File: test_morph.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (1171 lines) | stat: -rw-r--r-- 43,363 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

from inspect import signature

import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal, assert_array_less
from scipy.sparse import csr_array
from scipy.sparse import eye as speye
from scipy.spatial.distance import cdist

import mne
from mne import (
    SourceEstimate,
    SourceMorph,
    VectorSourceEstimate,
    VolSourceEstimate,
    VolVectorSourceEstimate,
    compute_source_morph,
    get_volume_labels_from_aseg,
    grade_to_vertices,
    make_ad_hoc_cov,
    make_forward_solution,
    make_sphere_model,
    read_evokeds,
    read_forward_solution,
    read_freesurfer_lut,
    read_source_estimate,
    read_source_morph,
    setup_volume_source_space,
)
from mne._freesurfer import _get_atlas_values, _get_mri_info_data
from mne.datasets import testing
from mne.fixes import _get_img_fdata
from mne.minimum_norm import apply_inverse, make_inverse_operator, read_inverse_operator
from mne.source_space._source_space import _add_interpolator, _grid_interp
from mne.transforms import quat_to_rot
from mne.utils import _record_warnings, catch_logging

# Setup paths

data_path = testing.data_path(download=False)
sample_dir = data_path / "MEG" / "sample"
subjects_dir = data_path / "subjects"
fname_evoked = sample_dir / "sample_audvis-ave.fif"
fname_trans = sample_dir / "sample_audvis_trunc-trans.fif"
fname_inv_vol = sample_dir / "sample_audvis_trunc-meg-vol-7-meg-inv.fif"
fname_fwd_vol = sample_dir / "sample_audvis_trunc-meg-vol-7-fwd.fif"
fname_vol_w = sample_dir / "sample_audvis_trunc-grad-vol-7-fwd-sensmap-vol.w"
fname_inv_surf = sample_dir / "sample_audvis_trunc-meg-eeg-oct-6-meg-inv.fif"
fname_aseg = subjects_dir / "sample" / "mri" / "aseg.mgz"
fname_fmorph = data_path / "MEG" / "sample" / "fsaverage_audvis_trunc-meg"
fname_smorph = sample_dir / "sample_audvis_trunc-meg"
fname_t1 = subjects_dir / "sample" / "mri" / "T1.mgz"
fname_vol = subjects_dir / "sample" / "bem" / "sample-volume-7mm-src.fif"
fname_aseg = subjects_dir / "sample" / "mri" / "aseg.mgz"
fname_fs_vol = subjects_dir / "fsaverage" / "bem" / "fsaverage-vol7-nointerp-src.fif.gz"
fname_aseg_fs = subjects_dir / "fsaverage" / "mri" / "aseg.mgz"
fname_stc = sample_dir / "fsaverage_audvis_trunc-meg"

pytest.importorskip("nibabel")


def _real_vec_stc():
    inv = read_inverse_operator(fname_inv_surf)
    evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0].crop(0, 0.01)
    return apply_inverse(evoked, inv, pick_ori="vector")


def test_sourcemorph_consistency():
    """Test SourceMorph class consistency."""
    assert (
        list(signature(SourceMorph.__init__).parameters)[1:-1]
        == mne.morph._SOURCE_MORPH_ATTRIBUTES
    )


@testing.requires_testing_data
def test_sparse_morph():
    """Test sparse morphing."""
    rng = np.random.RandomState(0)
    vertices_fs = [
        np.sort(rng.permutation(np.arange(10242))[:4]),
        np.sort(rng.permutation(np.arange(10242))[:6]),
    ]
    data = rng.randn(10, 1)
    stc_fs = SourceEstimate(data, vertices_fs, 1, 1, "fsaverage")
    spheres_fs = [
        mne.read_surface(subjects_dir / "fsaverage" / "surf" / f"{hemi}.sphere.reg")[0]
        for hemi in ("lh", "rh")
    ]
    spheres_sample = [
        mne.read_surface(subjects_dir / "sample" / "surf" / f"{hemi}.sphere.reg")[0]
        for hemi in ("lh", "rh")
    ]
    morph_fs_sample = compute_source_morph(
        stc_fs,
        "fsaverage",
        "sample",
        sparse=True,
        spacing=None,
        subjects_dir=subjects_dir,
    )
    stc_sample = morph_fs_sample.apply(stc_fs)
    offset = 0
    orders = list()
    for v1, s1, v2, s2 in zip(
        stc_fs.vertices, spheres_fs, stc_sample.vertices, spheres_sample
    ):
        dists = cdist(s1[v1], s2[v2])
        order = np.argmin(dists, axis=-1)
        assert_array_less(dists[np.arange(len(order)), order], 1.5)  # mm
        orders.append(order + offset)
        offset += len(order)
    assert_allclose(stc_fs.data, stc_sample.data[np.concatenate(orders)])
    # Return
    morph_sample_fs = compute_source_morph(
        stc_sample,
        "sample",
        "fsaverage",
        sparse=True,
        spacing=None,
        subjects_dir=subjects_dir,
    )
    stc_fs_return = morph_sample_fs.apply(stc_sample)
    offset = 0
    orders = list()
    for v1, s, v2 in zip(stc_fs.vertices, spheres_fs, stc_fs_return.vertices):
        dists = cdist(s[v1], s[v2])
        order = np.argmin(dists, axis=-1)
        assert_array_less(dists[np.arange(len(order)), order], 1.5)  # mm
        orders.append(order + offset)
        offset += len(order)
    assert_allclose(stc_fs.data, stc_fs_return.data[np.concatenate(orders)])


