1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
|
"""Container classes for spectral data."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from copy import deepcopy
from functools import partial
from inspect import signature
import numpy as np
from .._fiff.meas_info import ContainsMixin, Info
from .._fiff.pick import _pick_data_channels, _picks_to_idx, pick_info
from ..channels.channels import UpdateChannelsMixin
from ..channels.layout import _merge_ch_data, find_layout
from ..defaults import (
_BORDER_DEFAULT,
_EXTRAPOLATE_DEFAULT,
_INTERPOLATION_DEFAULT,
_handle_default,
)
from ..html_templates import _get_html_template
from ..utils import (
GetEpochsMixin,
_build_data_frame,
_check_method_kwargs,
_check_pandas_index_arguments,
_check_pandas_installed,
_check_sphere,
_time_mask,
_validate_type,
fill_doc,
legacy,
logger,
object_diff,
repr_html,
verbose,
warn,
)
from ..utils.check import (
_check_fname,
_check_option,
_import_h5io_funcs,
_is_numeric,
check_fname,
)
from ..utils.misc import _pl
from ..utils.spectrum import _get_instance_type_string, _split_psd_kwargs
from ..viz.topo import _plot_timeseries, _plot_timeseries_unified, _plot_topo
from ..viz.topomap import _make_head_outlines, _prepare_topomap_plot, plot_psds_topomap
from ..viz.utils import (
_format_units_psd,
_get_plot_ch_type,
_make_combine_callable,
_plot_psd,
_prepare_sensor_names,
plt_show,
)
from .multitaper import _psd_from_mt, psd_array_multitaper
from .psd import _check_nfft, psd_array_welch
class SpectrumMixin:
"""Mixin providing spectral plotting methods to sensor-space containers."""
@legacy(alt=".compute_psd().plot()")
@verbose
def plot_psd(
self,
fmin=0,
fmax=np.inf,
tmin=None,
tmax=None,
picks=None,
proj=False,
reject_by_annotation=True,
*,
method="auto",
average=False,
dB=True,
estimate="power",
xscale="linear",
area_mode="std",
area_alpha=0.33,
color="black",
line_alpha=None,
spatial_colors=True,
sphere=None,
exclude="bads",
ax=None,
show=True,
n_jobs=1,
verbose=None,
**method_kw,
):
"""%(plot_psd_doc)s.
Parameters
----------
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(reject_by_annotation_psd)s
%(method_plot_psd_auto)s
%(average_plot_psd)s
%(dB_plot_psd)s
%(estimate_plot_psd)s
%(xscale_plot_psd)s
%(area_mode_plot_psd)s
%(area_alpha_plot_psd)s
%(color_plot_psd)s
%(line_alpha_plot_psd)s
%(spatial_colors_psd)s
%(sphere_topomap_auto)s
.. versionadded:: 0.22.0
exclude : list of str | 'bads'
Channels names to exclude from being shown. If 'bads', the bad
channels are excluded. Pass an empty list to plot all channels
(including channels marked "bad", if any).
.. versionadded:: 0.24.0
%(ax_plot_psd)s
%(show)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Returns
-------
fig : instance of Figure
Figure with frequency spectra of the data channels.
Notes
-----
%(notes_plot_psd_meth)s
"""
init_kw, plot_kw = _split_psd_kwargs(plot_fun=Spectrum.plot)
return self.compute_psd(**init_kw).plot(**plot_kw)
@legacy(alt=".compute_psd().plot_topo()")
@verbose
def plot_psd_topo(
self,
tmin=None,
tmax=None,
fmin=0,
fmax=100,
proj=False,
*,
method="auto",
dB=True,
layout=None,
color="w",
fig_facecolor="k",
axis_facecolor="k",
axes=None,
block=False,
show=True,
n_jobs=None,
verbose=None,
**method_kw,
):
"""Plot power spectral density, separately for each channel.
Parameters
----------
%(tmin_tmax_psd)s
%(fmin_fmax_psd_topo)s
%(proj_psd)s
%(method_plot_psd_auto)s
%(dB_spectrum_plot_topo)s
%(layout_spectrum_plot_topo)s
%(color_spectrum_plot_topo)s
%(fig_facecolor)s
%(axis_facecolor)s
%(axes_spectrum_plot_topo)s
%(block)s
%(show)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s Defaults to ``dict(n_fft=2048)``.
Returns
-------
fig : instance of matplotlib.figure.Figure
Figure distributing one image per channel across sensor topography.
