1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from inspect import signature
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal, assert_array_less
from scipy.sparse import csr_array
from scipy.sparse import eye as speye
from scipy.spatial.distance import cdist
import mne
from mne import (
SourceEstimate,
SourceMorph,
VectorSourceEstimate,
VolSourceEstimate,
VolVectorSourceEstimate,
compute_source_morph,
get_volume_labels_from_aseg,
grade_to_vertices,
make_ad_hoc_cov,
make_forward_solution,
make_sphere_model,
read_evokeds,
read_forward_solution,
read_freesurfer_lut,
read_source_estimate,
read_source_morph,
setup_volume_source_space,
)
from mne._freesurfer import _get_atlas_values, _get_mri_info_data
from mne.datasets import testing
from mne.fixes import _get_img_fdata
from mne.minimum_norm import apply_inverse, make_inverse_operator, read_inverse_operator
from mne.source_space._source_space import _add_interpolator, _grid_interp
from mne.transforms import quat_to_rot
from mne.utils import _record_warnings, catch_logging
# Setup paths
data_path = testing.data_path(download=False)
sample_dir = data_path / "MEG" / "sample"
subjects_dir = data_path / "subjects"
fname_evoked = sample_dir / "sample_audvis-ave.fif"
fname_trans = sample_dir / "sample_audvis_trunc-trans.fif"
fname_inv_vol = sample_dir / "sample_audvis_trunc-meg-vol-7-meg-inv.fif"
fname_fwd_vol = sample_dir / "sample_audvis_trunc-meg-vol-7-fwd.fif"
fname_vol_w = sample_dir / "sample_audvis_trunc-grad-vol-7-fwd-sensmap-vol.w"
fname_inv_surf = sample_dir / "sample_audvis_trunc-meg-eeg-oct-6-meg-inv.fif"
fname_aseg = subjects_dir / "sample" / "mri" / "aseg.mgz"
fname_fmorph = data_path / "MEG" / "sample" / "fsaverage_audvis_trunc-meg"
fname_smorph = sample_dir / "sample_audvis_trunc-meg"
fname_t1 = subjects_dir / "sample" / "mri" / "T1.mgz"
fname_vol = subjects_dir / "sample" / "bem" / "sample-volume-7mm-src.fif"
fname_aseg = subjects_dir / "sample" / "mri" / "aseg.mgz"
fname_fs_vol = subjects_dir / "fsaverage" / "bem" / "fsaverage-vol7-nointerp-src.fif.gz"
fname_aseg_fs = subjects_dir / "fsaverage" / "mri" / "aseg.mgz"
fname_stc = sample_dir / "fsaverage_audvis_trunc-meg"
pytest.importorskip("nibabel")
def _real_vec_stc():
inv = read_inverse_operator(fname_inv_surf)
evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0].crop(0, 0.01)
return apply_inverse(evoked, inv, pick_ori="vector")
def test_sourcemorph_consistency():
"""Test SourceMorph class consistency."""
assert (
list(signature(SourceMorph.__init__).parameters)[1:-1]
== mne.morph._SOURCE_MORPH_ATTRIBUTES
)
@testing.requires_testing_data
def test_sparse_morph():
"""Test sparse morphing."""
rng = np.random.RandomState(0)
vertices_fs = [
np.sort(rng.permutation(np.arange(10242))[:4]),
np.sort(rng.permutation(np.arange(10242))[:6]),
]
data = rng.randn(10, 1)
stc_fs = SourceEstimate(data, vertices_fs, 1, 1, "fsaverage")
spheres_fs = [
mne.read_surface(subjects_dir / "fsaverage" / "surf" / f"{hemi}.sphere.reg")[0]
for hemi in ("lh", "rh")
]
spheres_sample = [
mne.read_surface(subjects_dir / "sample" / "surf" / f"{hemi}.sphere.reg")[0]
for hemi in ("lh", "rh")
]
morph_fs_sample = compute_source_morph(
stc_fs,
"fsaverage",
"sample",
sparse=True,
spacing=None,
subjects_dir=subjects_dir,
)
stc_sample = morph_fs_sample.apply(stc_fs)
offset = 0
orders = list()
for v1, s1, v2, s2 in zip(
stc_fs.vertices, spheres_fs, stc_sample.vertices, spheres_sample
):
dists = cdist(s1[v1], s2[v2])
order = np.argmin(dists, axis=-1)
assert_array_less(dists[np.arange(len(order)), order], 1.5) # mm
orders.append(order + offset)
offset += len(order)
assert_allclose(stc_fs.data, stc_sample.data[np.concatenate(orders)])
# Return
morph_sample_fs = compute_source_morph(
stc_sample,
"sample",
"fsaverage",
sparse=True,
spacing=None,
subjects_dir=subjects_dir,
)
stc_fs_return = morph_sample_fs.apply(stc_sample)
offset = 0
orders = list()
for v1, s, v2 in zip(stc_fs.vertices, spheres_fs, stc_fs_return.vertices):
dists = cdist(s[v1], s[v2])
order = np.argmin(dists, axis=-1)
assert_array_less(dists[np.arange(len(order)), order], 1.5) # mm
orders.append(order + offset)
offset += len(order)
assert_allclose(stc_fs.data, stc_fs_return.data[np.concatenate(orders)])
@testing.requires_testing_data
def test_xhemi_morph():
"""Test cross-hemisphere morphing."""
