1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal, assert_equal
from mne import (
decimate_surface,
dig_mri_distances,
get_montage_volume_labels,
pick_types,
read_surface,
write_surface,
)
from mne._fiff.constants import FIFF
from mne.channels import make_dig_montage
from mne.datasets import testing
from mne.io import read_info
from mne.surface import (
_compute_nearest,
_get_ico_surface,
_marching_cubes,
_normal_orth,
_project_onto_surface,
_read_patch,
_tessellate_sphere,
_voxel_neighbors,
fast_cross_3d,
get_head_surf,
get_meg_helmet_surf,
read_curvature,
)
from mne.transforms import _get_trans
from mne.utils import _record_warnings, catch_logging, object_diff, requires_freesurfer
data_path = testing.data_path(download=False)
subjects_dir = data_path / "subjects"
fname = subjects_dir / "sample" / "bem" / "sample-1280-1280-1280-bem-sol.fif"
fname_trans = data_path / "MEG" / "sample" / "sample_audvis_trunc-trans.fif"
fname_raw = data_path / "MEG" / "sample" / "sample_audvis_trunc_raw.fif"
fname_t1 = subjects_dir / "fsaverage" / "mri" / "T1.mgz"
rng = np.random.RandomState(0)
def test_helmet():
"""Test loading helmet surfaces."""
base_dir = Path(__file__).parents[1] / "io"
fname_raw = base_dir / "tests" / "data" / "test_raw.fif"
fname_kit_raw = base_dir / "kit" / "tests" / "data" / "test_bin_raw.fif"
fname_bti_raw = base_dir / "bti" / "tests" / "data" / "exported4D_linux_raw.fif"
fname_ctf_raw = base_dir / "tests" / "data" / "test_ctf_raw.fif"
fname_trans = base_dir / "tests" / "data" / "sample-audvis-raw-trans.txt"
trans = _get_trans(fname_trans)[0]
new_info = read_info(fname_raw)
artemis_info = new_info.copy()
for pick in pick_types(new_info, meg=True):
new_info["chs"][pick]["coil_type"] = 9999
artemis_info["chs"][pick]["coil_type"] = FIFF.FIFFV_COIL_ARTEMIS123_GRAD
for info, n, name in [
(read_info(fname_raw), 304, "306m"),
(read_info(fname_kit_raw), 150, "KIT"), # Delaunay
(read_info(fname_bti_raw), 304, "Magnes"),
(read_info(fname_ctf_raw), 342, "CTF"),
(new_info, 102, "unknown"), # Delaunay
(artemis_info, 102, "ARTEMIS123"), # Delaunay
]:
with catch_logging() as log:
helmet = get_meg_helmet_surf(info, trans, verbose=True)
log = log.getvalue()
assert name in log
assert_equal(len(helmet["rr"]), n)
assert_equal(len(helmet["rr"]), len(helmet["nn"]))
@testing.requires_testing_data
def test_head():
"""Test loading the head surface."""
surf_1 = get_head_surf("sample", subjects_dir=subjects_dir)
surf_2 = get_head_surf("sample", "head", subjects_dir=subjects_dir)
assert len(surf_1["rr"]) < len(surf_2["rr"]) # BEM vs dense head
pytest.raises(TypeError, get_head_surf, subject=None, subjects_dir=subjects_dir)
def test_fast_cross_3d():
"""Test cross product with lots of elements."""
x = rng.rand(100000, 3)
y = rng.rand(1, 3)
z = np.cross(x, y)
zz = fast_cross_3d(x, y)
assert_array_equal(z, zz)
# broadcasting and non-2D
zz = fast_cross_3d(x[:, np.newaxis], y[0])
assert_array_equal(z, zz[:, 0])
def test_compute_nearest():
"""Test nearest neighbor searches."""
x = rng.randn(500, 3)
x /= np.sqrt(np.sum(x**2, axis=1))[:, None]
nn_true = rng.permutation(np.arange(500, dtype=np.int64))[:20]
y = x[nn_true]
nn1 = _compute_nearest(x, y, method="BallTree")
nn2 = _compute_nearest(x, y, method="KDTree")
nn3 = _compute_nearest(x, y, method="cdist")
assert_array_equal(nn_true, nn1)
assert_array_equal(nn_true, nn2)
assert_array_equal(nn_true, nn3)
# test distance support
nnn1 = _compute_nearest(x, y, method="BallTree", return_dists=True)
nnn2 = _compute_nearest(x, y, method="KDTree", return_dists=True)
nnn3 = _compute_nearest(x, y, method="cdist", return_dists=True)
assert_array_equal(nnn1[0], nn_true)
assert_array_equal(nnn1[1], np.zeros_like(nn1)) # all dists should be 0
assert_equal(len(nnn1), len(nnn2))
for nn1, nn2, nn3 in zip(nnn1, nnn2, nnn3):
assert_array_equal(nn1, nn2)
assert_array_equal(nn1, nn3)
@testing.requires_testing_data
def test_io_surface(tmp_path):
"""Test reading and writing of Freesurfer surface mesh files."""
