ValueError,
        stc_morph.to_original_src,
        src_fs,
        subject_orig="fsaverage",
        subjects_dir=subjects_dir,
    )
    stc_morph.subject = "sample"
    del src_fs[0]["subject_his_id"]  # no name in src_fsaverage
    pytest.raises(
        ValueError, stc_morph.to_original_src, src_fs, subjects_dir=subjects_dir
    )
    src_fs[0]["subject_his_id"] = "fsaverage"  # name mismatch
    pytest.raises(
        ValueError,
        stc_morph.to_original_src,
        src_fs,
        subject_orig="foo",
        subjects_dir=subjects_dir,
    )
    src_fs[0]["subject_his_id"] = "sample"
    src = read_source_spaces(fname)  # wrong source space
    pytest.raises(
        RuntimeError, stc_morph.to_original_src, src, subjects_dir=subjects_dir
    )


@testing.requires_testing_data
@pytest.mark.parametrize(
    "src, n, nv",
    [
        (fname_fs, 2, 10242),
        (fname_src, 2, 258),
        (fname_vol, 0, 0),
    ],
)
def test_get_decimated_surfaces(src, n, nv):
    """Test get_decimated_surfaces."""
    surfaces = get_decimated_surfaces(src)
    assert len(surfaces) == n
    if n == 0:
        return
    for s in surfaces:
        assert set(s) == {"rr", "tris"}
        assert len(s["rr"]) == nv
        assert_array_equal(np.unique(s["tris"]), np.arange(nv))


# The following code was used to generate small-src.fif.gz.
# Unfortunately the C code bombs when trying to add source space distances,
# possibly due to incomplete "faking" of a smaller surface on our part here.
"""

import os
import numpy as np
import mne

data_path = mne.datasets.sample.data_path()
src = mne.setup_source_space('sample', fname=None, spacing='oct5')
hemis = ['lh', 'rh']
fnames = [
    str(data_path) + f'/subjects/sample/surf/{h}.decimated' for h in hemis]

vs = list()
for s, fname in zip(src, fnames):
    coords = s['rr'][s['vertno']]
    vs.append(s['vertno'])
    idx = -1 * np.ones(len(s['rr']))
    idx[s['vertno']] = np.arange(s['nuse'])
    faces = s['use_tris']
    faces = idx[faces]
    mne.write_surface(fname, coords, faces)

# we need to move sphere surfaces
spheres = [
    str(data_path) + f'/subjects/sample/surf/{h}.sphere' for h in hemis]
for s in spheres:
    os.rename(s, s + '.bak')
try:
    for s, v in zip(spheres, vs):
        coords, faces = mne.read_surface(s + '.bak')
        coords = coords[v]
        mne.write_surface(s, coords, faces)
    src = mne.setup_source_space('sample', fname=None, spacing='oct4',
                                 surface='decimated')
finally:
    for s in spheres:
        os.rename(s + '.bak', s)

fname = 'small-src.fif'
fname_gz = fname + '.gz'
mne.write_source_spaces(fname, src)
mne.utils.run_subprocess(['mne_add_patch_info', '--src', fname,
                          '--srcp', fname])
mne.write_source_spaces(fname_gz, mne.read_source_spaces(fname))
"""