stc = read_source_estimate(fname_stc, subject="sample")
# smooth 1 for speed where possible
smooth = 4
spacing = 4
n_grade_verts = 2562
stc = compute_source_morph(
stc,
"sample",
"fsaverage_sym",
smooth=smooth,
warn=False,
spacing=spacing,
subjects_dir=subjects_dir,
).apply(stc)
morph = compute_source_morph(
stc,
"fsaverage_sym",
"fsaverage_sym",
smooth=1,
xhemi=True,
warn=False,
spacing=[stc.vertices[0], []],
subjects_dir=subjects_dir,
)
stc_xhemi = morph.apply(stc)
assert stc_xhemi.data.shape[0] == n_grade_verts
assert stc_xhemi.rh_data.shape[0] == 0
assert len(stc_xhemi.vertices[1]) == 0
assert stc_xhemi.lh_data.shape[0] == n_grade_verts
assert len(stc_xhemi.vertices[0]) == n_grade_verts
# complete reversal mapping
morph = compute_source_morph(
stc,
"fsaverage_sym",
"fsaverage_sym",
smooth=smooth,
xhemi=True,
warn=False,
spacing=stc.vertices,
subjects_dir=subjects_dir,
)
mm = morph.morph_mat
assert mm.shape == (n_grade_verts * 2,) * 2
assert mm.size > n_grade_verts * 2
assert mm[:n_grade_verts, :n_grade_verts].size == 0 # L to L
assert mm[n_grade_verts:, n_grade_verts:].size == 0 # R to L
assert mm[n_grade_verts:, :n_grade_verts].size > n_grade_verts # L to R
assert mm[:n_grade_verts, n_grade_verts:].size > n_grade_verts # R to L
# more complicated reversal mapping
vertices_use = [stc.vertices[0], np.arange(10242)]
n_src_verts = len(vertices_use[1])
assert vertices_use[0].shape == (n_grade_verts,)
assert vertices_use[1].shape == (n_src_verts,)
# ensure it's sufficiently diffirent to manifest round-trip errors
assert np.isin(vertices_use[1], stc.vertices[1]).mean() < 0.3
morph = compute_source_morph(
stc,
"fsaverage_sym",
"fsaverage_sym",
smooth=smooth,
xhemi=True,
warn=False,
spacing=vertices_use,
subjects_dir=subjects_dir,
)
mm = morph.morph_mat
assert mm.shape == (n_grade_verts + n_src_verts, n_grade_verts * 2)
assert mm[:n_grade_verts, :n_grade_verts].size == 0
assert mm[n_grade_verts:, n_grade_verts:].size == 0
assert mm[:n_grade_verts, n_grade_verts:].size > n_grade_verts
assert mm[n_grade_verts:, :n_grade_verts].size > n_src_verts
# morph forward then back
stc_xhemi = morph.apply(stc)
morph = compute_source_morph(
stc_xhemi,
"fsaverage_sym",
"fsaverage_sym",
smooth=smooth,
xhemi=True,
warn=False,
spacing=stc.vertices,
subjects_dir=subjects_dir,
)
stc_return = morph.apply(stc_xhemi)
for hi in range(2):
assert_array_equal(stc_return.vertices[hi], stc.vertices[hi])
correlation = np.corrcoef(stc.data.ravel(), stc_return.data.ravel())[0, 1]
assert correlation > 0.9 # not great b/c of sparse grade + small smooth
@testing.requires_testing_data
@pytest.mark.parametrize(
"smooth, lower, upper, n_warn, dtype",
[
(None, 0.959, 0.963, 0, float),
(3, 0.968, 0.971, 2, complex),
("nearest", 0.98, 0.99, 0, float),
],
)
def test_surface_source_morph_round_trip(smooth, lower, upper, n_warn, dtype):
"""Test round-trip morphing yields similar STCs."""
kwargs = dict(smooth=smooth, warn=True, subjects_dir=subjects_dir)
stc = mne.read_source_estimate(fname_smorph)
if dtype is complex:
stc.data = 1j * stc.data
assert_array_equal(stc.data.real, 0.0)
with _record_warnings() as w:
morph = compute_source_morph(stc, "sample", "fsaverage", **kwargs)
w = [ww for ww in w if "vertices not included" in str(ww.message)]
assert len(w) == n_warn
assert morph.morph_mat.shape == (20484, len(stc.data))
stc_fs = morph.apply(stc)
morph_back = compute_source_morph(
stc_fs, "fsaverage", "sample", spacing=stc.vertices, **kwargs
)
assert morph_back.morph_mat.shape == (len(stc.data), 20484)
stc_back = morph_back.apply(stc_fs)
corr = np.corrcoef(stc.data.ravel(), stc_back.data.ravel())[0, 1]
assert lower <= corr <= upper
# check the round-trip power
assert_power_preserved(stc, stc_back)
@testing.requires_testing_data
def test_surface_source_morph_shortcut():
"""Test that our shortcut for smooth=0 works."""
stc = mne.read_source_estimate(fname_smorph)
morph_identity = compute_source_morph(
stc,
"sample",
"sample",
spacing=stc.vertices,
smooth=0,
subjects_dir=subjects_dir,
)
stc_back = morph_identity.apply(stc)
assert_allclose(stc_back.data, stc.data, rtol=1e-4)
abs_sum = morph_identity.morph_mat - speye(len(stc.data), format="csc")
abs_sum = np.abs(abs_sum.data).sum()
assert abs_sum < 1e-4
def assert_power_preserved(orig, new, limits=(1.0, 1.05)):
"""Assert that the power is preserved during a round-trip morph."""
