1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from pathlib import Path
from shutil import copytree
import numpy as np
import pytest
from numpy.testing import (
assert_allclose,
assert_array_equal,
assert_array_less,
assert_equal,
)
import mne
from mne import (
SourceEstimate,
add_source_space_distances,
compute_source_morph,
get_volume_labels_from_src,
make_sphere_model,
morph_source_spaces,
pick_types,
read_bem_solution,
read_bem_surfaces,
read_freesurfer_lut,
read_source_spaces,
read_trans,
setup_source_space,
setup_volume_source_space,
write_source_spaces,
)
from mne._fiff.constants import FIFF
from mne._fiff.pick import _picks_to_idx
from mne.datasets import testing
from mne.fixes import _get_img_fdata
from mne.source_estimate import _get_src_type
from mne.source_space import (
compute_distance_to_sensors,
get_decimated_surfaces,
)
from mne.source_space._source_space import _compare_source_spaces
from mne.surface import _accumulate_normals, _triangle_neighbors
from mne.utils import _record_warnings, requires_mne, run_subprocess
data_path = testing.data_path(download=False)
subjects_dir = data_path / "subjects"
fname_mri = data_path / "subjects" / "sample" / "mri" / "T1.mgz"
aseg_fname = data_path / "subjects" / "sample" / "mri" / "aseg.mgz"
fname = subjects_dir / "sample" / "bem" / "sample-oct-6-src.fif"
fname_vol = subjects_dir / "sample" / "bem" / "sample-volume-7mm-src.fif"
fname_bem = data_path / "subjects" / "sample" / "bem" / "sample-1280-bem.fif"
fname_bem_sol = data_path / "subjects" / "sample" / "bem" / "sample-1280-bem-sol.fif"
fname_bem_3 = (
data_path / "subjects" / "sample" / "bem" / "sample-1280-1280-1280-bem.fif"
)
fname_bem_3_sol = (
data_path / "subjects" / "sample" / "bem" / "sample-1280-1280-1280-bem-sol.fif"
)
fname_fs = subjects_dir / "fsaverage" / "bem" / "fsaverage-ico-5-src.fif"
fname_morph = subjects_dir / "sample" / "bem" / "sample-fsaverage-ico-5-src.fif"
fname_src = data_path / "subjects" / "sample" / "bem" / "sample-oct-4-src.fif"
fname_fwd = data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-eeg-oct-4-fwd.fif"
trans_fname = data_path / "MEG" / "sample" / "sample_audvis_trunc-trans.fif"
base_dir = Path(__file__).parents[2] / "io" / "tests" / "data"
fname_small = base_dir / "small-src.fif.gz"
fname_ave = base_dir / "test-ave.fif"
rng = np.random.RandomState(0)
@testing.requires_testing_data
@pytest.mark.parametrize(
"picks, limits",
[
("meg", (0.02, 0.250)),
(None, (0.01, 0.250)), # should be same as EEG
("eeg", (0.01, 0.250)),
],
)
def test_compute_distance_to_sensors(picks, limits):
"""Test computation of distances between vertices and sensors."""
src = read_source_spaces(fname_src)
fwd = mne.read_forward_solution(fname_fwd)
info = fwd["info"]
trans = read_trans(trans_fname)
# trans = fwd['info']['mri_head_t']
if isinstance(picks, str):
kwargs = dict()
kwargs[picks] = True
if picks == "eeg":
info["dev_head_t"] = None # should not break anything
use_picks = pick_types(info, **kwargs, exclude=())
else:
use_picks = picks
n_picks = len(_picks_to_idx(info, use_picks, "data", exclude=()))
# Make sure same vertices are used in src and fwd
src[0]["inuse"] = fwd["src"][0]["inuse"]
src[1]["inuse"] = fwd["src"][1]["inuse"]
src[0]["nuse"] = fwd["src"][0]["nuse"]
src[1]["nuse"] = fwd["src"][1]["nuse"]
n_verts = src[0]["nuse"] + src[1]["nuse"]
# minimum distances between vertices and sensors
depths = compute_distance_to_sensors(src, info=info, picks=use_picks, trans=trans)
assert depths.shape == (n_verts, n_picks)
assert limits[0] * 5 > depths.min() # meaningful choice of limits
assert_array_less(limits[0], depths)
assert_array_less(depths, limits[1])
# If source space from Forward Solution and trans=None (i.e. identity) then
# depths2 should be the same as depth.
depths2 = compute_distance_to_sensors(
src=fwd["src"], info=info, picks=use_picks, trans=None
)
assert_allclose(depths, depths2, rtol=1e-5)
if picks != "eeg":
# this should break things
info["dev_head_t"] = None
with pytest.raises(ValueError, match="Transform between meg<->head"):
compute_distance_to_sensors(src, info, use_picks, trans)
def _read_small_src(remove=True):
src = read_source_spaces(fname_small)
if remove:
for s in src:
s["nearest"] = None
s["nearest_dist"] = None
s["pinfo"] = None
return src
def test_add_patch_info(monkeypatch):
"""Test adding patch info to source space."""
