1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal
import mne
from mne import (
get_volume_labels_from_aseg,
head_to_mni,
read_freesurfer_lut,
read_talxfm,
vertex_to_mni,
)
from mne._freesurfer import (
_check_subject_dir,
_estimate_talxfm_rigid,
_get_mgz_header,
read_lta,
)
from mne.datasets import testing
from mne.transforms import _angle_between_quats, _get_trans, apply_trans, rot_to_quat
data_path = testing.data_path(download=False)
subjects_dir = data_path / "subjects"
fname_mri = data_path / "subjects" / "sample" / "mri" / "T1.mgz"
aseg_fname = data_path / "subjects" / "sample" / "mri" / "aseg.mgz"
trans_fname = data_path / "MEG" / "sample" / "sample_audvis_trunc-trans.fif"
rng = np.random.RandomState(0)
@testing.requires_testing_data
def test_check_subject_dir():
"""Test checking for a Freesurfer recon-all subject directory."""
_check_subject_dir("sample", subjects_dir)
with pytest.raises(ValueError, match="subject folder is incorrect"):
_check_subject_dir("foo", data_path)
@testing.requires_testing_data
def test_mgz_header():
"""Test MGZ header reading."""
nib = pytest.importorskip("nibabel")
header = _get_mgz_header(fname_mri)
mri_hdr = nib.load(fname_mri).header
assert_allclose(mri_hdr.get_data_shape(), header["dims"])
assert_allclose(mri_hdr.get_vox2ras_tkr(), header["vox2ras_tkr"])
assert_allclose(mri_hdr.get_ras2vox(), np.linalg.inv(header["vox2ras"]))
@testing.requires_testing_data
def test_vertex_to_mni():
"""Test conversion of vertices to MNI coordinates."""
pytest.importorskip("nibabel")
# obtained using "tksurfer (sample) (l/r)h white"
vertices = [100960, 7620, 150549, 96761]
coords = np.array(
[
[-60.86, -11.18, -3.19],
[-36.46, -93.18, -2.36],
[-38.00, 50.08, -10.61],
[47.14, 8.01, 46.93],
]
)
hemis = [0, 0, 0, 1]
coords_2 = vertex_to_mni(vertices, hemis, "sample", subjects_dir)
# less than 1mm error
assert_allclose(coords, coords_2, atol=1.0)
@testing.requires_testing_data
def test_head_to_mni():
"""Test conversion of aseg vertices to MNI coordinates."""
# obtained using freeview
coords = (
np.array(
[
[22.52, 11.24, 17.72],
[22.52, 5.46, 21.58],
[16.10, 5.46, 22.23],
[21.24, 8.36, 22.23],
]
)
/ 1000.0
)
xfm = read_talxfm("sample", subjects_dir)
coords_MNI = apply_trans(xfm["trans"], coords) * 1000.0
mri_head_t, _ = _get_trans(trans_fname, "mri", "head", allow_none=False)
# obtained from sample_audvis-meg-oct-6-mixed-fwd.fif
coo_right_amygdala = np.array(
[
[0.01745682, 0.02665809, 0.03281873],
[0.01014125, 0.02496262, 0.04233755],
[0.01713642, 0.02505193, 0.04258181],
[0.01720631, 0.03073877, 0.03850075],
]
)
coords_MNI_2 = head_to_mni(coo_right_amygdala, "sample", mri_head_t, subjects_dir)
# less than 1mm error
assert_allclose(coords_MNI, coords_MNI_2, atol=10.0)
@testing.requires_testing_data
def test_vertex_to_mni_fs_nibabel(monkeypatch):
"""Test equivalence of vert_to_mni for nibabel and freesurfer."""
pytest.importorskip("nibabel")
n_check = 1000
subject = "sample"
vertices = rng.randint(0, 100000, n_check)
hemis = rng.randint(0, 1, n_check)
coords = vertex_to_mni(vertices, hemis, subject, subjects_dir)
read_mri = mne._freesurfer._read_mri_info
monkeypatch.setattr(
mne._freesurfer,
"_read_mri_info",
lambda *args, **kwargs: read_mri(*args, use_nibabel=True, **kwargs),
)
coords_2 = vertex_to_mni(vertices, hemis, subject, subjects_dir)
# less than 0.1 mm error
assert_allclose(coords, coords_2, atol=0.1)
def test_read_lta(tmp_path):
"""Test reading a Freesurfer linear transform array file."""