__tracebackhide__ = True
for kind in ("real", "imag"):
numer = np.linalg.norm(getattr(orig.data, kind))
denom = np.linalg.norm(getattr(new.data, kind))
if numer == denom == 0.0: # no data of this type
continue
power_ratio = numer / denom
min_, max_ = limits
assert min_ < power_ratio < max_, f"Power ratio {kind} = {power_ratio}"
@testing.requires_testing_data
def test_surface_vector_source_morph(tmp_path):
"""Test surface and vector source estimate morph."""
pytest.importorskip("h5io")
inverse_operator_surf = read_inverse_operator(fname_inv_surf)
stc_surf = read_source_estimate(fname_smorph, subject="sample")
stc_surf.crop(0.09, 0.1) # for faster computation
stc_vec = _real_vec_stc()
source_morph_surf = compute_source_morph(
inverse_operator_surf["src"], subjects_dir=subjects_dir, smooth=1, warn=False
) # smooth 1 for speed
assert source_morph_surf.subject_from == "sample"
assert source_morph_surf.subject_to == "fsaverage"
assert source_morph_surf.kind == "surface"
assert isinstance(source_morph_surf.src_data, dict)
assert isinstance(source_morph_surf.src_data["vertices_from"], list)
assert isinstance(source_morph_surf, SourceMorph)
stc_surf_morphed = source_morph_surf.apply(stc_surf)
assert isinstance(stc_surf_morphed, SourceEstimate)
stc_vec_morphed = source_morph_surf.apply(stc_vec)
with pytest.raises(ValueError, match="Invalid value for the 'output'"):
source_morph_surf.apply(stc_surf, output="nifti1")
# check if correct class after morphing
assert isinstance(stc_surf_morphed, SourceEstimate)
assert isinstance(stc_vec_morphed, VectorSourceEstimate)
# check __repr__
assert "surface" in repr(source_morph_surf)
# check loading and saving for surf
source_morph_surf.save(tmp_path / "42.h5")
source_morph_surf_r = read_source_morph(tmp_path / "42.h5")
assert all(
[
read == saved
for read, saved in zip(
sorted(source_morph_surf_r.__dict__), sorted(source_morph_surf.__dict__)
)
]
)
# check wrong subject correction
stc_surf.subject = None
assert isinstance(source_morph_surf.apply(stc_surf), SourceEstimate)
# degenerate
stc_vol = read_source_estimate(fname_vol_w, "sample")
with pytest.raises(TypeError, match="stc_from must be an instance"):
source_morph_surf.apply(stc_vol)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_volume_source_morph_basic(tmp_path):
"""Test volume source estimate morph, special cases and exceptions."""
nib = pytest.importorskip("nibabel")
pytest.importorskip("h5io")
pytest.importorskip("dipy")
inverse_operator_vol = read_inverse_operator(fname_inv_vol)
stc_vol = read_source_estimate(fname_vol_w, "sample")
# check for invalid input type
with pytest.raises(TypeError, match="src must be"):
compute_source_morph(src=42)
# check for raising an error if neither
# inverse_operator_vol['src'][0]['subject_his_id'] nor subject_from is set,
# but attempting to perform a volume morph
src = inverse_operator_vol["src"]
assert src._subject is None # already None on disk (old!)
with pytest.raises(ValueError, match="subject_from could not be inferred"):
with pytest.warns(RuntimeWarning, match="recommend regenerating"):
compute_source_morph(src=src, subjects_dir=subjects_dir)
# check infer subject_from from src[0]['subject_his_id']
src[0]["subject_his_id"] = "sample"
with pytest.raises(ValueError, match="Inter-hemispheric morphing"):
compute_source_morph(src=src, subjects_dir=subjects_dir, xhemi=True)
with pytest.raises(ValueError, match="Only surface.*sparse morph"):
compute_source_morph(src=src, sparse=True, subjects_dir=subjects_dir)
# terrible quality but fast
zooms = 20
kwargs = dict(zooms=zooms, niter_sdr=(1,), niter_affine=(1,))
source_morph_vol = compute_source_morph(
subjects_dir=subjects_dir, src=fname_inv_vol, subject_from="sample", **kwargs
)
shape = (13,) * 3 # for the given zooms
assert source_morph_vol.subject_from == "sample"
# the brain used in sample data has shape (255, 255, 255)
assert tuple(source_morph_vol.sdr_morph.domain_shape) == shape
assert tuple(source_morph_vol.pre_affine.domain_shape) == shape
# proofs the above
assert_array_equal(source_morph_vol.zooms, (zooms,) * 3)
# assure proper src shape
mri_size = (src[0]["mri_height"], src[0]["mri_depth"], src[0]["mri_width"])
assert source_morph_vol.src_data["src_shape_full"] == mri_size
fwd = read_forward_solution(fname_fwd_vol)
fwd["src"][0]["subject_his_id"] = "sample" # avoid further warnings
source_morph_vol = compute_source_morph(
fwd["src"], "sample", "sample", subjects_dir=subjects_dir, **kwargs
)
# check wrong subject_to
with pytest.raises(OSError, match="cannot read file"):
compute_source_morph(fwd["src"], "sample", "42", subjects_dir=subjects_dir)
# two different ways of saving
source_morph_vol.save(tmp_path / "vol")
# check loading
source_morph_vol_r = read_source_morph(tmp_path / "vol-morph.h5")
# check for invalid file name handling ()
with pytest.raises(OSError, match="not found"):
read_source_morph(tmp_path / "42")
# check morph
stc_vol_morphed = source_morph_vol.apply(stc_vol)
# old way, verts do not match
assert not np.array_equal(stc_vol_morphed.vertices[0], stc_vol.vertices[0])
# vector
stc_vol_vec = VolVectorSourceEstimate(
np.tile(stc_vol.data[:, np.newaxis], (1, 3, 1)), stc_vol.vertices, 0, 1
)
stc_vol_vec_morphed = source_morph_vol.apply(stc_vol_vec)
assert isinstance(stc_vol_vec_morphed, VolVectorSourceEstimate)
for ii in range(3):
assert_allclose(stc_vol_vec_morphed.data[:, ii], stc_vol_morphed.data)
# check output as NIfTI
assert isinstance(
source_morph_vol.apply(stc_vol_vec, output="nifti2"), nib.Nifti2Image
)
# check for subject_from mismatch
source_morph_vol_r.subject_from = "42"
with pytest.raises(ValueError, match="subject_from must match"):
source_morph_vol_r.apply(stc_vol_morphed)
# check if nifti is in grid morph space with voxel_size == spacing
img_morph_res = source_morph_vol.apply(stc_vol, output="nifti1")
# assure morph spacing
assert isinstance(img_morph_res, nib.Nifti1Image)
assert img_morph_res.header.get_zooms()[:3] == (zooms,) * 3
# assure src shape
img_mri_res = source_morph_vol.apply(stc_vol, output="nifti1", mri_resolution=True)
assert isinstance(img_mri_res, nib.Nifti1Image)
assert img_mri_res.shape == (
src[0]["mri_height"],
src[0]["mri_depth"],
src[0]["mri_width"],
) + (img_mri_res.shape[3],)