@testing.requires_testing_data
def test_xhemi_morph():
    """Test cross-hemisphere morphing."""
    stc = read_source_estimate(fname_stc, subject="sample")
    # smooth 1 for speed where possible
    smooth = 4
    spacing = 4
    n_grade_verts = 2562
    stc = compute_source_morph(
        stc,
        "sample",
        "fsaverage_sym",
        smooth=smooth,
        warn=False,
        spacing=spacing,
        subjects_dir=subjects_dir,
    ).apply(stc)
    morph = compute_source_morph(
        stc,
        "fsaverage_sym",
        "fsaverage_sym",
        smooth=1,
        xhemi=True,
        warn=False,
        spacing=[stc.vertices[0], []],
        subjects_dir=subjects_dir,
    )
    stc_xhemi = morph.apply(stc)
    assert stc_xhemi.data.shape[0] == n_grade_verts
    assert stc_xhemi.rh_data.shape[0] == 0
    assert len(stc_xhemi.vertices[1]) == 0
    assert stc_xhemi.lh_data.shape[0] == n_grade_verts
    assert len(stc_xhemi.vertices[0]) == n_grade_verts
    # complete reversal mapping
    morph = compute_source_morph(
        stc,
        "fsaverage_sym",
        "fsaverage_sym",
        smooth=smooth,
        xhemi=True,
        warn=False,
        spacing=stc.vertices,
        subjects_dir=subjects_dir,
    )
    mm = morph.morph_mat
    assert mm.shape == (n_grade_verts * 2,) * 2
    assert mm.size > n_grade_verts * 2
    assert mm[:n_grade_verts, :n_grade_verts].size == 0  # L to L
    assert mm[n_grade_verts:, n_grade_verts:].size == 0  # R to L
    assert mm[n_grade_verts:, :n_grade_verts].size > n_grade_verts  # L to R
    assert mm[:n_grade_verts, n_grade_verts:].size > n_grade_verts  # R to L
    # more complicated reversal mapping
    vertices_use = [stc.vertices[0], np.arange(10242)]
    n_src_verts = len(vertices_use[1])
    assert vertices_use[0].shape == (n_grade_verts,)
    assert vertices_use[1].shape == (n_src_verts,)
    # ensure it's sufficiently diffirent to manifest round-trip errors
    assert np.isin(vertices_use[1], stc.vertices[1]).mean() < 0.3
    morph = compute_source_morph(
        stc,
        "fsaverage_sym",
        "fsaverage_sym",
        smooth=smooth,
        xhemi=True,
        warn=False,
        spacing=vertices_use,
        subjects_dir=subjects_dir,
    )
    mm = morph.morph_mat
    assert mm.shape == (n_grade_verts + n_src_verts, n_grade_verts * 2)
    assert mm[:n_grade_verts, :n_grade_verts].size == 0
    assert mm[n_grade_verts:, n_grade_verts:].size == 0
    assert mm[:n_grade_verts, n_grade_verts:].size > n_grade_verts
    assert mm[n_grade_verts:, :n_grade_verts].size > n_src_verts
    # morph forward then back
    stc_xhemi = morph.apply(stc)
    morph = compute_source_morph(
        stc_xhemi,
        "fsaverage_sym",
        "fsaverage_sym",
        smooth=smooth,
        xhemi=True,
        warn=False,
        spacing=stc.vertices,
        subjects_dir=subjects_dir,
    )
    stc_return = morph.apply(stc_xhemi)
    for hi in range(2):
        assert_array_equal(stc_return.vertices[hi], stc.vertices[hi])
    correlation = np.corrcoef(stc.data.ravel(), stc_return.data.ravel())[0, 1]
    assert correlation > 0.9  # not great b/c of sparse grade + small smooth


@testing.requires_testing_data
@pytest.mark.parametrize(
    "smooth, lower, upper, n_warn, dtype",
    [
        (None, 0.959, 0.963, 0, float),
        (3, 0.968, 0.971, 2, complex),
        ("nearest", 0.98, 0.99, 0, float),
    ],
)
def test_surface_source_morph_round_trip(smooth, lower, upper, n_warn, dtype):
    """Test round-trip morphing yields similar STCs."""
    kwargs = dict(smooth=smooth, warn=True, subjects_dir=subjects_dir)
    stc = mne.read_source_estimate(fname_smorph)
    if dtype is complex:
        stc.data = 1j * stc.data
        assert_array_equal(stc.data.real, 0.0)
    with _record_warnings() as w:
        morph = compute_source_morph(stc, "sample", "fsaverage", **kwargs)
    w = [ww for ww in w if "vertices not included" in str(ww.message)]
    assert len(w) == n_warn
    assert morph.morph_mat.shape == (20484, len(stc.data))
    stc_fs = morph.apply(stc)
    morph_back = compute_source_morph(
        stc_fs, "fsaverage", "sample", spacing=stc.vertices, **kwargs
    )
    assert morph_back.morph_mat.shape == (len(stc.data), 20484)
    stc_back = morph_back.apply(stc_fs)
    corr = np.corrcoef(stc.data.ravel(), stc_back.data.ravel())[0, 1]
    assert lower <= corr <= upper
    # check the round-trip power
    assert_power_preserved(stc, stc_back)


@testing.requires_testing_data
def test_surface_source_morph_shortcut():
    """Test that our shortcut for smooth=0 works."""
    stc = mne.read_source_estimate(fname_smorph)
    morph_identity = compute_source_morph(
        stc,
        "sample",
        "sample",
        spacing=stc.vertices,
        smooth=0,
        subjects_dir=subjects_dir,
    )
    stc_back = morph_identity.apply(stc)
    assert_allclose(stc_back.data, stc.data, rtol=1e-4)
    abs_sum = morph_identity.morph_mat - speye(len(stc.data), format="csc")
    abs_sum = np.abs(abs_sum.data).sum()
    assert abs_sum < 1e-4


def assert_power_preserved(orig, new, limits=(1.0, 1.05)):
    """Assert that the power is preserved during a round-trip morph."""
    __tracebackhide__ = True
    for kind in ("real", "imag"):
        numer = np.linalg.norm(getattr(orig.data, kind))
        denom = np.linalg.norm(getattr(new.data, kind))
        if numer == denom == 0.0:  # no data of this type
            continue
        power_ratio = numer / denom
        min_, max_ = limits
        assert min_ < power_ratio < max_, f"Power ratio {kind} = {power_ratio}"