"""
init_kw, plot_kw = _split_psd_kwargs(plot_fun=Spectrum.plot_topo)
return self.compute_psd(**init_kw).plot_topo(**plot_kw)
@legacy(alt=".compute_psd().plot_topomap()")
@verbose
def plot_psd_topomap(
self,
bands=None,
tmin=None,
tmax=None,
ch_type=None,
*,
proj=False,
method="auto",
normalize=False,
agg_fun=None,
dB=False,
sensors=True,
show_names=False,
mask=None,
mask_params=None,
contours=0,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="auto",
units=None,
axes=None,
show=True,
n_jobs=None,
verbose=None,
**method_kw,
):
"""Plot scalp topography of PSD for chosen frequency bands.
Parameters
----------
%(bands_psd_topo)s
%(tmin_tmax_psd)s
%(ch_type_topomap_psd)s
%(proj_psd)s
%(method_plot_psd_auto)s
%(normalize_psd_topo)s
%(agg_fun_psd_topo)s
%(dB_plot_topomap)s
%(sensors_topomap)s
%(show_names_topomap)s
%(mask_evoked_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
%(border_topomap)s
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap_psd)s
%(cnorm)s
.. versionadded:: 1.2
%(colorbar_topomap)s
%(cbar_fmt_topomap_psd)s
%(units_topomap)s
%(axes_spectrum_plot_topomap)s
%(show)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Returns
-------
fig : instance of Figure
Figure showing one scalp topography per frequency band.
"""
init_kw, plot_kw = _split_psd_kwargs(plot_fun=Spectrum.plot_topomap)
return self.compute_psd(**init_kw).plot_topomap(**plot_kw)
def _set_legacy_nfft_default(self, tmin, tmax, method, method_kw):
"""Update method_kw with legacy n_fft default for plot_psd[_topo]().
This method returns ``None`` and has a side effect of (maybe) updating
the ``method_kw`` dict.
"""
if method == "welch" and method_kw.get("n_fft") is None:
tm = _time_mask(self.times, tmin, tmax, sfreq=self.info["sfreq"])
method_kw["n_fft"] = min(np.sum(tm), 2048)
class BaseSpectrum(ContainsMixin, UpdateChannelsMixin):
"""Base class for Spectrum and EpochsSpectrum."""
def __init__(
self,
inst,
method,
fmin,
fmax,
tmin,
tmax,
picks,
exclude,
proj,
remove_dc,
*,
n_jobs,
verbose=None,
**method_kw,
):
# arg checking
self._sfreq = inst.info["sfreq"]
if np.isfinite(fmax) and (fmax > self.sfreq / 2):
raise ValueError(
f"Requested fmax ({fmax} Hz) must not exceed ½ the sampling "
f'frequency of the data ({0.5 * inst.info["sfreq"]} Hz).'
)
# method
self._inst_type = type(inst)
method = _validate_method(method, _get_instance_type_string(self))
psd_funcs = dict(welch=psd_array_welch, multitaper=psd_array_multitaper)
# triage method and kwargs. partial() doesn't check validity of kwargs,
# so we do it manually to save compute time if any are invalid.
psd_funcs = dict(welch=psd_array_welch, multitaper=psd_array_multitaper)
_check_method_kwargs(psd_funcs[method], method_kw, msg=f'PSD method "{method}"')
self._psd_func = partial(psd_funcs[method], remove_dc=remove_dc, **method_kw)
# apply proj if desired
if proj:
inst = inst.copy().apply_proj()
self.inst = inst
# prep times and picks
self._time_mask = _time_mask(inst.times, tmin, tmax, sfreq=self.sfreq)
self._picks = _picks_to_idx(
inst.info, picks, "data", exclude, with_ref_meg=False
)
# add the info object. bads and non-data channels were dropped by
# _picks_to_idx() so we update the info accordingly:
self.info = pick_info(inst.info, sel=self._picks, copy=True)
# assign some attributes
self.preload = True # needed for __getitem__, never False
self._method = method
# self._dims may also get updated by child classes
self._dims = (
"channel",
"freq",
)
if method_kw.get("average", "") in (None, False):
self._dims += ("segment",)
if self._returns_complex_tapers(**method_kw):
self._dims = self._dims[:-1] + ("taper",) + self._dims[-1:]
# record data type (for repr and html_repr)
self._data_type = (
"Fourier Coefficients"
if method_kw.get("output") == "complex"
else "Power Spectrum"
)
# set nave (child constructor overrides this for Evoked input)
self._nave = None
def __eq__(self, other):
"""Test equivalence of two Spectrum instances."""
return object_diff(vars(self), vars(other)) == ""
def __getstate__(self):
"""Prepare object for serialization."""
inst_type_str = _get_instance_type_string(self)
out = dict(
method=self.method,
data=self._data,
sfreq=self.sfreq,
dims=self._dims,
freqs=self.freqs,
inst_type_str=inst_type_str,
data_type=self._data_type,
info=self.info,
nave=self.nave,
weights=self.weights,
)
return out
def __setstate__(self, state):
"""Unpack from serialized format."""