# check if nifti is defined resolution with voxel_size == (5., 5., 5.)
img_any_res = source_morph_vol.apply(
stc_vol, output="nifti1", mri_resolution=(5.0, 5.0, 5.0)
)
assert isinstance(img_any_res, nib.Nifti1Image)
assert img_any_res.header.get_zooms()[:3] == (5.0, 5.0, 5.0)
# check if morph outputs correct data
assert isinstance(stc_vol_morphed, VolSourceEstimate)
# check if loaded and saved objects contain the same
assert all(
[
read == saved
for read, saved in zip(
sorted(source_morph_vol_r.__dict__), sorted(source_morph_vol.__dict__)
)
]
)
# check __repr__
assert "volume" in repr(source_morph_vol)
# check Nifti2Image
assert isinstance(
source_morph_vol.apply(
stc_vol, mri_resolution=True, mri_space=True, output="nifti2"
),
nib.Nifti2Image,
)
# Degenerate conditions
with pytest.raises(TypeError, match="output must be"):
source_morph_vol.apply(stc_vol, output=1)
with pytest.raises(ValueError, match="subject_from does not match"):
compute_source_morph(src=src, subject_from="42")
with pytest.raises(ValueError, match="output"):
source_morph_vol.apply(stc_vol, output="42")
with pytest.raises(ValueError, match="subject_to cannot be None"):
compute_source_morph(src, "sample", None, subjects_dir=subjects_dir)
# Check if not morphed, but voxel size not boolean, raise ValueError.
# Note that this check requires dipy to not raise the dipy ImportError
# before checking if the actual voxel size error will raise.
with pytest.raises(ValueError, match="Cannot infer original voxel size"):
stc_vol.as_volume(inverse_operator_vol["src"], mri_resolution=4)
stc_surf = read_source_estimate(fname_stc, "sample")
with pytest.raises(TypeError, match="stc_from must be an instance"):
source_morph_vol.apply(stc_surf)
# src_to
source_morph_vol = compute_source_morph(
fwd["src"],
subject_from="sample",
src_to=fwd["src"],
subject_to="sample",
subjects_dir=subjects_dir,
**kwargs,
)
stc_vol_2 = source_morph_vol.apply(stc_vol)
# new way, verts match
assert_array_equal(stc_vol.vertices[0], stc_vol_2.vertices[0])
stc_vol_bad = VolSourceEstimate(
stc_vol.data[:-1], [stc_vol.vertices[0][:-1]], stc_vol.tmin, stc_vol.tstep
)
match = (
"vertices do not match between morph \\(4157\\) and stc \\(4156\\).*"
"\n.*\n.*\n.*Vertices were likely excluded during forward computatio.*"
)
with pytest.raises(ValueError, match=match):
source_morph_vol.apply(stc_vol_bad)
# nifti outputs and stc equiv
img_vol = source_morph_vol.apply(stc_vol, output="nifti1")
img_vol_2 = stc_vol_2.as_volume(src=fwd["src"], mri_resolution=False)
assert_allclose(img_vol.affine, img_vol_2.affine)
img_vol = img_vol.get_fdata()
img_vol_2 = img_vol_2.get_fdata()
assert img_vol.shape == img_vol_2.shape
assert_allclose(img_vol, img_vol_2)
@pytest.mark.slowtest
@testing.requires_testing_data
@pytest.mark.parametrize(
"subject_from, subject_to, lower, upper, dtype, morph_mat",
[
("sample", "fsaverage", 5.9, 6.1, float, False),
("fsaverage", "fsaverage", 0.0, 0.1, float, False),
("sample", "sample", 0.0, 0.1, complex, False),
("sample", "sample", 0.0, 0.1, float, True), # morph_mat
("sample", "fsaverage", 10, 12, float, True), # morph_mat
],
)
def test_volume_source_morph_round_trip(
tmp_path, subject_from, subject_to, lower, upper, dtype, morph_mat, monkeypatch
):
"""Test volume source estimate morph round-trips well."""