@testing.requires_testing_data
def test_surface_vector_source_morph(tmp_path):
    """Test surface and vector source estimate morph."""
    pytest.importorskip("h5io")
    inverse_operator_surf = read_inverse_operator(fname_inv_surf)

    stc_surf = read_source_estimate(fname_smorph, subject="sample")
    stc_surf.crop(0.09, 0.1)  # for faster computation

    stc_vec = _real_vec_stc()

    source_morph_surf = compute_source_morph(
        inverse_operator_surf["src"], subjects_dir=subjects_dir, smooth=1, warn=False
    )  # smooth 1 for speed
    assert source_morph_surf.subject_from == "sample"
    assert source_morph_surf.subject_to == "fsaverage"
    assert source_morph_surf.kind == "surface"
    assert isinstance(source_morph_surf.src_data, dict)
    assert isinstance(source_morph_surf.src_data["vertices_from"], list)
    assert isinstance(source_morph_surf, SourceMorph)
    stc_surf_morphed = source_morph_surf.apply(stc_surf)
    assert isinstance(stc_surf_morphed, SourceEstimate)
    stc_vec_morphed = source_morph_surf.apply(stc_vec)
    with pytest.raises(ValueError, match="Invalid value for the 'output'"):
        source_morph_surf.apply(stc_surf, output="nifti1")

    # check if correct class after morphing
    assert isinstance(stc_surf_morphed, SourceEstimate)
    assert isinstance(stc_vec_morphed, VectorSourceEstimate)

    # check __repr__
    assert "surface" in repr(source_morph_surf)

    # check loading and saving for surf
    source_morph_surf.save(tmp_path / "42.h5")

    source_morph_surf_r = read_source_morph(tmp_path / "42.h5")

    assert all(
        [
            read == saved
            for read, saved in zip(
                sorted(source_morph_surf_r.__dict__), sorted(source_morph_surf.__dict__)
            )
        ]
    )

    # check wrong subject correction
    stc_surf.subject = None
    assert isinstance(source_morph_surf.apply(stc_surf), SourceEstimate)

    # degenerate
    stc_vol = read_source_estimate(fname_vol_w, "sample")
    with pytest.raises(TypeError, match="stc_from must be an instance"):
        source_morph_surf.apply(stc_vol)


@pytest.mark.slowtest
@testing.requires_testing_data
def test_volume_source_morph_basic(tmp_path):
    """Test volume source estimate morph, special cases and exceptions."""
    nib = pytest.importorskip("nibabel")
    pytest.importorskip("h5io")
    pytest.importorskip("dipy")
    inverse_operator_vol = read_inverse_operator(fname_inv_vol)
    stc_vol = read_source_estimate(fname_vol_w, "sample")

    # check for invalid input type
    with pytest.raises(TypeError, match="src must be"):
        compute_source_morph(src=42)

    # check for raising an error if neither
    # inverse_operator_vol['src'][0]['subject_his_id'] nor subject_from is set,
    # but attempting to perform a volume morph
    src = inverse_operator_vol["src"]
    assert src._subject is None  # already None on disk (old!)

    with pytest.raises(ValueError, match="subject_from could not be inferred"):
        with pytest.warns(RuntimeWarning, match="recommend regenerating"):
            compute_source_morph(src=src, subjects_dir=subjects_dir)

    # check infer subject_from from src[0]['subject_his_id']
    src[0]["subject_his_id"] = "sample"

    with pytest.raises(ValueError, match="Inter-hemispheric morphing"):
        compute_source_morph(src=src, subjects_dir=subjects_dir, xhemi=True)

    with pytest.raises(ValueError, match="Only surface.*sparse morph"):
        compute_source_morph(src=src, sparse=True, subjects_dir=subjects_dir)

    # terrible quality but fast
    zooms = 20
    kwargs = dict(zooms=zooms, niter_sdr=(1,), niter_affine=(1,))
    source_morph_vol = compute_source_morph(
        subjects_dir=subjects_dir, src=fname_inv_vol, subject_from="sample", **kwargs
    )
    shape = (13,) * 3  # for the given zooms

    assert source_morph_vol.subject_from == "sample"

    # the brain used in sample data has shape (255, 255, 255)
    assert tuple(source_morph_vol.sdr_morph.domain_shape) == shape

    assert tuple(source_morph_vol.pre_affine.domain_shape) == shape

    # proofs the above
    assert_array_equal(source_morph_vol.zooms, (zooms,) * 3)

    # assure proper src shape
    mri_size = (src[0]["mri_height"], src[0]["mri_depth"], src[0]["mri_width"])
    assert source_morph_vol.src_data["src_shape_full"] == mri_size

    fwd = read_forward_solution(fname_fwd_vol)
    fwd["src"][0]["subject_his_id"] = "sample"  # avoid further warnings
    source_morph_vol = compute_source_morph(
        fwd["src"], "sample", "sample", subjects_dir=subjects_dir, **kwargs
    )

    # check wrong subject_to
    with pytest.raises(OSError, match="cannot read file"):
        compute_source_morph(fwd["src"], "sample", "42", subjects_dir=subjects_dir)

    # two different ways of saving
    source_morph_vol.save(tmp_path / "vol")

    # check loading
    source_morph_vol_r = read_source_morph(tmp_path / "vol-morph.h5")

    # check for invalid file name handling ()
    with pytest.raises(OSError, match="not found"):
        read_source_morph(tmp_path / "42")

    # check morph
    stc_vol_morphed = source_morph_vol.apply(stc_vol)
    # old way, verts do not match
    assert not np.array_equal(stc_vol_morphed.vertices[0], stc_vol.vertices[0])

    # vector
    stc_vol_vec = VolVectorSourceEstimate(
        np.tile(stc_vol.data[:, np.newaxis], (1, 3, 1)), stc_vol.vertices, 0, 1
    )
    stc_vol_vec_morphed = source_morph_vol.apply(stc_vol_vec)
    assert isinstance(stc_vol_vec_morphed, VolVectorSourceEstimate)
    for ii in range(3):
        assert_allclose(stc_vol_vec_morphed.data[:, ii], stc_vol_morphed.data)