pytest.importorskip("nibabel")
fname_quad = data_path / "subjects" / "bert" / "surf" / "lh.inflated.nofix"
fname_tri = data_path / "subjects" / "sample" / "bem" / "inner_skull.surf"
for fname in (fname_quad, fname_tri):
with _record_warnings(): # no volume info
pts, tri, vol_info = read_surface(fname, read_metadata=True)
write_surface(tmp_path / "tmp", pts, tri, volume_info=vol_info, overwrite=True)
with _record_warnings(): # no volume info
c_pts, c_tri, c_vol_info = read_surface(
tmp_path / "tmp", read_metadata=True
)
assert_array_equal(pts, c_pts)
assert_array_equal(tri, c_tri)
assert_equal(object_diff(vol_info, c_vol_info), "")
if fname != fname_tri: # don't bother testing wavefront for the bigger
continue
# Test writing/reading a Wavefront .obj file
write_surface(tmp_path / "tmp.obj", pts, tri, volume_info=None, overwrite=True)
c_pts, c_tri = read_surface(tmp_path / "tmp.obj", read_metadata=False)
assert_array_equal(pts, c_pts)
assert_array_equal(tri, c_tri)
# reading patches (just a smoke test, let the flatmap viz tests be more
# complete)
fname_patch = data_path / "subjects" / "fsaverage" / "surf" / "rh.cortex.patch.flat"
_read_patch(fname_patch)
@testing.requires_testing_data
def test_read_curv():
"""Test reading curvature data."""
pytest.importorskip("nibabel")
fname_curv = data_path / "subjects" / "fsaverage" / "surf" / "lh.curv"
fname_surf = data_path / "subjects" / "fsaverage" / "surf" / "lh.inflated"
bin_curv = read_curvature(fname_curv)
rr = read_surface(fname_surf)[0]
assert len(bin_curv) == len(rr)
assert np.logical_or(bin_curv == 0, bin_curv == 1).all()
@pytest.mark.parametrize("n_tri", (4, 3, 2))
def test_decimate_surface_vtk(n_tri):
"""Test triangular surface decimation."""
pytest.importorskip("pyvista")
points = np.array(
[
[-0.00686118, -0.10369860, 0.02615170],
[-0.00713948, -0.10370162, 0.02614874],
[-0.00686208, -0.10368247, 0.02588313],
[-0.00713987, -0.10368724, 0.02587745],
]
)
tris = np.array([[0, 1, 2], [1, 2, 3], [0, 3, 1], [1, 2, 0]])
_, this_tris = decimate_surface(points, tris, n_tri)
want = (n_tri, n_tri - 1)
if n_tri == 3:
want = want + (1,)
assert len(this_tris) in want
with pytest.raises(ValueError, match="exceeds number of original"):
decimate_surface(points, tris, len(tris) + 1)
nirvana = 5
tris = np.array([[0, 1, 2], [1, 2, 3], [0, 3, 1], [1, 2, nirvana]])
with pytest.raises(ValueError, match="undefined points"):
decimate_surface(points, tris, n_tri)
@requires_freesurfer("mris_sphere")
def test_decimate_surface_sphere():
"""Test sphere mode of decimation."""
pytest.importorskip("nibabel")
rr, tris = _tessellate_sphere(3)
assert len(rr) == 66
assert len(tris) == 128
for kind, n_tri in [("ico", 20), ("oct", 32)]:
with catch_logging() as log:
_, tris_new = decimate_surface(
rr, tris, n_tri, method="sphere", verbose=True
)
log = log.getvalue()
assert "Freesurfer" in log
assert kind in log
assert len(tris_new) == n_tri
@pytest.mark.parametrize(
"dig_kinds, exclude, count, bounds, outliers",
[
("auto", False, 72, (0.001, 0.002), 0),
(("eeg", "extra", "cardinal", "hpi"), False, 146, (0.002, 0.003), 1),
(("eeg", "extra", "cardinal", "hpi"), True, 139, (0.001, 0.002), 0),
],
)
@testing.requires_testing_data
def test_dig_mri_distances(dig_kinds, exclude, count, bounds, outliers):
"""Test the trans obtained by coregistration."""
info = read_info(fname_raw)
dists = dig_mri_distances(
info,
fname_trans,
"sample",
subjects_dir,
dig_kinds=dig_kinds,
exclude_frontal=exclude,
)
assert dists.shape == (count,)
assert bounds[0] < np.mean(dists) < bounds[1]
assert np.sum(dists > 0.03) == outliers
def test_normal_orth():
"""Test _normal_orth."""
nns = np.eye(3)
for nn in nns:
ori = _normal_orth(nn)
assert_allclose(ori[2], nn, atol=1e-12)
# 0.06 s locally even with all these params
@pytest.mark.parametrize("dtype", (np.float64, np.uint16, ">i4"))
@pytest.mark.parametrize("order", "FC")
@pytest.mark.parametrize("value", (1, 12))
@pytest.mark.parametrize("smooth", (0, 0.9))
def test_marching_cubes(dtype, value, smooth, order):
"""Test creating surfaces via marching cubes."""