nib = pytest.importorskip("nibabel")
pytest.importorskip("h5io")
pytest.importorskip("dipy")
from nibabel.processing import resample_from_to
src = dict()
if morph_mat:
# ~1.5 minutes with pos=7. (4157 morphs!) for sample, so only test
# morph_mat computation mode with a few labels
label_names = sorted(get_volume_labels_from_aseg(fname_aseg))[1:2]
if "sample" in (subject_from, subject_to):
src["sample"] = setup_volume_source_space(
"sample",
subjects_dir=subjects_dir,
volume_label=label_names,
mri=fname_aseg,
)
assert sum(s["nuse"] for s in src["sample"]) == 12
if "fsaverage" in (subject_from, subject_to):
src["fsaverage"] = setup_volume_source_space(
"fsaverage",
subjects_dir=subjects_dir,
volume_label=label_names[:3],
mri=fname_aseg_fs,
)
assert sum(s["nuse"] for s in src["fsaverage"]) == 16
else:
assert not morph_mat
if "sample" in (subject_from, subject_to):
src["sample"] = mne.read_source_spaces(fname_vol)
src["sample"][0]["subject_his_id"] = "sample"
assert src["sample"][0]["nuse"] == 4157
if "fsaverage" in (subject_from, subject_to):
# Created to save space with:
#
# bem = op.join(op.dirname(mne.__file__), 'data', 'fsaverage',
# 'fsaverage-inner_skull-bem.fif')
# src_fsaverage = mne.setup_volume_source_space(
# 'fsaverage', pos=7., bem=bem, mindist=0,
# subjects_dir=subjects_dir, add_interpolator=False)
# mne.write_source_spaces(fname_fs_vol, src_fsaverage,
# overwrite=True)
#
# For speed we do it without the interpolator because it's huge.
src["fsaverage"] = mne.read_source_spaces(fname_fs_vol)
src["fsaverage"][0].update(
vol_dims=np.array([23, 29, 25]), seg_name="brain"
)
_add_interpolator(src["fsaverage"])
assert src["fsaverage"][0]["nuse"] == 6379
src_to, src_from = src[subject_to], src[subject_from]
del src
# No SDR just for speed once everything works
kwargs = dict(
niter_sdr=(), niter_affine=(1,), subjects_dir=subjects_dir, verbose=True
)
morph_from_to = compute_source_morph(
src=src_from, src_to=src_to, subject_to=subject_to, **kwargs
)
morph_to_from = compute_source_morph(
src=src_to, src_to=src_from, subject_to=subject_from, **kwargs
)
nuse = sum(s["nuse"] for s in src_from)
assert nuse > 10
use = np.linspace(0, nuse - 1, 10).round().astype(int)
data = np.eye(nuse)[:, use]
if dtype is complex:
data = data * 1j
vertices = [s["vertno"] for s in src_from]
stc_from = VolSourceEstimate(data, vertices, 0, 1)
with catch_logging() as log:
stc_from_rt = morph_to_from.apply(
morph_from_to.apply(stc_from, verbose="debug")
)
log = log.getvalue()
assert "individual volume morph" in log
maxs = np.argmax(stc_from_rt.data, axis=0)
src_rr = np.concatenate([s["rr"][s["vertno"]] for s in src_from])
dists = 1000 * np.linalg.norm(src_rr[use] - src_rr[maxs], axis=1)
mu = np.mean(dists)
# fsaverage=5.99; 7.97 without additional src_ras_t fix
# fsaverage=7.97; 25.4 without src_ras_t fix
assert lower <= mu < upper, f"round-trip distance {mu}"
# check that pre_affine is close to identity when subject_to==subject_from
if subject_to == subject_from:
for morph in (morph_to_from, morph_from_to):
assert_allclose(morph.pre_affine.affine, np.eye(4), atol=1e-2)
# check that power is more or less preserved (labelizing messes with this)
if morph_mat:
if subject_to == "fsaverage":
limits = (18, 18.5)
else:
limits = (7, 7.5)
else:
limits = (1, 1.2)
stc_from_unit = stc_from.copy().crop(0, 0)
stc_from_unit._data.fill(1.0)
stc_from_unit_rt = morph_to_from.apply(morph_from_to.apply(stc_from_unit))
assert_power_preserved(stc_from_unit, stc_from_unit_rt, limits=limits)
if morph_mat:
fname = tmp_path / "temp-morph.h5"
morph_to_from.save(fname)
morph_to_from = read_source_morph(fname)
assert morph_to_from.vol_morph_mat is None
morph_to_from.compute_vol_morph_mat(verbose=True)
morph_to_from.save(fname, overwrite=True)
morph_to_from = read_source_morph(fname)
assert isinstance(morph_to_from.vol_morph_mat, csr_array), "csr"
# equivalence (plus automatic calling)
assert morph_from_to.vol_morph_mat is None
monkeypatch.setattr(mne.morph, "_VOL_MAT_CHECK_RATIO", 0.0)
with catch_logging() as log:
with pytest.warns(RuntimeWarning, match=r"calling morph\.compute"):
stc_from_rt_lin = morph_to_from.apply(
morph_from_to.apply(stc_from, verbose="debug")
)
assert isinstance(morph_from_to.vol_morph_mat, csr_array), "csr"
log = log.getvalue()
assert "sparse volume morph matrix" in log
assert_allclose(stc_from_rt.data, stc_from_rt_lin.data)
del stc_from_rt_lin
stc_from_unit_rt_lin = morph_to_from.apply(morph_from_to.apply(stc_from_unit))
assert_allclose(stc_from_unit_rt.data, stc_from_unit_rt_lin.data)
del stc_from_unit_rt_lin
del stc_from, stc_from_rt
# before and after morph, check the proportion of vertices
# that are inside and outside the brainmask.mgz
brain = nib.load(subjects_dir / subject_from / "mri" / "brain.mgz")
mask = _get_img_fdata(brain) > 0
if subject_from == subject_to == "sample":
for stc in [stc_from_unit, stc_from_unit_rt]:
img = stc.as_volume(src_from, mri_resolution=True)
img = nib.Nifti1Image( # abs to convert complex
np.abs(_get_img_fdata(img)[:, :, :, 0]), img.affine
)
img = _get_img_fdata(resample_from_to(img, brain, order=1))
assert img.shape == mask.shape
in_ = img[mask].astype(bool).mean()
out = img[~mask].astype(bool).mean()
if morph_mat:
out_max = 0.001
in_min, in_max = 0.005, 0.007
else:
out_max = 0.02
in_min, in_max = 0.97, 0.98
assert out < out_max, f"proportion out of volume {out}"
assert in_min < in_ < in_max, f"proportion inside volume {in_}"
@pytest.mark.slowtest
@testing.requires_testing_data
def test_morph_stc_dense():
"""Test morphing stc."""