    # check output as NIfTI
    assert isinstance(
        source_morph_vol.apply(stc_vol_vec, output="nifti2"), nib.Nifti2Image
    )

    # check for subject_from mismatch
    source_morph_vol_r.subject_from = "42"
    with pytest.raises(ValueError, match="subject_from must match"):
        source_morph_vol_r.apply(stc_vol_morphed)

    # check if nifti is in grid morph space with voxel_size == spacing
    img_morph_res = source_morph_vol.apply(stc_vol, output="nifti1")

    # assure morph spacing
    assert isinstance(img_morph_res, nib.Nifti1Image)
    assert img_morph_res.header.get_zooms()[:3] == (zooms,) * 3

    # assure src shape
    img_mri_res = source_morph_vol.apply(stc_vol, output="nifti1", mri_resolution=True)
    assert isinstance(img_mri_res, nib.Nifti1Image)
    assert img_mri_res.shape == (
        src[0]["mri_height"],
        src[0]["mri_depth"],
        src[0]["mri_width"],
    ) + (img_mri_res.shape[3],)

    # check if nifti is defined resolution with voxel_size == (5., 5., 5.)
    img_any_res = source_morph_vol.apply(
        stc_vol, output="nifti1", mri_resolution=(5.0, 5.0, 5.0)
    )
    assert isinstance(img_any_res, nib.Nifti1Image)
    assert img_any_res.header.get_zooms()[:3] == (5.0, 5.0, 5.0)

    # check if morph outputs correct data
    assert isinstance(stc_vol_morphed, VolSourceEstimate)

    # check if loaded and saved objects contain the same
    assert all(
        [
            read == saved
            for read, saved in zip(
                sorted(source_morph_vol_r.__dict__), sorted(source_morph_vol.__dict__)
            )
        ]
    )

    # check __repr__
    assert "volume" in repr(source_morph_vol)

    # check Nifti2Image
    assert isinstance(
        source_morph_vol.apply(
            stc_vol, mri_resolution=True, mri_space=True, output="nifti2"
        ),
        nib.Nifti2Image,
    )

    # Degenerate conditions
    with pytest.raises(TypeError, match="output must be"):
        source_morph_vol.apply(stc_vol, output=1)
    with pytest.raises(ValueError, match="subject_from does not match"):
        compute_source_morph(src=src, subject_from="42")
    with pytest.raises(ValueError, match="output"):
        source_morph_vol.apply(stc_vol, output="42")
    with pytest.raises(ValueError, match="subject_to cannot be None"):
        compute_source_morph(src, "sample", None, subjects_dir=subjects_dir)
    # Check if not morphed, but voxel size not boolean, raise ValueError.
    # Note that this check requires dipy to not raise the dipy ImportError
    # before checking if the actual voxel size error will raise.
    with pytest.raises(ValueError, match="Cannot infer original voxel size"):
        stc_vol.as_volume(inverse_operator_vol["src"], mri_resolution=4)

    stc_surf = read_source_estimate(fname_stc, "sample")
    with pytest.raises(TypeError, match="stc_from must be an instance"):
        source_morph_vol.apply(stc_surf)

    # src_to
    source_morph_vol = compute_source_morph(
        fwd["src"],
        subject_from="sample",
        src_to=fwd["src"],
        subject_to="sample",
        subjects_dir=subjects_dir,
        **kwargs,
    )
    stc_vol_2 = source_morph_vol.apply(stc_vol)
    # new way, verts match
    assert_array_equal(stc_vol.vertices[0], stc_vol_2.vertices[0])
    stc_vol_bad = VolSourceEstimate(
        stc_vol.data[:-1], [stc_vol.vertices[0][:-1]], stc_vol.tmin, stc_vol.tstep
    )
    match = (
        "vertices do not match between morph \\(4157\\) and stc \\(4156\\).*"
        "\n.*\n.*\n.*Vertices were likely excluded during forward computatio.*"
    )
    with pytest.raises(ValueError, match=match):
        source_morph_vol.apply(stc_vol_bad)

    # nifti outputs and stc equiv
    img_vol = source_morph_vol.apply(stc_vol, output="nifti1")
    img_vol_2 = stc_vol_2.as_volume(src=fwd["src"], mri_resolution=False)
    assert_allclose(img_vol.affine, img_vol_2.affine)
    img_vol = img_vol.get_fdata()
    img_vol_2 = img_vol_2.get_fdata()
    assert img_vol.shape == img_vol_2.shape
    assert_allclose(img_vol, img_vol_2)


@pytest.mark.slowtest
@testing.requires_testing_data
@pytest.mark.parametrize(
    "subject_from, subject_to, lower, upper, dtype, morph_mat",
    [
        ("sample", "fsaverage", 5.9, 6.1, float, False),
        ("fsaverage", "fsaverage", 0.0, 0.1, float, False),
        ("sample", "sample", 0.0, 0.1, complex, False),
        ("sample", "sample", 0.0, 0.1, float, True),  # morph_mat
        ("sample", "fsaverage", 10, 12, float, True),  # morph_mat
    ],
)
def test_volume_source_morph_round_trip(
    tmp_path, subject_from, subject_to, lower, upper, dtype, morph_mat, monkeypatch
):
    """Test volume source estimate morph round-trips well."""
    nib = pytest.importorskip("nibabel")
    pytest.importorskip("h5io")
    pytest.importorskip("dipy")
    from nibabel.processing import resample_from_to