# let's setup a small source space
src = _read_small_src(remove=False)
src_new = _read_small_src()
# test that no patch info is added for small dist_limit
add_source_space_distances(src_new, dist_limit=0.00001)
assert all(s["nearest"] is None for s in src_new)
assert all(s["nearest_dist"] is None for s in src_new)
assert all(s["pinfo"] is None for s in src_new)
# now let's use one that works (and test our warning-throwing)
with monkeypatch.context() as m:
m.setattr(mne.source_space._source_space, "_DIST_WARN_LIMIT", 1)
with pytest.warns(RuntimeWarning, match="Computing distances for 258"):
add_source_space_distances(src_new)
_compare_source_spaces(src, src_new, "approx")
src_nodist = src.copy()
for s in src_nodist:
for key in ("dist", "dist_limit"):
s[key] = None
add_source_space_distances(src_new, dist_limit=0)
_compare_source_spaces(src, src_new, "approx")
# We could test "src_py" here, but we can rely on our existing tests to
# make sure the pinfo/patch_inds/nearest match
@testing.requires_testing_data
@pytest.mark.parametrize("src_kind", ["fwd", "src"])
def test_surface_source_space_doc(src_kind):
"""Test surface source space docstring."""
# make sure we're correct about this stuff for both kinds!
if src_kind == "fwd":
src = mne.read_source_spaces(fname_fwd)
else:
assert src_kind == "src"
src = mne.read_source_spaces(fname_src)
for s in src:
if src_kind == "src": # original
assert len(s["pinfo"]) == s["nuse"]
assert_array_equal(s["patch_inds"], np.arange(s["nuse"]))
else: # pts removed
assert len(s["pinfo"]) > s["nuse"]
all_pinfo = np.concatenate(s["pinfo"])
assert_array_equal(np.sort(all_pinfo), np.arange(s["np"]))
assert len(s["patch_inds"]) == s["nuse"]
assert len(s["vertno"]) == s["nuse"]
assert len(s["patch_inds"]) == s["nuse"]
for idx in (0, 42, 173):
this_dense_vertex = s["vertno"][idx]
# 'pinfo'
this_vertex_represents = s["pinfo"][s["patch_inds"][idx]]
assert len(this_vertex_represents) > 1
# 'nearest'
for other in this_vertex_represents:
assert s["nearest"][other] == this_dense_vertex
@testing.requires_testing_data
def test_add_source_space_distances_limited(tmp_path):
"""Test adding distances to source space with a dist_limit."""
src = read_source_spaces(fname)
src_new = read_source_spaces(fname)
del src_new[0]["dist"]
del src_new[1]["dist"]
n_do = 200 # limit this for speed
src_new[0]["vertno"] = src_new[0]["vertno"][:n_do].copy()
src_new[1]["vertno"] = src_new[1]["vertno"][:n_do].copy()
out_name = tmp_path / "temp-src.fif"
add_source_space_distances(src_new, dist_limit=0.007)
write_source_spaces(out_name, src_new)
src_new = read_source_spaces(out_name)
for so, sn in zip(src, src_new):
assert_array_equal(so["dist_limit"], np.array([-0.007], np.float32))
assert_array_equal(sn["dist_limit"], np.array([0.007], np.float32))
do = so["dist"]
dn = sn["dist"]
# clean out distances > 0.007 in C code
do.data[do.data > 0.007] = 0
do.eliminate_zeros()
# make sure we have some comparable distances
assert np.sum(do.data < 0.007) > 400
# do comparison over the region computed
d = (do - dn)[: sn["vertno"][n_do - 1]][:, : sn["vertno"][n_do - 1]]
assert_allclose(np.zeros_like(d.data), d.data, rtol=0, atol=1e-6)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_add_source_space_distances(tmp_path):
"""Test adding distances to source space."""
src = read_source_spaces(fname)
src_new = read_source_spaces(fname)
del src_new[0]["dist"]
del src_new[1]["dist"]
n_do = 19 # limit this for speed
src_new[0]["vertno"] = src_new[0]["vertno"][:n_do].copy()
src_new[1]["vertno"] = src_new[1]["vertno"][:n_do].copy()
out_name = tmp_path / "temp-src.fif"
n_jobs = 2
assert n_do % n_jobs != 0
with pytest.raises(ValueError, match="non-negative"):
add_source_space_distances(src_new, dist_limit=-1)
add_source_space_distances(src_new, n_jobs=n_jobs)
write_source_spaces(out_name, src_new)
src_new = read_source_spaces(out_name)
# iterate over both hemispheres
for so, sn in zip(src, src_new):
v = so["vertno"][:n_do]
assert_array_equal(so["dist_limit"], np.array([-0.007], np.float32))
assert_array_equal(sn["dist_limit"], np.array([np.inf], np.float32))
do = so["dist"]
dn = sn["dist"]
# clean out distances > 0.007 in C code (some residual), and Python
ds = list()
for d in [do, dn]:
d.data[d.data > 0.007] = 0
d = d[v][:, v]
d.eliminate_zeros()
ds.append(d)
# make sure we actually calculated some comparable distances
assert np.sum(ds[0].data < 0.007) > 10
# do comparison
d = ds[0] - ds[1]
assert_allclose(np.zeros_like(d.data), d.data, rtol=0, atol=1e-9)
@testing.requires_testing_data
@requires_mne
def test_discrete_source_space(tmp_path):
"""Test setting up (and reading/writing) discrete source spaces."""