subject_from = "sample"
subject_to = "fsaverage"
stc_from = read_source_estimate(fname_smorph, subject="sample")
stc_to = read_source_estimate(fname_fmorph)
# make sure we can specify grade
stc_from.crop(0.09, 0.1) # for faster computation
stc_to.crop(0.09, 0.1) # for faster computation
assert_array_equal(
stc_to.time_as_index([0.09, 0.1], use_rounding=True), [0, len(stc_to.times) - 1]
)
# After dep change this to:
morph = compute_source_morph(
subject_to=subject_to,
spacing=3,
smooth=12,
src=stc_from,
subjects_dir=subjects_dir,
precompute=True,
)
assert morph.vol_morph_mat is None # a no-op for surface
stc_to1 = morph.apply(stc_from)
assert_allclose(stc_to.data, stc_to1.data, atol=1e-5)
mean_from = stc_from.data.mean(axis=0)
mean_to = stc_to1.data.mean(axis=0)
assert np.corrcoef(mean_to, mean_from).min() > 0.999
vertices_to = grade_to_vertices(subject_to, grade=3, subjects_dir=subjects_dir)
# make sure we can fill by morphing
with pytest.warns(RuntimeWarning, match="consider increasing"):
morph = compute_source_morph(
stc_from,
subject_from,
subject_to,
spacing=None,
smooth=1,
subjects_dir=subjects_dir,
)
stc_to5 = morph.apply(stc_from)
assert stc_to5.data.shape[0] == 163842 + 163842
# Morph vector data
stc_vec = _real_vec_stc()
stc_vec_to1 = compute_source_morph(
stc_vec,
subject_from,
subject_to,
subjects_dir=subjects_dir,
spacing=vertices_to,
smooth=1,
warn=False,
).apply(stc_vec)
assert stc_vec_to1.subject == subject_to
assert stc_vec_to1.tmin == stc_vec.tmin
assert stc_vec_to1.tstep == stc_vec.tstep
assert len(stc_vec_to1.lh_vertno) == 642
assert len(stc_vec_to1.rh_vertno) == 642
# Degenerate conditions
# Morphing to a density that is too high should raise an informative error
# (here we need to push to grade=6, but for some subjects even grade=5
# will break)
with pytest.raises(ValueError, match="Cannot use icosahedral grade 6 "):
compute_source_morph(
stc_to1,
subject_from=subject_to,
subject_to=subject_from,
spacing=6,
subjects_dir=subjects_dir,
)
del stc_to1
with pytest.raises(ValueError, match="smooth.* has to be at least 0"):
compute_source_morph(
stc_from,
subject_from,
subject_to,
spacing=5,
smooth=-1,
subjects_dir=subjects_dir,
)
# subject from mismatch
with pytest.raises(ValueError, match="subject_from does not match"):
compute_source_morph(stc_from, subject_from="foo", subjects_dir=subjects_dir)
# only one set of vertices
with pytest.raises(ValueError, match="grade.*list must have two elements"):
compute_source_morph(
stc_from,
subject_from=subject_from,
spacing=[vertices_to[0]],
subjects_dir=subjects_dir,
)
@testing.requires_testing_data
def test_morph_stc_sparse():
"""Test morphing stc with sparse=True."""
subject_from = "sample"
subject_to = "fsaverage"
# Morph sparse data
# Make a sparse stc
stc_from = read_source_estimate(fname_smorph, subject="sample")
stc_from.vertices[0] = stc_from.vertices[0][[100, 500]]
stc_from.vertices[1] = stc_from.vertices[1][[200]]
stc_from._data = stc_from._data[:3]
stc_to_sparse = compute_source_morph(
stc_from,
subject_from=subject_from,
subject_to=subject_to,
spacing=None,
sparse=True,
subjects_dir=subjects_dir,
).apply(stc_from)
assert_allclose(
np.sort(stc_from.data.sum(axis=1)), np.sort(stc_to_sparse.data.sum(axis=1))
)
assert len(stc_from.rh_vertno) == len(stc_to_sparse.rh_vertno)
assert len(stc_from.lh_vertno) == len(stc_to_sparse.lh_vertno)
assert stc_to_sparse.subject == subject_to
assert stc_from.tmin == stc_from.tmin
assert stc_from.tstep == stc_from.tstep
stc_from.vertices[0] = np.array([], dtype=np.int64)
stc_from._data = stc_from._data[:1]
stc_to_sparse = compute_source_morph(
stc_from,
subject_from,
subject_to,
spacing=None,
sparse=True,
subjects_dir=subjects_dir,
).apply(stc_from)
assert_allclose(
np.sort(stc_from.data.sum(axis=1)), np.sort(stc_to_sparse.data.sum(axis=1))
)
assert len(stc_from.rh_vertno) == len(stc_to_sparse.rh_vertno)
assert len(stc_from.lh_vertno) == len(stc_to_sparse.lh_vertno)
assert stc_to_sparse.subject == subject_to
assert stc_from.tmin == stc_from.tmin
assert stc_from.tstep == stc_from.tstep
# Degenerate cases
with pytest.raises(ValueError, match="spacing must be set to None"):
compute_source_morph(
stc_from,
subject_from=subject_from,
subject_to=subject_to,
spacing=5,
sparse=True,
subjects_dir=subjects_dir,
)
with pytest.raises(ValueError, match="xhemi=True can only be used with"):
compute_source_morph(
stc_from,
subject_from=subject_from,
subject_to=subject_to,
spacing=None,
sparse=True,
xhemi=True,
subjects_dir=subjects_dir,
)
@testing.requires_testing_data
@pytest.mark.parametrize(
"sl, n_real, n_mri, n_orig",
[
# First and last should add up, middle can have overlap should be <= sum
(slice(0, 1), 37, 138, 8),
(slice(1, 2), 51, 204, 12),
(slice(0, 2), 88, 324, 20),
],
)
def test_volume_labels_morph(tmp_path, sl, n_real, n_mri, n_orig):
"""Test generating a source space from volume label."""