    src = dict()
    if morph_mat:
        # ~1.5 minutes with pos=7. (4157 morphs!) for sample, so only test
        # morph_mat computation mode with a few labels
        label_names = sorted(get_volume_labels_from_aseg(fname_aseg))[1:2]
        if "sample" in (subject_from, subject_to):
            src["sample"] = setup_volume_source_space(
                "sample",
                subjects_dir=subjects_dir,
                volume_label=label_names,
                mri=fname_aseg,
            )
            assert sum(s["nuse"] for s in src["sample"]) == 12
        if "fsaverage" in (subject_from, subject_to):
            src["fsaverage"] = setup_volume_source_space(
                "fsaverage",
                subjects_dir=subjects_dir,
                volume_label=label_names[:3],
                mri=fname_aseg_fs,
            )
            assert sum(s["nuse"] for s in src["fsaverage"]) == 16
    else:
        assert not morph_mat
        if "sample" in (subject_from, subject_to):
            src["sample"] = mne.read_source_spaces(fname_vol)
            src["sample"][0]["subject_his_id"] = "sample"
            assert src["sample"][0]["nuse"] == 4157
        if "fsaverage" in (subject_from, subject_to):
            # Created to save space with:
            #
            # bem = op.join(op.dirname(mne.__file__), 'data', 'fsaverage',
            #               'fsaverage-inner_skull-bem.fif')
            # src_fsaverage = mne.setup_volume_source_space(
            #     'fsaverage', pos=7., bem=bem, mindist=0,
            #     subjects_dir=subjects_dir, add_interpolator=False)
            # mne.write_source_spaces(fname_fs_vol, src_fsaverage,
            #                         overwrite=True)
            #
            # For speed we do it without the interpolator because it's huge.
            src["fsaverage"] = mne.read_source_spaces(fname_fs_vol)
            src["fsaverage"][0].update(
                vol_dims=np.array([23, 29, 25]), seg_name="brain"
            )
            _add_interpolator(src["fsaverage"])
            assert src["fsaverage"][0]["nuse"] == 6379
    src_to, src_from = src[subject_to], src[subject_from]
    del src
    # No SDR just for speed once everything works
    kwargs = dict(
        niter_sdr=(), niter_affine=(1,), subjects_dir=subjects_dir, verbose=True
    )
    morph_from_to = compute_source_morph(
        src=src_from, src_to=src_to, subject_to=subject_to, **kwargs
    )
    morph_to_from = compute_source_morph(
        src=src_to, src_to=src_from, subject_to=subject_from, **kwargs
    )
    nuse = sum(s["nuse"] for s in src_from)
    assert nuse > 10
    use = np.linspace(0, nuse - 1, 10).round().astype(int)
    data = np.eye(nuse)[:, use]
    if dtype is complex:
        data = data * 1j
    vertices = [s["vertno"] for s in src_from]
    stc_from = VolSourceEstimate(data, vertices, 0, 1)
    with catch_logging() as log:
        stc_from_rt = morph_to_from.apply(
            morph_from_to.apply(stc_from, verbose="debug")
        )
    log = log.getvalue()
    assert "individual volume morph" in log
    maxs = np.argmax(stc_from_rt.data, axis=0)
    src_rr = np.concatenate([s["rr"][s["vertno"]] for s in src_from])
    dists = 1000 * np.linalg.norm(src_rr[use] - src_rr[maxs], axis=1)
    mu = np.mean(dists)
    # fsaverage=5.99; 7.97 without additional src_ras_t fix
    # fsaverage=7.97; 25.4 without src_ras_t fix
    assert lower <= mu < upper, f"round-trip distance {mu}"
    # check that pre_affine is close to identity when subject_to==subject_from
    if subject_to == subject_from:
        for morph in (morph_to_from, morph_from_to):
            assert_allclose(morph.pre_affine.affine, np.eye(4), atol=1e-2)
    # check that power is more or less preserved (labelizing messes with this)
    if morph_mat:
        if subject_to == "fsaverage":
            limits = (18, 18.5)
        else:
            limits = (7, 7.5)
    else:
        limits = (1, 1.2)
    stc_from_unit = stc_from.copy().crop(0, 0)
    stc_from_unit._data.fill(1.0)
    stc_from_unit_rt = morph_to_from.apply(morph_from_to.apply(stc_from_unit))
    assert_power_preserved(stc_from_unit, stc_from_unit_rt, limits=limits)
    if morph_mat:
        fname = tmp_path / "temp-morph.h5"
        morph_to_from.save(fname)
        morph_to_from = read_source_morph(fname)
        assert morph_to_from.vol_morph_mat is None
        morph_to_from.compute_vol_morph_mat(verbose=True)
        morph_to_from.save(fname, overwrite=True)
        morph_to_from = read_source_morph(fname)
        assert isinstance(morph_to_from.vol_morph_mat, csr_array), "csr"
        # equivalence (plus automatic calling)
        assert morph_from_to.vol_morph_mat is None
        monkeypatch.setattr(mne.morph, "_VOL_MAT_CHECK_RATIO", 0.0)
        with catch_logging() as log:
            with pytest.warns(RuntimeWarning, match=r"calling morph\.compute"):
                stc_from_rt_lin = morph_to_from.apply(
                    morph_from_to.apply(stc_from, verbose="debug")
                )
        assert isinstance(morph_from_to.vol_morph_mat, csr_array), "csr"
        log = log.getvalue()
        assert "sparse volume morph matrix" in log
        assert_allclose(stc_from_rt.data, stc_from_rt_lin.data)
        del stc_from_rt_lin
        stc_from_unit_rt_lin = morph_to_from.apply(morph_from_to.apply(stc_from_unit))
        assert_allclose(stc_from_unit_rt.data, stc_from_unit_rt_lin.data)
        del stc_from_unit_rt_lin
    del stc_from, stc_from_rt
    # before and after morph, check the proportion of vertices
    # that are inside and outside the brainmask.mgz
    brain = nib.load(subjects_dir / subject_from / "mri" / "brain.mgz")
    mask = _get_img_fdata(brain) > 0
    if subject_from == subject_to == "sample":
        for stc in [stc_from_unit, stc_from_unit_rt]:
            img = stc.as_volume(src_from, mri_resolution=True)
            img = nib.Nifti1Image(  # abs to convert complex
                np.abs(_get_img_fdata(img)[:, :, :, 0]), img.affine
            )
            img = _get_img_fdata(resample_from_to(img, brain, order=1))
            assert img.shape == mask.shape
            in_ = img[mask].astype(bool).mean()
            out = img[~mask].astype(bool).mean()
            if morph_mat:
                out_max = 0.001
                in_min, in_max = 0.005, 0.007
            else:
                out_max = 0.02
                in_min, in_max = 0.97, 0.98
            assert out < out_max, f"proportion out of volume {out}"
            assert in_min < in_ < in_max, f"proportion inside volume {in_}"