with open(tmp_path / "test.lta", "w") as fid:
fid.write(
"""type = 0 # LINEAR_VOX_TO_VOX
nxforms = 1
mean = 0.0000 0.0000 0.0000
sigma = 1.0000
1 4 4
0.99221027 -0.05494503 0.11180324 -3.84350586
0.05233596 0.99828744 0.02614108 -9.77523804
-0.11304809 -0.02008611 0.99338663 15.25457001
0 0 0 1
src volume info
valid = 1 # volume info valid
filename = tmp.mgz
volume = 256 256 256
voxelsize = 1 1 1
xras = -1 0 0
yras = 0 0 -1
zras = 0 1 0
cras = -1.19374 -3.31686 3.25835
dst volume info
valid = 1 # volume info valid
filename = tmp.mgz
volume = 256 256 256
voxelsize = 1 1 1
xras = -1 0 0
yras = 0 0 -1
zras = 0 1 0
cras = -1.19374 -3.31686 3.25835"""
)
assert_array_equal(
read_lta(tmp_path / "test.lta"),
np.array(
[
[0.99221027, -0.05494503, 0.11180324, -3.84350586],
[0.05233596, 0.99828744, 0.02614108, -9.77523804],
[-0.11304809, -0.02008611, 0.99338663, 15.25457001],
[0.0, 0.0, 0.0, 1.0],
]
),
)
# test when dst volume != src_volume
with open(tmp_path / "test2.lta", "w") as fid:
fid.write(
"""type = 0 # LINEAR_VOX_TO_VOX
nxforms = 1
mean = 0.0000 0.0000 0.0000
sigma = 1.0000
1 4 4
0.41397345 -0.02919456 -0.00069703 26.37020874
-0.02894894 -0.40985453 -0.06119149 212.38204956
0.00361269 0.0611503 -0.41046342 203.33338928
0 0 0 1
src volume info
valid = 1 # volume info valid
filename = tmp2.mgz
volume = 512 385 512
voxelsize = 0.41499999 0.41541821 0.41499999
xras = -1 0 0
yras = 0 0 1
zras = 0 -1 0
cras = -106.23999786 105.82500458 -79.55259705
dst volume info
valid = 1 # volume info valid
filename = tmp.mgz
volume = 256 256 256
voxelsize = 1 1 1
xras = -1 0 0
yras = 0 0 -1
zras = 0 1 0
cras = -3.68961334 -0.12011719 3.4160614"""
)
assert_allclose(
read_lta(tmp_path / "test2.lta"),
np.array(
[
[0.99752641, -0.07034834, -0.00167959, -236.00043542],
[0.06968626, 0.98660704, 0.14730093, 189.09766694],
[-0.00870528, -0.14735012, 0.98906851, 329.7632126],
[0.0, 0.0, 0.0, 1.0],
]
),
atol=1e-8,
)
@testing.requires_testing_data
@pytest.mark.parametrize(
"fname",
[
None,
Path(mne.__file__).parent / "data" / "FreeSurferColorLUT.txt",
],
)
def test_read_freesurfer_lut(fname, tmp_path):
"""Test reading volume label names."""
pytest.importorskip("nibabel")
atlas_ids, colors = read_freesurfer_lut(fname)
assert list(atlas_ids).count("Brain-Stem") == 1
assert len(colors) == len(atlas_ids) == 1266
label_names, label_colors = get_volume_labels_from_aseg(
aseg_fname, return_colors=True
)
assert isinstance(label_names, list)
assert isinstance(label_colors, list)
assert label_names.count("Brain-Stem") == 1
for c in label_colors:
assert isinstance(c, np.ndarray)
assert c.shape == (4,)
assert len(label_names) == len(label_colors) == 46
with pytest.raises(ValueError, match="must be False"):
get_volume_labels_from_aseg(aseg_fname, return_colors=True, atlas_ids=atlas_ids)
label_names_2 = get_volume_labels_from_aseg(aseg_fname, atlas_ids=atlas_ids)
assert label_names == label_names_2
# long name (only test on one run)
if fname is not None:
return
fname = tmp_path / "long.txt"
names = [
"Anterior_Cingulate_and_Medial_Prefrontal_Cortex-" + hemi
for hemi in ("lh", "rh")
]
ids = np.arange(1, len(names) + 1)
colors = [(id_,) * 4 for id_ in ids]
with open(fname, "w") as fid:
for name, id_, color in zip(names, ids, colors):
out_color = " ".join(f"{x:03}" for x in color)
line = f"{id_} {name} {out_color}\n"
fid.write(line)
lut, got_colors = read_freesurfer_lut(fname)
assert len(lut) == len(got_colors) == len(names) == len(ids)
for name, id_, color in zip(names, ids, colors):
assert name in lut
assert name in got_colors
assert_array_equal(got_colors[name][:3], color[:3])
assert lut[name] == id_
with open(fname, "w") as fid:
for name, id_, color in zip(names, ids, colors):
out_color = " ".join(f"{x:03}" for x in color[:3]) # wrong length!
line = f"{id_} {name} {out_color}\n"
fid.write(line)
with pytest.raises(RuntimeError, match="formatted"):
read_freesurfer_lut(fname)
@testing.requires_testing_data
def test_talxfm_rigid():
"""Test that talxfm_rigid gives reasonable results."""
rigid = _estimate_talxfm_rigid("fsaverage", subjects_dir=subjects_dir)
assert_allclose(rigid, np.eye(4), atol=1e-6)
rigid = _estimate_talxfm_rigid("sample", subjects_dir=subjects_dir)
assert_allclose(np.linalg.norm(rigid[:3, :3], axis=1), 1.0, atol=1e-6)
move = 1000 * np.linalg.norm(rigid[:3, 3])
assert 30 < move < 70
ang = np.rad2deg(_angle_between_quats(rot_to_quat(rigid[:3, :3])))
assert 20 < ang < 25
|