1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import warnings
from functools import partial
import numpy as np
from scipy.signal import spectrogram
from ..parallel import parallel_func
from ..utils import _check_option, _ensure_int, logger, verbose
from ..utils.numerics import _mask_to_onsets_offsets
# adapted from SciPy
# https://github.com/scipy/scipy/blob/f71e7fad717801c4476312fe1e23f2dfbb4c9d7f/scipy/signal/_spectral_py.py#L2019 # noqa: E501
def _median_biases(n):
# Compute the biases for 0 to max(n, 1) terms included in a median calc
biases = np.ones(n + 1)
# The original SciPy code is:
#
# def _median_bias(n):
# ii_2 = 2 * np.arange(1., (n - 1) // 2 + 1)
# return 1 + np.sum(1. / (ii_2 + 1) - 1. / ii_2)
#
# This is a sum over (n-1)//2 terms.
# The ii_2 terms here for different n are:
#
# n=0: [] # 0 terms
# n=1: [] # 0 terms
# n=2: [] # 0 terms
# n=3: [2] # 1 term
# n=4: [2] # 1 term
# n=5: [2, 4] # 2 terms
# n=6: [2, 4] # 2 terms
# ...
#
# We can get the terms for 0 through n using a cumulative summation and
# indexing:
if n >= 3:
ii_2 = 2 * np.arange(1, (n - 1) // 2 + 1)
sums = 1 + np.cumsum(1.0 / (ii_2 + 1) - 1.0 / ii_2)
idx = np.arange(2, n) // 2 - 1
biases[3:] = sums[idx]
return biases
def _decomp_aggregate_mask(epoch, func, average, freq_sl):
_, _, spect = func(epoch)
spect = spect[..., freq_sl, :]
# Do the averaging here (per epoch) to save memory
if average == "mean":
spect = np.nanmean(spect, axis=-1)
elif average == "median":
biases = _median_biases(spect.shape[-1])
idx = (~np.isnan(spect)).sum(-1)
spect = np.nanmedian(spect, axis=-1) / biases[idx]
return spect
def _spect_func(epoch, func, freq_sl, average, *, output="power"):
"""Aux function."""
# Decide if we should split this to save memory or not, since doing
# multiple calls will incur some performance overhead. Eventually we might
# want to write (really, go back to) our own spectrogram implementation
# that, if possible, averages after each transform, but this will incur
# a lot of overhead because of the many Python calls required.
kwargs = dict(func=func, average=average, freq_sl=freq_sl)
if epoch.nbytes > 10e6:
spect = np.apply_along_axis(_decomp_aggregate_mask, -1, epoch, **kwargs)
else:
spect = _decomp_aggregate_mask(epoch, **kwargs)
return spect
def _check_nfft(n, n_fft, n_per_seg, n_overlap):
"""Ensure n_fft, n_per_seg and n_overlap make sense."""
if n_per_seg is None and n_fft > n:
raise ValueError(
"If n_per_seg is None n_fft is not allowed to be > "
"n_times. If you want zero-padding, you have to set "
f"n_per_seg to relevant length. Got n_fft of {n_fft} while"
f" signal length is {n}."
)
n_per_seg = n_fft if n_per_seg is None or n_per_seg > n_fft else n_per_seg
n_per_seg = n if n_per_seg > n else n_per_seg
if n_overlap >= n_per_seg:
raise ValueError(
"n_overlap cannot be greater than n_per_seg (or n_fft). Got n_overlap "
f"of {n_overlap} while n_per_seg is {n_per_seg}."
)
return n_fft, n_per_seg, n_overlap
@verbose
def psd_array_welch(
x,
sfreq,
fmin=0,
fmax=np.inf,
n_fft=256,
n_overlap=0,
n_per_seg=None,
n_jobs=None,
average="mean",
window="hamming",
remove_dc=True,
*,
output="power",
verbose=None,
):
"""Compute power spectral density (PSD) using Welch's method.
Welch's method is described in :footcite:t:`Welch1967`.
Parameters
----------
x : array, shape=(..., n_times)
The data to compute PSD from.
sfreq : float
The sampling frequency.
fmin : float
The lower frequency of interest.
fmax : float
The upper frequency of interest.
n_fft : int
The length of FFT used, must be ``>= n_per_seg`` (default: 256).
The segments will be zero-padded if ``n_fft > n_per_seg``.
n_overlap : int
The number of points of overlap between segments. Will be adjusted
to be <= n_per_seg. The default value is 0.
n_per_seg : int | None
Length of each Welch segment (windowed with a Hamming window). Defaults
to None, which sets n_per_seg equal to n_fft.
%(n_jobs)s
%(average_psd)s
.. versionadded:: 0.19.0
%(window_psd)s
.. versionadded:: 0.22.0
%(remove_dc)s
output : str
The format of the returned ``psds`` array, ``'complex'`` or
``'power'``:
* ``'power'`` : the power spectral density is returned.