@pytest.mark.slowtest
@testing.requires_testing_data
def test_morph_stc_dense():
    """Test morphing stc."""
    subject_from = "sample"
    subject_to = "fsaverage"
    stc_from = read_source_estimate(fname_smorph, subject="sample")
    stc_to = read_source_estimate(fname_fmorph)
    # make sure we can specify grade
    stc_from.crop(0.09, 0.1)  # for faster computation
    stc_to.crop(0.09, 0.1)  # for faster computation
    assert_array_equal(
        stc_to.time_as_index([0.09, 0.1], use_rounding=True), [0, len(stc_to.times) - 1]
    )

    # After dep change this to:
    morph = compute_source_morph(
        subject_to=subject_to,
        spacing=3,
        smooth=12,
        src=stc_from,
        subjects_dir=subjects_dir,
        precompute=True,
    )
    assert morph.vol_morph_mat is None  # a no-op for surface
    stc_to1 = morph.apply(stc_from)
    assert_allclose(stc_to.data, stc_to1.data, atol=1e-5)

    mean_from = stc_from.data.mean(axis=0)
    mean_to = stc_to1.data.mean(axis=0)
    assert np.corrcoef(mean_to, mean_from).min() > 0.999

    vertices_to = grade_to_vertices(subject_to, grade=3, subjects_dir=subjects_dir)

    # make sure we can fill by morphing
    with pytest.warns(RuntimeWarning, match="consider increasing"):
        morph = compute_source_morph(
            stc_from,
            subject_from,
            subject_to,
            spacing=None,
            smooth=1,
            subjects_dir=subjects_dir,
        )
    stc_to5 = morph.apply(stc_from)
    assert stc_to5.data.shape[0] == 163842 + 163842

    # Morph vector data
    stc_vec = _real_vec_stc()
    stc_vec_to1 = compute_source_morph(
        stc_vec,
        subject_from,
        subject_to,
        subjects_dir=subjects_dir,
        spacing=vertices_to,
        smooth=1,
        warn=False,
    ).apply(stc_vec)
    assert stc_vec_to1.subject == subject_to
    assert stc_vec_to1.tmin == stc_vec.tmin
    assert stc_vec_to1.tstep == stc_vec.tstep
    assert len(stc_vec_to1.lh_vertno) == 642
    assert len(stc_vec_to1.rh_vertno) == 642

    # Degenerate conditions

    # Morphing to a density that is too high should raise an informative error
    # (here we need to push to grade=6, but for some subjects even grade=5
    # will break)
    with pytest.raises(ValueError, match="Cannot use icosahedral grade 6 "):
        compute_source_morph(
            stc_to1,
            subject_from=subject_to,
            subject_to=subject_from,
            spacing=6,
            subjects_dir=subjects_dir,
        )
    del stc_to1

    with pytest.raises(ValueError, match="smooth.* has to be at least 0"):
        compute_source_morph(
            stc_from,
            subject_from,
            subject_to,
            spacing=5,
            smooth=-1,
            subjects_dir=subjects_dir,
        )

    # subject from mismatch
    with pytest.raises(ValueError, match="subject_from does not match"):
        compute_source_morph(stc_from, subject_from="foo", subjects_dir=subjects_dir)

    # only one set of vertices
    with pytest.raises(ValueError, match="grade.*list must have two elements"):
        compute_source_morph(
            stc_from,
            subject_from=subject_from,
            spacing=[vertices_to[0]],
            subjects_dir=subjects_dir,
        )


@testing.requires_testing_data
def test_morph_stc_sparse():
    """Test morphing stc with sparse=True."""
    subject_from = "sample"
    subject_to = "fsaverage"
    # Morph sparse data
    # Make a sparse stc
    stc_from = read_source_estimate(fname_smorph, subject="sample")
    stc_from.vertices[0] = stc_from.vertices[0][[100, 500]]
    stc_from.vertices[1] = stc_from.vertices[1][[200]]
    stc_from._data = stc_from._data[:3]

    stc_to_sparse = compute_source_morph(
        stc_from,
        subject_from=subject_from,
        subject_to=subject_to,
        spacing=None,
        sparse=True,
        subjects_dir=subjects_dir,
    ).apply(stc_from)

    assert_allclose(
        np.sort(stc_from.data.sum(axis=1)), np.sort(stc_to_sparse.data.sum(axis=1))
    )
    assert len(stc_from.rh_vertno) == len(stc_to_sparse.rh_vertno)
    assert len(stc_from.lh_vertno) == len(stc_to_sparse.lh_vertno)
    assert stc_to_sparse.subject == subject_to
    assert stc_from.tmin == stc_from.tmin
    assert stc_from.tstep == stc_from.tstep

    stc_from.vertices[0] = np.array([], dtype=np.int64)
    stc_from._data = stc_from._data[:1]

    stc_to_sparse = compute_source_morph(
        stc_from,
        subject_from,
        subject_to,
        spacing=None,
        sparse=True,
        subjects_dir=subjects_dir,
    ).apply(stc_from)

    assert_allclose(
        np.sort(stc_from.data.sum(axis=1)), np.sort(stc_to_sparse.data.sum(axis=1))
    )
    assert len(stc_from.rh_vertno) == len(stc_to_sparse.rh_vertno)
    assert len(stc_from.lh_vertno) == len(stc_to_sparse.lh_vertno)
    assert stc_to_sparse.subject == subject_to
    assert stc_from.tmin == stc_from.tmin
    assert stc_from.tstep == stc_from.tstep