nib = pytest.importorskip("nibabel")
n_use = (sl.stop - sl.start) // (sl.step or 1)
# see gh-5224
evoked = mne.read_evokeds(fname_evoked)[0].crop(0, 0)
evoked.pick(evoked.ch_names[:306:8])
evoked.info.normalize_proj()
n_ch = len(evoked.ch_names)
lut, _ = read_freesurfer_lut()
label_names = sorted(get_volume_labels_from_aseg(fname_aseg))
use_label_names = label_names[sl]
src = setup_volume_source_space(
"sample",
subjects_dir=subjects_dir,
volume_label=use_label_names,
mri=fname_aseg,
)
assert len(src) == n_use
assert src.kind == "volume"
n_src = sum(s["nuse"] for s in src)
sphere = make_sphere_model("auto", "auto", evoked.info)
fwd = make_forward_solution(evoked.info, fname_trans, src, sphere)
assert fwd["sol"]["data"].shape == (n_ch, n_src * 3)
inv = make_inverse_operator(
evoked.info, fwd, make_ad_hoc_cov(evoked.info), loose=1.0
)
stc = apply_inverse(evoked, inv)
assert stc.data.shape == (n_src, 1)
img = stc.as_volume(src, mri_resolution=True)
assert img.shape == (86, 86, 86, 1)
n_on = np.array(img.dataobj).astype(bool).sum()
aseg_img = _get_img_fdata(nib.load(fname_aseg))
n_got_real = np.isin(
aseg_img.ravel(), [lut[name] for name in use_label_names]
).sum()
assert n_got_real == n_real
# - This was 291 on `main` before gh-5590
# - Refactoring transforms it became 279 with a < 1e-8 change in vox_mri_t
# - Dropped to 123 once nearest-voxel was used in gh-7653
# - Jumped back up to 330 with morphing fixes actually correctly
# interpolating across all volumes
assert aseg_img.shape == img.shape[:3]
assert n_on == n_mri
for ii in range(2):
# should work with (ii=0) or without (ii=1) the interpolator
if ii:
src[0]["interpolator"] = None
img = stc.as_volume(src, mri_resolution=False)
n_on = np.array(img.dataobj).astype(bool).sum()
# was 20 on `main` before gh-5590
# then 44 before gh-7653, which took it back to 20
assert n_on == n_orig
# without the interpolator, this should fail
assert src[0]["interpolator"] is None
with pytest.raises(RuntimeError, match=r".*src\[0\], .* mri_resolution"):
stc.as_volume(src, mri_resolution=True)
@pytest.fixture(scope="session", params=[testing._pytest_param()])
def _mixed_morph_srcs():
pytest.importorskip("nibabel")
pytest.importorskip("dipy")
# create a mixed source space
labels_vol = ["Left-Cerebellum-Cortex", "Right-Cerebellum-Cortex"]
src = mne.setup_source_space(
"sample", spacing="oct3", add_dist=False, subjects_dir=subjects_dir
)
src += mne.setup_volume_source_space(
"sample",
mri=fname_aseg,
pos=10.0,
volume_label=labels_vol,
subjects_dir=subjects_dir,
add_interpolator=True,
verbose=True,
)
# create the destination space
src_fs = mne.read_source_spaces(
subjects_dir / "fsaverage" / "bem" / "fsaverage-ico-5-src.fif"
)
src_fs += mne.setup_volume_source_space(
"fsaverage",
pos=7.0,
volume_label=labels_vol,
subjects_dir=subjects_dir,
add_interpolator=False,
verbose=True,
)
del labels_vol
with pytest.raises(ValueError, match="src_to must be provided .* mixed"):
mne.compute_source_morph(
src=src,
subject_from="sample",
subject_to="fsaverage",
subjects_dir=subjects_dir,
)
with pytest.warns(RuntimeWarning, match="not included in smoothing"):
morph = mne.compute_source_morph(
src=src,
subject_from="sample",
subject_to="fsaverage",
subjects_dir=subjects_dir,
niter_affine=[1, 0, 0],
niter_sdr=[1, 0, 0],
src_to=src_fs,
smooth=5,
verbose=True,
)
return morph, src, src_fs
@pytest.mark.slowtest
@pytest.mark.parametrize("vector", (False, True))
def test_mixed_source_morph(_mixed_morph_srcs, vector):
"""Test mixed source space morphing."""