pytest.importorskip("nibabel")
src = read_source_spaces(fname)
v = src[0]["vertno"]
# let's make a discrete version with the C code, and with ours
temp_name = tmp_path / "temp-src.fif"
# save
temp_pos = tmp_path / "temp-pos.txt"
np.savetxt(str(temp_pos), np.c_[src[0]["rr"][v], src[0]["nn"][v]])
# let's try the spherical one (no bem or surf supplied)
run_subprocess(
["mne_volume_source_space", "--meters", "--pos", temp_pos, "--src", temp_name]
)
src_c = read_source_spaces(temp_name)
pos_dict = dict(rr=src[0]["rr"][v], nn=src[0]["nn"][v])
src_new = setup_volume_source_space(pos=pos_dict)
assert src_new.kind == "discrete"
_compare_source_spaces(src_c, src_new, mode="approx")
assert_allclose(src[0]["rr"][v], src_new[0]["rr"], rtol=1e-3, atol=1e-6)
assert_allclose(src[0]["nn"][v], src_new[0]["nn"], rtol=1e-3, atol=1e-6)
# now do writing
write_source_spaces(temp_name, src_c, overwrite=True)
src_c2 = read_source_spaces(temp_name)
_compare_source_spaces(src_c, src_c2)
# now do MRI
with pytest.raises(ValueError, match="Cannot create interpolation"):
setup_volume_source_space("sample", pos=pos_dict, mri=fname_mri)
assert repr(src_new).split("~")[0] == repr(src_c).split("~")[0]
assert " KiB" in repr(src_new)
assert src_new.kind == "discrete"
assert _get_src_type(src_new, None) == "discrete"
with pytest.raises(RuntimeError, match="finite"):
setup_volume_source_space(pos=dict(rr=[[0, 0, float("inf")]], nn=[[0, 1, 0]]))
@pytest.mark.slowtest
@testing.requires_testing_data
def test_volume_source_space(tmp_path):
"""Test setting up volume source spaces."""
pytest.importorskip("nibabel")
src = read_source_spaces(fname_vol)
temp_name = tmp_path / "temp-src.fif"
surf = read_bem_surfaces(fname_bem, s_id=FIFF.FIFFV_BEM_SURF_ID_BRAIN)
surf["rr"] *= 1e3 # convert to mm
bem_sol = read_bem_solution(fname_bem_3_sol)
bem = read_bem_solution(fname_bem_sol)
# The one in the testing dataset (uses bem as bounds)
for this_bem, this_surf in zip(
(bem, fname_bem, fname_bem_3, bem_sol, fname_bem_3_sol, None),
(None, None, None, None, None, surf),
):
src_new = setup_volume_source_space(
"sample",
pos=7.0,
bem=this_bem,
surface=this_surf,
subjects_dir=subjects_dir,
)
write_source_spaces(temp_name, src_new, overwrite=True)
src[0]["subject_his_id"] = "sample" # XXX: to make comparison pass
_compare_source_spaces(src, src_new, mode="approx")
del src_new
src_new = read_source_spaces(temp_name)
_compare_source_spaces(src, src_new, mode="approx")
with pytest.raises(OSError, match="surface file.*not exist"):
setup_volume_source_space(
"sample", surface="foo", mri=fname_mri, subjects_dir=subjects_dir
)
bem["surfs"][-1]["coord_frame"] = FIFF.FIFFV_COORD_HEAD
with pytest.raises(ValueError, match="BEM is not in MRI coord.* got head"):
setup_volume_source_space(
"sample", bem=bem, mri=fname_mri, subjects_dir=subjects_dir
)
bem["surfs"] = bem["surfs"][:-1] # no inner skull surf
with pytest.raises(ValueError, match="Could not get inner skul.*from BEM"):
setup_volume_source_space(
"sample", bem=bem, mri=fname_mri, subjects_dir=subjects_dir
)
del bem
assert repr(src) == repr(src_new)
assert " MiB" in repr(src)
assert src.kind == "volume"
# Spheres
sphere = make_sphere_model(
r0=(0.0, 0.0, 0.0),
head_radius=0.1,
relative_radii=(0.9, 1.0),
sigmas=(0.33, 1.0),
)
src = setup_volume_source_space(pos=10, sphere=(0.0, 0.0, 0.0, 0.09))
src_new = setup_volume_source_space(pos=10, sphere=sphere)
_compare_source_spaces(src, src_new, mode="exact")
with pytest.raises(ValueError, match="sphere, if str"):
setup_volume_source_space(sphere="foo")
# Need a radius
sphere = make_sphere_model(head_radius=None)
with pytest.raises(ValueError, match="be spherical with multiple layers"):
setup_volume_source_space(sphere=sphere)
@testing.requires_testing_data
@requires_mne
def test_other_volume_source_spaces(tmp_path):
"""Test setting up other volume source spaces."""