* ``'complex'`` : the complex fourier coefficients are returned per
window.
.. versionadded:: 1.4.0
%(verbose)s
Returns
-------
psds : ndarray, shape (..., n_freqs) or (..., n_freqs, n_segments)
The power spectral densities. If ``average='mean`` or
``average='median'``, the returned array will have the same shape
as the input data plus an additional frequency dimension.
If ``average=None``, the returned array will have the same shape as
the input data plus two additional dimensions corresponding to
frequencies and the unaggregated segments, respectively.
freqs : ndarray, shape (n_freqs,)
The frequencies.
Notes
-----
.. versionadded:: 0.14.0
References
----------
.. footbibliography::
"""
_check_option("average", average, (None, False, "mean", "median"))
_check_option("output", output, ("power", "complex"))
detrend = "constant" if remove_dc else False
mode = "complex" if output == "complex" else "psd"
n_fft = _ensure_int(n_fft, "n_fft")
n_overlap = _ensure_int(n_overlap, "n_overlap")
if n_per_seg is not None:
n_per_seg = _ensure_int(n_per_seg, "n_per_seg")
if average is False:
average = None
dshape = x.shape[:-1]
n_times = x.shape[-1]
x = x.reshape(-1, n_times)
# Prep the PSD
n_fft, n_per_seg, n_overlap = _check_nfft(n_times, n_fft, n_per_seg, n_overlap)
win_size = n_fft / float(sfreq)
logger.info(f"Effective window size : {win_size:0.3f} (s)")
freqs = np.arange(n_fft // 2 + 1, dtype=float) * (sfreq / n_fft)
freq_mask = (freqs >= fmin) & (freqs <= fmax)
if not freq_mask.any():
raise ValueError(f"No frequencies found between fmin={fmin} and fmax={fmax}")
freq_sl = slice(*(np.where(freq_mask)[0][[0, -1]] + [0, 1]))
del freq_mask
freqs = freqs[freq_sl]
# Parallelize across first N-1 dimensions
logger.debug(
f"Spectogram using {n_fft}-point FFT on {n_per_seg} samples with "
f"{n_overlap} overlap and {window} window"
)
parallel, my_spect_func, n_jobs = parallel_func(_spect_func, n_jobs=n_jobs)
_func = partial(
spectrogram,
detrend=detrend,
noverlap=n_overlap,
nperseg=n_per_seg,
nfft=n_fft,
fs=sfreq,
window=window,
mode=mode,
)
if np.any(np.isnan(x)):
good_mask = ~np.isnan(x)
# NaNs originate from annot, so must match for all channels. Note that we CANNOT
# use np.testing.assert_allclose() here; it is strict about shapes/broadcasting
assert np.allclose(good_mask, good_mask[[0]], equal_nan=True)
t_onsets, t_offsets = _mask_to_onsets_offsets(good_mask[0])
x_splits = [x[..., t_ons:t_off] for t_ons, t_off in zip(t_onsets, t_offsets)]
# weights reflect the number of samples used from each span. For spans longer
# than `n_per_seg`, trailing samples may be discarded. For spans shorter than
# `n_per_seg`, the wrapped function (`scipy.signal.spectrogram`) automatically
# reduces `n_per_seg` to match the span length (with a warning).
step = n_per_seg - n_overlap
span_lengths = [span.shape[-1] for span in x_splits]
weights = [
w if w < n_per_seg else w - ((w - n_overlap) % step) for w in span_lengths
]
agg_func = partial(np.average, weights=weights)
if n_jobs > 1:
logger.info(
f"Data split into {len(x_splits)} (probably unequal) chunks due to "
'"bad_*" annotations. Parallelization may be sub-optimal.'
)
if (np.array(span_lengths) < n_per_seg).any():
logger.info(
"At least one good data span is shorter than n_per_seg, and will be "
"analyzed with a shorter window than the rest of the file."
)
def func(*args, **kwargs):
# swallow SciPy warnings caused by short good data spans
with warnings.catch_warnings():
warnings.filterwarnings(
action="ignore",
module="scipy",
category=UserWarning,
message=r"nperseg = \d+ is greater than input length",
)
return _func(*args, **kwargs)
else:
x_splits = [arr for arr in np.array_split(x, n_jobs) if arr.size != 0]
agg_func = np.concatenate
func = _func
f_spect = parallel(
my_spect_func(d, func=func, freq_sl=freq_sl, average=average, output=output)
for d in x_splits
)
psds = agg_func(f_spect, axis=0)
shape = dshape + (len(freqs),)
if average is None:
shape = shape + (-1,)
psds.shape = shape
return psds, freqs
|