nib = pytest.importorskip("nibabel")
pytest.importorskip("dipy")
morph, src, src_fs = _mixed_morph_srcs
# Test some basic properties in the subject's own space
lut, _ = read_freesurfer_lut()
ids = [lut[s["seg_name"]] for s in src[2:]]
del lut
vertices = [s["vertno"] for s in src]
n_vertices = sum(len(v) for v in vertices)
data = np.zeros((n_vertices, 3, 1))
data[:, 1] = 1.0
klass = mne.MixedVectorSourceEstimate
if not vector:
data = data[:, 1]
klass = klass._scalar_class
stc = klass(data, vertices, 0, 1, "sample")
vol_info = _get_mri_info_data(fname_aseg, data=True)
rrs = np.concatenate([src[2]["rr"][sp["vertno"]] for sp in src[2:]])
n_want = np.isin(_get_atlas_values(vol_info, rrs), ids).sum()
img = _get_img_fdata(stc.volume().as_volume(src, mri_resolution=False))
assert img.astype(bool).sum() == n_want
img_res = nib.load(fname_aseg)
n_want = np.isin(_get_img_fdata(img_res), ids).sum()
img = _get_img_fdata(stc.volume().as_volume(src, mri_resolution=True))
assert img.astype(bool).sum() > n_want # way more get interpolated into
with pytest.raises(TypeError, match="stc_from must be an instance"):
morph.apply(1.0)
# Now actually morph
stc_fs = morph.apply(stc)
vol_info = _get_mri_info_data(fname_aseg_fs, data=True)
rrs = np.concatenate([src_fs[2]["rr"][sp["vertno"]] for sp in src_fs[2:]])
n_want = np.isin(_get_atlas_values(vol_info, rrs), ids).sum()
with pytest.raises(ValueError, match=r"stc\.subject does not match src s"):
stc_fs.volume().as_volume(src, mri_resolution=False)
img = _get_img_fdata(stc_fs.volume().as_volume(src_fs, mri_resolution=False))
assert img.astype(bool).sum() == n_want # correct number of voxels
# Morph separate parts and compare to morphing the entire one
stc_fs_surf = morph.apply(stc.surface())
stc_fs_vol = morph.apply(stc.volume())
stc_fs_2 = stc_fs.__class__(
np.concatenate([stc_fs_surf.data, stc_fs_vol.data]),
stc_fs_surf.vertices + stc_fs_vol.vertices,
stc_fs.tmin,
stc_fs.tstep,
stc_fs.subject,
)
assert_allclose(stc_fs.data, stc_fs_2.data)
def _rand_affine(rng):
quat = rng.randn(3)
quat /= 5 * np.linalg.norm(quat)
affine = np.eye(4)
affine[:3, 3] = rng.randn(3) / 5.0
affine[:3, :3] = quat_to_rot(quat)
return affine
_shapes = (
(10, 10, 10),
(20, 5, 10),
(5, 10, 20),
)
_affines = (
[[2, 0, 0, 1], [0, 0, 1, -1], [0, -1, 0, 2], [0, 0, 0, 1]],
np.eye(4),
np.eye(4)[[0, 2, 1, 3]],
"rand",
)
@pytest.mark.parametrize("from_shape", _shapes)
@pytest.mark.parametrize("from_affine", _affines)
@pytest.mark.parametrize("to_shape", _shapes)
@pytest.mark.parametrize("to_affine", _affines)
@pytest.mark.parametrize("order", [0, 1])
@pytest.mark.parametrize("seed", [0, 1])
def test_resample_equiv(from_shape, from_affine, to_shape, to_affine, order, seed):
"""Test resampling equivalences."""
pytest.importorskip("nibabel")
pytest.importorskip("dipy")
rng = np.random.RandomState(seed)
from_data = rng.randn(*from_shape)
is_rand = False
if isinstance(to_affine, str):
assert to_affine == "rand"
to_affine = _rand_affine(rng)
is_rand = True
if isinstance(from_affine, str):
assert from_affine == "rand"
from_affine = _rand_affine(rng)
is_rand = True
to_affine = np.array(to_affine, float)
assert to_affine.shape == (4, 4)
from_affine = np.array(from_affine, float)
assert from_affine.shape == (4, 4)
#
# 1. nibabel.processing.resample_from_to
#
# for a 1mm iso / 256 -> 5mm / 51 one sample takes ~486 ms
from nibabel.processing import resample_from_to
from nibabel.spatialimages import SpatialImage
start = np.linalg.norm(from_data)
got_nibabel = resample_from_to(
SpatialImage(from_data, from_affine), (to_shape, to_affine), order=order
).get_fdata()
end = np.linalg.norm(got_nibabel)
assert end > 0.05 * start # not too much power lost
#
# 2. dipy.align.imaffine
#
# ~366 ms
import dipy.align.imaffine
interp = "linear" if order == 1 else "nearest"
got_dipy = dipy.align.imaffine.AffineMap(
None,
domain_grid_shape=to_shape,
domain_grid2world=to_affine,
codomain_grid_shape=from_shape,
codomain_grid2world=from_affine,
).transform(from_data, interpolation=interp, resample_only=True)
# XXX possibly some error in dipy or nibabel (/SciPy), or some boundary
# condition?
nib_different = (is_rand and order == 1) or (
from_affine[0, 0] == 2.0 and not np.allclose(from_affine, to_affine)
)
nib_different = nib_different and not (
is_rand and from_affine[0, 0] == 2 and order == 0
)
if nib_different:
assert not np.allclose(got_dipy, got_nibabel), "nibabel fixed"
else:
assert_allclose(got_dipy, got_nibabel, err_msg="dipy<->nibabel")
#
# 3. mne.source_space._grid_interp
#
# ~339 ms
trans = np.linalg.inv(from_affine) @ to_affine # to -> from
interp = _grid_interp(from_shape, to_shape, trans, order=order)
got_mne = np.asarray(interp @ from_data.ravel(order="F")).reshape(
to_shape, order="F"
)
if order == 1:
assert_allclose(got_mne, got_dipy, err_msg="MNE<->dipy")
else:
perc = 100 * np.isclose(got_mne, got_dipy).mean()
assert 83 < perc <= 100
|