# these are split off because they require the MNE tools, and
# Travis doesn't seem to like them
pytest.importorskip("nibabel")
# let's try the spherical one (no bem or surf supplied)
temp_name = tmp_path / "temp-src.fif"
run_subprocess(
[
"mne_volume_source_space",
"--grid",
"7.0",
"--src",
temp_name,
"--mri",
fname_mri,
]
)
src = read_source_spaces(temp_name)
sphere = (0.0, 0.0, 0.0, 0.09)
src_new = setup_volume_source_space(
None, pos=7.0, mri=fname_mri, subjects_dir=subjects_dir, sphere=sphere
)
# we use a more accurate elimination criteria, so let's fix the MNE-C
# source space
assert len(src_new[0]["vertno"]) == 7497
assert len(src) == 1
assert len(src_new) == 1
good_mask = np.isin(src[0]["vertno"], src_new[0]["vertno"])
src[0]["inuse"][src[0]["vertno"][~good_mask]] = 0
assert src[0]["inuse"].sum() == 7497
src[0]["vertno"] = src[0]["vertno"][good_mask]
assert len(src[0]["vertno"]) == 7497
src[0]["nuse"] = len(src[0]["vertno"])
assert src[0]["nuse"] == 7497
_compare_source_spaces(src_new, src, mode="approx")
assert "volume, shape" in repr(src)
del src
del src_new
pytest.raises(
ValueError,
setup_volume_source_space,
"sample",
pos=7.0,
sphere=[1.0, 1.0],
mri=fname_mri, # bad sphere
subjects_dir=subjects_dir,
)
# now without MRI argument, it should give an error when we try
# to read it
run_subprocess(["mne_volume_source_space", "--grid", "7.0", "--src", temp_name])
pytest.raises(ValueError, read_source_spaces, temp_name)
@pytest.mark.timeout(60) # can be slow on OSX Travis
@pytest.mark.slowtest
@testing.requires_testing_data
def test_triangle_neighbors():
"""Test efficient vertex neighboring triangles for surfaces."""
this = read_source_spaces(fname)[0]
this["neighbor_tri"] = [list() for _ in range(this["np"])]
for p in range(this["ntri"]):
verts = this["tris"][p]
this["neighbor_tri"][verts[0]].append(p)
this["neighbor_tri"][verts[1]].append(p)
this["neighbor_tri"][verts[2]].append(p)
this["neighbor_tri"] = [np.array(nb, int) for nb in this["neighbor_tri"]]
neighbor_tri = _triangle_neighbors(this["tris"], this["np"])
assert all(
np.array_equal(nt1, nt2) for nt1, nt2 in zip(neighbor_tri, this["neighbor_tri"])
)
def test_accumulate_normals():
"""Test efficient normal accumulation for surfaces."""
# set up comparison
n_pts = int(1.6e5) # approx number in sample source space
n_tris = int(3.2e5)
# use all positive to make a worst-case for cumulative summation
# (real "nn" vectors will have both positive and negative values)
tris = (rng.rand(n_tris, 1) * (n_pts - 2)).astype(int)
tris = np.c_[tris, tris + 1, tris + 2]
tri_nn = rng.rand(n_tris, 3)
this = dict(tris=tris, np=n_pts, ntri=n_tris, tri_nn=tri_nn)
# cut-and-paste from original code in surface.py:
# Find neighboring triangles and accumulate vertex normals
this["nn"] = np.zeros((this["np"], 3))
for p in range(this["ntri"]):
# vertex normals
verts = this["tris"][p]
this["nn"][verts, :] += this["tri_nn"][p, :]
nn = _accumulate_normals(this["tris"], this["tri_nn"], this["np"])
# the moment of truth (or reckoning)
assert_allclose(nn, this["nn"], rtol=1e-7, atol=1e-7)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_setup_source_space(tmp_path):
"""Test setting up ico, oct, and all source spaces."""
pytest.importorskip("nibabel")
fname_ico = data_path / "subjects" / "fsaverage" / "bem" / "fsaverage-ico-5-src.fif"
# first lets test some input params
for spacing in ("oct", "oct6e"):
with pytest.raises(ValueError, match="subdivision must be an integer"):
setup_source_space(
"sample", spacing=spacing, add_dist=False, subjects_dir=subjects_dir
)
for spacing in ("oct0", "oct-4"):
with pytest.raises(ValueError, match="oct subdivision must be >= 1"):
setup_source_space(
"sample", spacing=spacing, add_dist=False, subjects_dir=subjects_dir
)
with pytest.raises(ValueError, match="ico subdivision must be >= 0"):
setup_source_space(
"sample", spacing="ico-4", add_dist=False, subjects_dir=subjects_dir
)
with pytest.raises(ValueError, match="must be a string with values"):
setup_source_space(
"sample", spacing="7emm", add_dist=False, subjects_dir=subjects_dir
)
with pytest.raises(ValueError, match="must be a string with values"):
setup_source_space(
"sample", spacing="ally", add_dist=False, subjects_dir=subjects_dir
)
# ico 5 (fsaverage) - write to temp file
src = read_source_spaces(fname_ico)
with _record_warnings(): # sklearn equiv neighbors
src_new = setup_source_space(
"fsaverage", spacing="ico5", subjects_dir=subjects_dir, add_dist=False
)
_compare_source_spaces(src, src_new, mode="approx")
assert repr(src).split("~")[0] == repr(src_new).split("~")[0]
assert repr(src).count("surface (") == 2
assert_array_equal(src[0]["vertno"], np.arange(10242))
assert_array_equal(src[1]["vertno"], np.arange(10242))
# oct-6 (sample) - auto filename + IO
src = read_source_spaces(fname)
temp_name = tmp_path / "temp-src.fif"
with _record_warnings(): # sklearn equiv neighbors
src_new = setup_source_space(
"sample", spacing="oct6", subjects_dir=subjects_dir, add_dist=False
)
write_source_spaces(temp_name, src_new, overwrite=True)
assert_equal(src_new[0]["nuse"], 4098)
_compare_source_spaces(src, src_new, mode="approx", nearest=False)
src_new = read_source_spaces(temp_name)
_compare_source_spaces(src, src_new, mode="approx", nearest=False)
# all source points - no file writing
src_new = setup_source_space(
"sample", spacing="all", subjects_dir=subjects_dir, add_dist=False
)
assert src_new[0]["nuse"] == len(src_new[0]["rr"])
assert src_new[1]["nuse"] == len(src_new[1]["rr"])
# dense source space to hit surf['inuse'] lines of _create_surf_spacing
pytest.raises(
RuntimeError,
setup_source_space,
"sample",
spacing="ico6",
subjects_dir=subjects_dir,
add_dist=False,
)
@testing.requires_testing_data
@requires_mne
@pytest.mark.slowtest
@pytest.mark.timeout(60)
@pytest.mark.parametrize("spacing", [2, 7])
def test_setup_source_space_spacing(tmp_path, spacing, monkeypatch):
"""Test setting up surface source spaces using a given spacing."""