    # Degenerate cases
    with pytest.raises(ValueError, match="spacing must be set to None"):
        compute_source_morph(
            stc_from,
            subject_from=subject_from,
            subject_to=subject_to,
            spacing=5,
            sparse=True,
            subjects_dir=subjects_dir,
        )
    with pytest.raises(ValueError, match="xhemi=True can only be used with"):
        compute_source_morph(
            stc_from,
            subject_from=subject_from,
            subject_to=subject_to,
            spacing=None,
            sparse=True,
            xhemi=True,
            subjects_dir=subjects_dir,
        )


@testing.requires_testing_data
@pytest.mark.parametrize(
    "sl, n_real, n_mri, n_orig",
    [
        # First and last should add up, middle can have overlap should be <= sum
        (slice(0, 1), 37, 138, 8),
        (slice(1, 2), 51, 204, 12),
        (slice(0, 2), 88, 324, 20),
    ],
)
def test_volume_labels_morph(tmp_path, sl, n_real, n_mri, n_orig):
    """Test generating a source space from volume label."""
    nib = pytest.importorskip("nibabel")
    n_use = (sl.stop - sl.start) // (sl.step or 1)
    # see gh-5224
    evoked = mne.read_evokeds(fname_evoked)[0].crop(0, 0)
    evoked.pick(evoked.ch_names[:306:8])
    evoked.info.normalize_proj()
    n_ch = len(evoked.ch_names)
    lut, _ = read_freesurfer_lut()
    label_names = sorted(get_volume_labels_from_aseg(fname_aseg))
    use_label_names = label_names[sl]
    src = setup_volume_source_space(
        "sample",
        subjects_dir=subjects_dir,
        volume_label=use_label_names,
        mri=fname_aseg,
    )
    assert len(src) == n_use
    assert src.kind == "volume"
    n_src = sum(s["nuse"] for s in src)
    sphere = make_sphere_model("auto", "auto", evoked.info)
    fwd = make_forward_solution(evoked.info, fname_trans, src, sphere)
    assert fwd["sol"]["data"].shape == (n_ch, n_src * 3)
    inv = make_inverse_operator(
        evoked.info, fwd, make_ad_hoc_cov(evoked.info), loose=1.0
    )
    stc = apply_inverse(evoked, inv)
    assert stc.data.shape == (n_src, 1)
    img = stc.as_volume(src, mri_resolution=True)
    assert img.shape == (86, 86, 86, 1)
    n_on = np.array(img.dataobj).astype(bool).sum()
    aseg_img = _get_img_fdata(nib.load(fname_aseg))
    n_got_real = np.isin(
        aseg_img.ravel(), [lut[name] for name in use_label_names]
    ).sum()
    assert n_got_real == n_real
    # - This was 291 on `main` before gh-5590
    # - Refactoring transforms it became 279 with a < 1e-8 change in vox_mri_t
    # - Dropped to 123 once nearest-voxel was used in gh-7653
    # - Jumped back up to 330 with morphing fixes actually correctly
    #   interpolating across all volumes
    assert aseg_img.shape == img.shape[:3]
    assert n_on == n_mri
    for ii in range(2):
        # should work with (ii=0) or without (ii=1) the interpolator
        if ii:
            src[0]["interpolator"] = None
        img = stc.as_volume(src, mri_resolution=False)
        n_on = np.array(img.dataobj).astype(bool).sum()
        # was 20 on `main` before gh-5590
        # then 44 before gh-7653, which took it back to 20
        assert n_on == n_orig
    # without the interpolator, this should fail
    assert src[0]["interpolator"] is None
    with pytest.raises(RuntimeError, match=r".*src\[0\], .* mri_resolution"):
        stc.as_volume(src, mri_resolution=True)


@pytest.fixture(scope="session", params=[testing._pytest_param()])
def _mixed_morph_srcs():
    pytest.importorskip("nibabel")
    pytest.importorskip("dipy")
    # create a mixed source space
    labels_vol = ["Left-Cerebellum-Cortex", "Right-Cerebellum-Cortex"]
    src = mne.setup_source_space(
        "sample", spacing="oct3", add_dist=False, subjects_dir=subjects_dir
    )
    src += mne.setup_volume_source_space(
        "sample",
        mri=fname_aseg,
        pos=10.0,
        volume_label=labels_vol,
        subjects_dir=subjects_dir,
        add_interpolator=True,
        verbose=True,
    )
    # create the destination space
    src_fs = mne.read_source_spaces(
        subjects_dir / "fsaverage" / "bem" / "fsaverage-ico-5-src.fif"
    )
    src_fs += mne.setup_volume_source_space(
        "fsaverage",
        pos=7.0,
        volume_label=labels_vol,
        subjects_dir=subjects_dir,
        add_interpolator=False,
        verbose=True,
    )
    del labels_vol

    with pytest.raises(ValueError, match="src_to must be provided .* mixed"):
        mne.compute_source_morph(
            src=src,
            subject_from="sample",
            subject_to="fsaverage",
            subjects_dir=subjects_dir,
        )

    with pytest.warns(RuntimeWarning, match="not included in smoothing"):
        morph = mne.compute_source_morph(
            src=src,
            subject_from="sample",
            subject_to="fsaverage",
            subjects_dir=subjects_dir,
            niter_affine=[1, 0, 0],
            niter_sdr=[1, 0, 0],
            src_to=src_fs,
            smooth=5,
            verbose=True,
        )
    return morph, src, src_fs