pytest.importorskip("pyvista")
data = np.zeros((50, 50, 50), dtype=dtype, order=order)
data[20:30, 20:30, 20:30] = value
level = [value]
out = _marching_cubes(data, level, smooth=smooth)
assert len(out) == 1
verts, triangles = out[0]
# verts and faces are rather large so use checksum
rtol = 1e-2 if smooth else 1e-9
assert_allclose(verts.sum(axis=0), [14700, 14700, 14700], rtol=rtol)
tri_sum = triangles.sum(axis=0).tolist()
assert tri_sum in ([350588, 360865, 363402], [350408, 359867, 364089])
# test fill holes
data[24:27, 24:27, 24:27] = 0
verts, triangles = _marching_cubes(data, level, smooth=smooth, fill_hole_size=2)[0]
# check that no surfaces in the middle
assert np.linalg.norm(verts - np.array([25, 25, 25]), axis=1).min() > 4
# problematic values
with pytest.raises(TypeError, match="1D array-like"):
_marching_cubes(data, ["foo"])
with pytest.raises(TypeError, match="1D array-like"):
_marching_cubes(data, [[1]])
with pytest.raises(TypeError, match="1D array-like"):
_marching_cubes(data, [1.0])
with pytest.raises(ValueError, match="must be between 0"):
_marching_cubes(data, [1], smooth=1.0)
with pytest.raises(ValueError, match="3D data"):
_marching_cubes(data[0], [1])
@testing.requires_testing_data
def test_get_montage_volume_labels():
"""Test finding ROI labels near montage channel locations."""
pytest.importorskip("nibabel")
ch_coords = np.array(
[
[-8.7040273, 17.99938754, 10.29604017],
[-14.03007764, 19.69978401, 12.07236939],
[-21.1130506, 21.98310911, 13.25658887],
]
)
ch_pos = dict(zip(["1", "2", "3"], ch_coords / 1000)) # mm -> m
montage = make_dig_montage(ch_pos, coord_frame="mri")
labels, colors = get_montage_volume_labels(
montage, "sample", subjects_dir, aseg="aseg", dist=1
)
assert labels == {
"1": ["Unknown"],
"2": ["Left-Cerebral-Cortex"],
"3": ["Left-Cerebral-Cortex"],
}
assert "Unknown" in colors
assert "Left-Cerebral-Cortex" in colors
np.testing.assert_almost_equal(
colors["Left-Cerebral-Cortex"],
(0.803921568627451, 0.24313725490196078, 0.3058823529411765, 1.0),
)
np.testing.assert_almost_equal(colors["Unknown"], (0.0, 0.0, 0.0, 1.0))
# test inputs
fail_montage = make_dig_montage(ch_pos, coord_frame="head")
with pytest.raises(RuntimeError, match="Coordinate frame not supported"):
get_montage_volume_labels(fail_montage, "sample", subjects_dir, aseg="aseg")
with pytest.raises(ValueError, match="between 0 and 10"):
get_montage_volume_labels(montage, "sample", subjects_dir, dist=11)
def test_voxel_neighbors():
"""Test finding points above a threshold near a seed location."""
locs = np.array(np.meshgrid(*[np.linspace(-1, 1, 101)] * 3))
image = 1 - np.linalg.norm(locs, axis=0)
true_volume = set([tuple(coord) for coord in np.array(np.where(image > 0.95)).T])
volume = _voxel_neighbors(
np.array([-0.3, 0.6, 0.5]) + (np.array(image.shape[0]) - 1) / 2,
image,
thresh=0.95,
use_relative=False,
)
assert volume.difference(true_volume) == set()
assert true_volume.difference(volume) == set()
@testing.requires_testing_data
@pytest.mark.parametrize("ret_nn", (False, True))
@pytest.mark.parametrize("method", ("accurate", "nearest"))
def test_project_onto_surface(method, ret_nn):
"""Test _project_onto_surface (gh-10930)."""
locs = np.random.default_rng(0).normal(size=(10, 3))
locs *= 2 / np.linalg.norm(locs, axis=1)[:, None] # lie on a sphere rad=2
surf = _get_ico_surface(3)
assert len(surf["rr"]) == 642
assert_allclose(np.linalg.norm(surf["rr"], axis=1), 1.0, rtol=1e-3) # unit
# project
weights, tri_idx, *out = _project_onto_surface(
locs, surf, project_rrs=True, return_nn=ret_nn, method=method
)
locs /= 2.0 # back to unit
assert_allclose(np.linalg.norm(locs, axis=1), 1.0, rtol=1e-5)
assert len(out) == 2 if ret_nn else 1
# for a sphere, both the rr (out[0]) and nn (out[1], if exists) should
# both be very similar to each other and to our unit-length `locs`
for kind, comp in zip(("rr", "nn"), out):
assert_allclose(
np.linalg.norm(comp, axis=1),
1.0,
atol=0.05,
err_msg=f"{kind} not unit vectors for {method}",
)
cos = np.sum(locs * comp, axis=1)
assert_allclose(
cos,
1.0,
atol=0.05, # ico > 3 would be even better tol
err_msg=f"{kind} not in same direction as locs for {method}",
)
|