pytest.importorskip("nibabel")
copytree(subjects_dir / "sample", tmp_path / "sample")
args = [] if spacing == 7 else ["--spacing", str(spacing)]
monkeypatch.setenv("SUBJECTS_DIR", str(tmp_path))
monkeypatch.setenv("SUBJECT", "sample")
run_subprocess(["mne_setup_source_space"] + args)
src = read_source_spaces(tmp_path / "sample" / "bem" / f"sample-{spacing}-src.fif")
# No need to pass subjects_dir here because we've setenv'ed it
src_new = setup_source_space("sample", spacing=spacing, add_dist=False)
_compare_source_spaces(src, src_new, mode="approx", nearest=True)
# Degenerate conditions
with pytest.raises(TypeError, match="spacing must be.*got.*float.*"):
setup_source_space("sample", 7.0)
with pytest.raises(ValueError, match="spacing must be >= 2, got 1"):
setup_source_space("sample", 1)
@testing.requires_testing_data
def test_read_source_spaces():
"""Test reading of source space meshes."""
src = read_source_spaces(fname, patch_stats=True)
# 3D source space
lh_points = src[0]["rr"]
lh_faces = src[0]["tris"]
lh_use_faces = src[0]["use_tris"]
rh_points = src[1]["rr"]
rh_faces = src[1]["tris"]
rh_use_faces = src[1]["use_tris"]
assert lh_faces.min() == 0
assert lh_faces.max() == lh_points.shape[0] - 1
assert lh_use_faces.min() >= 0
assert lh_use_faces.max() <= lh_points.shape[0] - 1
assert rh_faces.min() == 0
assert rh_faces.max() == rh_points.shape[0] - 1
assert rh_use_faces.min() >= 0
assert rh_use_faces.max() <= rh_points.shape[0] - 1
@pytest.mark.slowtest
@testing.requires_testing_data
def test_write_source_space(tmp_path):
"""Test reading and writing of source spaces."""
src0 = read_source_spaces(fname, patch_stats=False)
temp_fname = tmp_path / "tmp-src.fif"
write_source_spaces(temp_fname, src0)
src1 = read_source_spaces(temp_fname, patch_stats=False)
_compare_source_spaces(src0, src1)
# test warnings on bad filenames
src_badname = tmp_path / "test-bad-name.fif.gz"
with pytest.warns(RuntimeWarning, match="-src.fif"):
write_source_spaces(src_badname, src0)
with pytest.warns(RuntimeWarning, match="-src.fif"):
read_source_spaces(src_badname)
@testing.requires_testing_data
@pytest.mark.parametrize("pass_ids", (True, False))
def test_source_space_from_label(tmp_path, pass_ids):
"""Test generating a source space from volume label."""
pytest.importorskip("nibabel")
aseg_short = "aseg.mgz"
atlas_ids, _ = read_freesurfer_lut()
volume_label = "Left-Cerebellum-Cortex"
# Test pos as dict
pos = dict()
with pytest.raises(ValueError, match="mri must be None if pos is a dict"):
setup_volume_source_space(
"sample",
pos=pos,
volume_label=volume_label,
mri=aseg_short,
subjects_dir=subjects_dir,
)
# Test T1.mgz provided
with pytest.raises(RuntimeError, match=r"Must use a \*aseg.mgz file"):
setup_volume_source_space(
"sample", mri="T1.mgz", volume_label=volume_label, subjects_dir=subjects_dir
)
# Test invalid volume label
mri = aseg_short
with pytest.raises(ValueError, match="'Left-Cerebral' not found.*Did you"):
setup_volume_source_space(
"sample", volume_label="Left-Cerebral", mri=mri, subjects_dir=subjects_dir
)
# These should be equivalent
if pass_ids:
use_volume_label = {volume_label: atlas_ids[volume_label]}
else:
use_volume_label = volume_label
# ensure it works even when not provided (detect that it should be aseg)
src = setup_volume_source_space(
"sample",
volume_label=use_volume_label,
add_interpolator=False,
subjects_dir=subjects_dir,
)
assert_equal(volume_label, src[0]["seg_name"])
assert src[0]["nuse"] == 404 # for our given pos and label
# test reading and writing
out_name = tmp_path / "temp-src.fif"
write_source_spaces(out_name, src)
src_from_file = read_source_spaces(out_name)
_compare_source_spaces(src, src_from_file, mode="approx")
@pytest.mark.slowtest
@testing.requires_testing_data
def test_source_space_exclusive_complete(src_volume_labels):
"""Test that we produce exclusive and complete labels."""