@pytest.mark.slowtest
@pytest.mark.parametrize("vector", (False, True))
def test_mixed_source_morph(_mixed_morph_srcs, vector):
    """Test mixed source space morphing."""
    nib = pytest.importorskip("nibabel")
    pytest.importorskip("dipy")
    morph, src, src_fs = _mixed_morph_srcs
    # Test some basic properties in the subject's own space
    lut, _ = read_freesurfer_lut()
    ids = [lut[s["seg_name"]] for s in src[2:]]
    del lut
    vertices = [s["vertno"] for s in src]
    n_vertices = sum(len(v) for v in vertices)
    data = np.zeros((n_vertices, 3, 1))
    data[:, 1] = 1.0
    klass = mne.MixedVectorSourceEstimate
    if not vector:
        data = data[:, 1]
        klass = klass._scalar_class
    stc = klass(data, vertices, 0, 1, "sample")
    vol_info = _get_mri_info_data(fname_aseg, data=True)
    rrs = np.concatenate([src[2]["rr"][sp["vertno"]] for sp in src[2:]])
    n_want = np.isin(_get_atlas_values(vol_info, rrs), ids).sum()
    img = _get_img_fdata(stc.volume().as_volume(src, mri_resolution=False))
    assert img.astype(bool).sum() == n_want
    img_res = nib.load(fname_aseg)
    n_want = np.isin(_get_img_fdata(img_res), ids).sum()
    img = _get_img_fdata(stc.volume().as_volume(src, mri_resolution=True))
    assert img.astype(bool).sum() > n_want  # way more get interpolated into

    with pytest.raises(TypeError, match="stc_from must be an instance"):
        morph.apply(1.0)

    # Now actually morph
    stc_fs = morph.apply(stc)
    vol_info = _get_mri_info_data(fname_aseg_fs, data=True)
    rrs = np.concatenate([src_fs[2]["rr"][sp["vertno"]] for sp in src_fs[2:]])
    n_want = np.isin(_get_atlas_values(vol_info, rrs), ids).sum()
    with pytest.raises(ValueError, match=r"stc\.subject does not match src s"):
        stc_fs.volume().as_volume(src, mri_resolution=False)
    img = _get_img_fdata(stc_fs.volume().as_volume(src_fs, mri_resolution=False))
    assert img.astype(bool).sum() == n_want  # correct number of voxels

    # Morph separate parts and compare to morphing the entire one
    stc_fs_surf = morph.apply(stc.surface())
    stc_fs_vol = morph.apply(stc.volume())
    stc_fs_2 = stc_fs.__class__(
        np.concatenate([stc_fs_surf.data, stc_fs_vol.data]),
        stc_fs_surf.vertices + stc_fs_vol.vertices,
        stc_fs.tmin,
        stc_fs.tstep,
        stc_fs.subject,
    )
    assert_allclose(stc_fs.data, stc_fs_2.data)


def _rand_affine(rng):
    quat = rng.randn(3)
    quat /= 5 * np.linalg.norm(quat)
    affine = np.eye(4)
    affine[:3, 3] = rng.randn(3) / 5.0
    affine[:3, :3] = quat_to_rot(quat)
    return affine


_shapes = (
    (10, 10, 10),
    (20, 5, 10),
    (5, 10, 20),
)
_affines = (
    [[2, 0, 0, 1], [0, 0, 1, -1], [0, -1, 0, 2], [0, 0, 0, 1]],
    np.eye(4),
    np.eye(4)[[0, 2, 1, 3]],
    "rand",
)


@pytest.mark.parametrize("from_shape", _shapes)
@pytest.mark.parametrize("from_affine", _affines)
@pytest.mark.parametrize("to_shape", _shapes)
@pytest.mark.parametrize("to_affine", _affines)
@pytest.mark.parametrize("order", [0, 1])
@pytest.mark.parametrize("seed", [0, 1])
def test_resample_equiv(from_shape, from_affine, to_shape, to_affine, order, seed):
    """Test resampling equivalences."""
    pytest.importorskip("nibabel")
    pytest.importorskip("dipy")
    rng = np.random.RandomState(seed)
    from_data = rng.randn(*from_shape)
    is_rand = False
    if isinstance(to_affine, str):
        assert to_affine == "rand"
        to_affine = _rand_affine(rng)
        is_rand = True
    if isinstance(from_affine, str):
        assert from_affine == "rand"
        from_affine = _rand_affine(rng)
        is_rand = True
    to_affine = np.array(to_affine, float)
    assert to_affine.shape == (4, 4)
    from_affine = np.array(from_affine, float)
    assert from_affine.shape == (4, 4)
    #
    # 1. nibabel.processing.resample_from_to
    #
    # for a 1mm iso / 256 -> 5mm / 51 one sample takes ~486 ms
    from nibabel.processing import resample_from_to
    from nibabel.spatialimages import SpatialImage

    start = np.linalg.norm(from_data)
    got_nibabel = resample_from_to(
        SpatialImage(from_data, from_affine), (to_shape, to_affine), order=order
    ).get_fdata()
    end = np.linalg.norm(got_nibabel)
    assert end > 0.05 * start  # not too much power lost
    #
    # 2. dipy.align.imaffine
    #
    # ~366 ms
    import dipy.align.imaffine

    interp = "linear" if order == 1 else "nearest"
    got_dipy = dipy.align.imaffine.AffineMap(
        None,
        domain_grid_shape=to_shape,
        domain_grid2world=to_affine,
        codomain_grid_shape=from_shape,
        codomain_grid2world=from_affine,
    ).transform(from_data, interpolation=interp, resample_only=True)
    # XXX possibly some error in dipy or nibabel (/SciPy), or some boundary
    # condition?
    nib_different = (is_rand and order == 1) or (
        from_affine[0, 0] == 2.0 and not np.allclose(from_affine, to_affine)
    )
    nib_different = nib_different and not (
        is_rand and from_affine[0, 0] == 2 and order == 0
    )
    if nib_different:
        assert not np.allclose(got_dipy, got_nibabel), "nibabel fixed"
    else:
        assert_allclose(got_dipy, got_nibabel, err_msg="dipy<->nibabel")
    #
    # 3. mne.source_space._grid_interp
    #
    # ~339 ms
    trans = np.linalg.inv(from_affine) @ to_affine  # to -> from
    interp = _grid_interp(from_shape, to_shape, trans, order=order)
    got_mne = np.asarray(interp @ from_data.ravel(order="F")).reshape(
        to_shape, order="F"
    )
    if order == 1:
        assert_allclose(got_mne, got_dipy, err_msg="MNE<->dipy")
    else:
        perc = 100 * np.isclose(got_mne, got_dipy).mean()
        assert 83 < perc <= 100