# these two are neighbors and are quite large, so let's use them to
# ensure no overlaps
pytest.importorskip("nibabel")
src, volume_labels, _ = src_volume_labels
ii = volume_labels.index("Left-Cerebral-White-Matter")
jj = volume_labels.index("Left-Cerebral-Cortex")
assert src[ii]["nuse"] == 755 # 2034 with pos=5, was 2832
assert src[jj]["nuse"] == 616 # 1520 with pos=5, was 2623
src_full = read_source_spaces(fname_vol)
# This implicitly checks for overlap because np.sort would preserve
# duplicates, and it checks for completeness because the sets should match
assert_array_equal(
src_full[0]["vertno"], np.sort(np.concatenate([s["vertno"] for s in src]))
)
for si, s in enumerate(src):
assert_allclose(src_full[0]["rr"], s["rr"], atol=1e-6)
# also check single_volume=True -- should be the same result
with (
_record_warnings(),
pytest.warns(RuntimeWarning, match="Found no usable.*Left-vessel.*"),
):
src_single = setup_volume_source_space(
src[0]["subject_his_id"],
7.0,
"aseg.mgz",
bem=fname_bem,
volume_label=volume_labels,
single_volume=True,
add_interpolator=False,
subjects_dir=subjects_dir,
)
assert len(src_single) == 1
assert "Unknown+Left-Cerebral-White-Matter+Left-" in repr(src_single)
assert_array_equal(src_full[0]["vertno"], src_single[0]["vertno"])
@pytest.mark.timeout(60) # ~24 s on Travis
@pytest.mark.slowtest
@testing.requires_testing_data
def test_read_volume_from_src():
"""Test reading volumes from a mixed source space."""
pytest.importorskip("nibabel")
labels_vol = ["Left-Amygdala", "Brain-Stem", "Right-Amygdala"]
src = read_source_spaces(fname)
# Setup a volume source space
vol_src = setup_volume_source_space(
"sample",
mri=aseg_fname,
pos=5.0,
bem=fname_bem,
volume_label=labels_vol,
subjects_dir=subjects_dir,
)
# Generate the mixed source space, testing some list methods
assert src.kind == "surface"
assert vol_src.kind == "volume"
src += vol_src
assert src.kind == "mixed"
assert vol_src.kind == "volume"
assert src[:2].kind == "surface"
assert src[2:].kind == "volume"
assert src[:].kind == "mixed"
with pytest.raises(RuntimeError, match="Invalid source space"):
src[::2]
volume_src = get_volume_labels_from_src(src, "sample", subjects_dir)
volume_label = volume_src[0].name
volume_label = "Left-" + volume_label.replace("-lh", "")
# Test
assert_equal(volume_label, src[2]["seg_name"])
assert_equal(src[2]["type"], "vol")
@testing.requires_testing_data
def test_combine_source_spaces(tmp_path):
"""Test combining source spaces."""
nib = pytest.importorskip("nibabel")
rng = np.random.RandomState(2)
volume_labels = ["Brain-Stem", "Right-Hippocampus"] # two fairly large
# create a sparse surface source space to ensure all get mapped
# when mri_resolution=False
srf = setup_source_space(
"sample", "oct3", add_dist=False, subjects_dir=subjects_dir
)
# setup 2 volume source spaces
vol = setup_volume_source_space(
"sample",
subjects_dir=subjects_dir,
volume_label=volume_labels[0],
mri=aseg_fname,
add_interpolator=False,
)
# setup a discrete source space
rr = rng.randint(0, 11, (20, 3)) * 5e-3
nn = np.zeros(rr.shape)
nn[:, -1] = 1
pos = {"rr": rr, "nn": nn}
disc = setup_volume_source_space(
"sample", subjects_dir=subjects_dir, pos=pos, verbose="error"
)
# combine source spaces
assert srf.kind == "surface"
assert vol.kind == "volume"
assert disc.kind == "discrete"
src = srf + vol + disc
assert src.kind == "mixed"
assert srf.kind == "surface"
assert vol.kind == "volume"
assert disc.kind == "discrete"
# test addition of source spaces
assert len(src) == 4
# test reading and writing
src_out_name = tmp_path / "temp-src.fif"
src.save(src_out_name)
src_from_file = read_source_spaces(src_out_name)
_compare_source_spaces(src, src_from_file, mode="approx")
assert repr(src).split("~")[0] == repr(src_from_file).split("~")[0]
assert_equal(src.kind, "mixed")
# test that all source spaces are in MRI coordinates
coord_frames = np.array([s["coord_frame"] for s in src])
assert (coord_frames == FIFF.FIFFV_COORD_MRI).all()
# test errors for export_volume
image_fname = tmp_path / "temp-image.mgz"
# source spaces with no volume
with pytest.raises(ValueError, match="at least one volume"):
srf.export_volume(image_fname, verbose="error")
# unrecognized source type
disc2 = disc.copy()
disc2[0]["type"] = "kitty"
with pytest.raises(ValueError, match="Invalid value"):
src + disc2
del disc2
# unrecognized file type
bad_image_fname = tmp_path / "temp-image.png"
# vertices outside vol space warning
pytest.raises(ValueError, src.export_volume, bad_image_fname, verbose="error")
# mixed coordinate frames
disc3 = disc.copy()
disc3[0]["coord_frame"] = 10
src_mixed_coord = src + disc3
with pytest.raises(ValueError, match="must be in head coordinates"):
src_mixed_coord.export_volume(image_fname, verbose="error")
# now actually write it
fname_img = tmp_path / "img.nii"
for mri_resolution in (False, "sparse", True):
for src, up in ((vol, 705), (srf + vol, 27272), (disc + vol, 705)):
src.export_volume(
fname_img, use_lut=False, mri_resolution=mri_resolution, overwrite=True
)
img_data = _get_img_fdata(nib.load(str(fname_img)))
n_src = img_data.astype(bool).sum()
n_want = sum(s["nuse"] for s in src)
if mri_resolution is True:
n_want += up
assert n_src == n_want, src
# gh-8004
temp_aseg = tmp_path / "aseg.mgz"
aseg_img = nib.load(aseg_fname)
aseg_affine = aseg_img.affine
aseg_affine[:3, :3] *= 0.7
new_aseg = nib.MGHImage(aseg_img.dataobj, aseg_affine)
nib.save(new_aseg, str(temp_aseg))
lh_cereb = mne.setup_volume_source_space(
"sample",
mri=temp_aseg,
volume_label="Left-Cerebellum-Cortex",
add_interpolator=False,
subjects_dir=subjects_dir,
)
src = srf + lh_cereb
with pytest.warns(RuntimeWarning, match="2 surf vertices lay outside"):
src.export_volume(image_fname, mri_resolution="sparse", overwrite=True)
# gh-12495
image_fname = tmp_path / "temp-image.nii"
lh_cereb = mne.setup_volume_source_space(
"sample",
mri=aseg_fname,
volume_label="Left-Cerebellum-Cortex",
add_interpolator=False,
subjects_dir=subjects_dir,
)
lh_cereb.export_volume(image_fname, mri_resolution=True)
aseg = nib.load(str(aseg_fname))
out = nib.load(str(image_fname))
assert_allclose(out.affine, aseg.affine)
src_data = _get_img_fdata(out).astype(bool)
aseg_data = _get_img_fdata(aseg) == 8
n_src = src_data.sum()
n_aseg = aseg_data.sum()
assert n_aseg == n_src
n_overlap = (src_data & aseg_data).sum()
assert n_src == n_overlap
@testing.requires_testing_data
def test_morph_source_spaces():
"""Test morphing of source spaces."""
pytest.importorskip("nibabel")
src = read_source_spaces(fname_fs)
src_morph = read_source_spaces(fname_morph)
src_morph_py = morph_source_spaces(src, "sample", subjects_dir=subjects_dir)
_compare_source_spaces(src_morph, src_morph_py, mode="approx")
@pytest.mark.timeout(60) # can be slow on OSX Travis
@pytest.mark.slowtest
@testing.requires_testing_data
def test_morphed_source_space_return():
"""Test returning a morphed source space to the original subject."""
# let's create some random data on fsaverage
pytest.importorskip("nibabel")
data = rng.randn(20484, 1)
tmin, tstep = 0, 1.0
src_fs = read_source_spaces(fname_fs)
stc_fs = SourceEstimate(
data, [s["vertno"] for s in src_fs], tmin, tstep, "fsaverage"
)
n_verts_fs = sum(len(s["vertno"]) for s in src_fs)
# Create our morph source space
src_morph = morph_source_spaces(src_fs, "sample", subjects_dir=subjects_dir)
n_verts_sample = sum(len(s["vertno"]) for s in src_morph)
assert n_verts_fs == n_verts_sample
# Morph the data over using standard methods
stc_morph = compute_source_morph(
src_fs,
"fsaverage",
"sample",
spacing=[s["vertno"] for s in src_morph],
smooth=1,
subjects_dir=subjects_dir,
warn=False,
).apply(stc_fs)
assert stc_morph.data.shape[0] == n_verts_sample
# We can now pretend like this was real data we got e.g. from an inverse.
# To be complete, let's remove some vertices
keeps = [
np.sort(rng.permutation(np.arange(len(v)))[: len(v) - 10])
for v in stc_morph.vertices
]
stc_morph = SourceEstimate(
np.concatenate([stc_morph.lh_data[keeps[0]], stc_morph.rh_data[keeps[1]]]),
[v[k] for v, k in zip(stc_morph.vertices, keeps)],
tmin,
tstep,
"sample",
)
# Return it to the original subject
stc_morph_return = stc_morph.to_original_src(src_fs, subjects_dir=subjects_dir)
# This should fail (has too many verts in SourceMorph)
with pytest.warns(RuntimeWarning, match="vertices not included"):
morph = compute_source_morph(
src_morph,
subject_from="sample",
spacing=stc_morph_return.vertices,
smooth=1,
subjects_dir=subjects_dir,
)
with pytest.raises(ValueError, match="vertices do not match"):
morph.apply(stc_morph)
# Compare to the original data
with pytest.warns(RuntimeWarning, match="vertices not included"):
stc_morph_morph = compute_source_morph(
src=stc_morph,
subject_from="sample",
spacing=stc_morph_return.vertices,
smooth=1,
subjects_dir=subjects_dir,
).apply(stc_morph)
assert_equal(stc_morph_return.subject, stc_morph_morph.subject)
for ii in range(2):
assert_array_equal(stc_morph_return.vertices[ii], stc_morph_morph.vertices[ii])
# These will not match perfectly because morphing pushes data around
corr = np.corrcoef(stc_morph_return.data[:, 0], stc_morph_morph.data[:, 0])[0, 1]
assert corr > 0.99, corr
# Explicitly test having two vertices map to the same target vertex. We
# simulate this by having two vertices be at the same position.
src_fs2 = src_fs.copy()
vert1, vert2 = src_fs2[0]["vertno"][:2]
src_fs2[0]["rr"][vert1] = src_fs2[0]["rr"][vert2]
stc_morph_return = stc_morph.to_original_src(src_fs2, subjects_dir=subjects_dir)
# test to_original_src method result equality
for ii in range(2):
assert_array_equal(stc_morph_return.vertices[ii], stc_morph_morph.vertices[ii])
# These will not match perfectly because morphing pushes data around
corr = np.corrcoef(stc_morph_return.data[:, 0], stc_morph_morph.data[:, 0])[0, 1]
assert corr > 0.99, corr
# Degenerate cases
stc_morph.subject = None # no .subject provided
pytest.raises(
ValueError,
stc_morph.to_original_src,
src_fs,
subject_orig="fsaverage",
subjects_dir=subjects_dir,
)
stc_morph.subject = "sample"
del src_fs[0]["subject_his_id"] # no name in src_fsaverage
pytest.raises(
ValueError, stc_morph.to_original_src, src_fs, subjects_dir=subjects_dir
)
src_fs[0]["subject_his_id"] = "fsaverage" # name mismatch
pytest.raises(
ValueError,
stc_morph.to_original_src,
src_fs,
subject_orig="foo",
subjects_dir=subjects_dir,
)
src_fs[0]["subject_his_id"] = "sample"
src = read_source_spaces(fname) # wrong source space
pytest.raises(
RuntimeError, stc_morph.to_original_src, src, subjects_dir=subjects_dir
)
@testing.requires_testing_data
@pytest.mark.parametrize(
"src, n, nv",
[
(fname_fs, 2, 10242),
(fname_src, 2, 258),
(fname_vol, 0, 0),
],
)
def test_get_decimated_surfaces(src, n, nv):
"""Test get_decimated_surfaces."""
surfaces = get_decimated_surfaces(src)
assert len(surfaces) == n
if n == 0:
return
for s in surfaces:
assert set(s) == {"rr", "tris"}
assert len(s["rr"]) == nv
assert_array_equal(np.unique(s["tris"]), np.arange(nv))
# The following code was used to generate small-src.fif.gz.
# Unfortunately the C code bombs when trying to add source space distances,
# possibly due to incomplete "faking" of a smaller surface on our part here.
"""
import os
import numpy as np
import mne
data_path = mne.datasets.sample.data_path()
src = mne.setup_source_space('sample', fname=None, spacing='oct5')
hemis = ['lh', 'rh']
fnames = [
str(data_path) + f'/subjects/sample/surf/{h}.decimated' for h in hemis]
vs = list()
for s, fname in zip(src, fnames):
coords = s['rr'][s['vertno']]
vs.append(s['vertno'])
idx = -1 * np.ones(len(s['rr']))
idx[s['vertno']] = np.arange(s['nuse'])
faces = s['use_tris']
faces = idx[faces]
mne.write_surface(fname, coords, faces)
# we need to move sphere surfaces
spheres = [
str(data_path) + f'/subjects/sample/surf/{h}.sphere' for h in hemis]
for s in spheres:
os.rename(s, s + '.bak')
try:
for s, v in zip(spheres, vs):
coords, faces = mne.read_surface(s + '.bak')
coords = coords[v]
mne.write_surface(s, coords, faces)
src = mne.setup_source_space('sample', fname=None, spacing='oct4',
surface='decimated')
finally:
for s in spheres:
os.rename(s + '.bak', s)
fname = 'small-src.fif'
fname_gz = fname + '.gz'
mne.write_source_spaces(fname, src)
mne.utils.run_subprocess(['mne_add_patch_info', '--src', fname,
'--srcp', fname])
mne.write_source_spaces(fname_gz, mne.read_source_spaces(fname))
"""
|