from ..epochs import Epochs
from ..evoked import Evoked
from ..io import Raw
self._method = state["method"]
self._data = state["data"]
self._freqs = state["freqs"]
self._dims = state["dims"]
self._sfreq = state["sfreq"]
self.info = Info(**state["info"])
self._data_type = state["data_type"]
self._nave = state.get("nave") # objs saved before #11282 won't have `nave`
self._weights = state.get("weights") # objs saved before #12747 won't have
self.preload = True
# instance type
inst_types = dict(Raw=Raw, Epochs=Epochs, Evoked=Evoked, Array=np.ndarray)
self._inst_type = inst_types[state["inst_type_str"]]
def __repr__(self):
"""Build string representation of the Spectrum object."""
inst_type_str = _get_instance_type_string(self)
# shape & dimension names
dims = " × ".join(
[f"{dim[0]} {dim[1]}s" for dim in zip(self.shape, self._dims)]
)
freq_range = f"{self.freqs[0]:0.1f}-{self.freqs[-1]:0.1f} Hz"
return (
f"<{self._data_type} (from {inst_type_str}, "
f"{self.method} method) | {dims}, {freq_range}>"
)
@repr_html
def _repr_html_(self, caption=None):
"""Build HTML representation of the Spectrum object."""
inst_type_str = _get_instance_type_string(self)
units = [f"{ch_type}: {unit}" for ch_type, unit in self.units().items()]
t = _get_html_template("repr", "spectrum.html.jinja")
t = t.render(spectrum=self, inst_type=inst_type_str, units=units)
return t
def _check_values(self):
"""Check PSD results for correct shape and bad values."""
assert len(self._dims) == self._data.ndim, (self._dims, self._data.ndim)
assert self._data.shape == self._shape
# TODO: should this be more fine-grained (report "chan X in epoch Y")?
ch_dim = self._dims.index("channel")
dims = list(range(self._data.ndim))
dims.pop(ch_dim)
# take min() across all but the channel axis
# (if the abs becomes memory intensive we could iterate over channels)
use_data = self._data
if use_data.dtype.kind == "c":
use_data = np.abs(use_data)
bad_value = use_data.min(axis=tuple(dims)) == 0
bad_value &= ~np.isin(self.ch_names, self.info["bads"])
if bad_value.any():
chs = np.array(self.ch_names)[bad_value].tolist()
s = _pl(bad_value.sum())
warn(f'Zero value in spectrum for channel{s} {", ".join(chs)}', UserWarning)
def _returns_complex_tapers(self, **method_kw):
return self.method == "multitaper" and method_kw.get("output") == "complex"
def _compute_spectra(self, data, fmin, fmax, n_jobs, method_kw, verbose):
# make the spectra
result = self._psd_func(
data, self.sfreq, fmin=fmin, fmax=fmax, n_jobs=n_jobs, verbose=verbose
)
# assign ._data (handling unaggregated multitaper output)
if self._returns_complex_tapers(**method_kw):
fourier_coefs, freqs, weights = result
self._data = fourier_coefs
self._weights = weights
else:
psds, freqs = result
self._data = psds
self._weights = None
# assign properties (._data already assigned above)
self._freqs = freqs
# this is *expected* shape, it gets asserted later in _check_values()
# (and then deleted afterwards)
self._shape = (len(self.ch_names), len(self.freqs))
# append n_welch_segments (use "" as .get() default since None considered valid)
if method_kw.get("average", "") in (None, False):
n_welch_segments = _compute_n_welch_segments(data.shape[-1], method_kw)
self._shape += (n_welch_segments,)
# insert n_tapers
if self._returns_complex_tapers(**method_kw):
self._shape = self._shape[:-1] + (self._weights.size,) + self._shape[-1:]
# we don't need these anymore, and they make save/load harder
del self._picks
del self._psd_func
del self._time_mask
@property
def _detrend_picks(self):
"""Provide compatibility with __iter__."""
return list()
@property
def ch_names(self):
return self.info["ch_names"]
@property
def data(self):
return self._data
@property
def freqs(self):
return self._freqs
@property
def method(self):
return self._method
@property
def nave(self):
return self._nave
@property
def weights(self):
return self._weights
@property
def sfreq(self):
return self._sfreq
@property
def shape(self):
return self._data.shape
def copy(self):
"""Return copy of the Spectrum instance.
Returns
-------
spectrum : instance of Spectrum
A copy of the object.
"""
return deepcopy(self)
@fill_doc
def get_data(
self, picks=None, exclude="bads", fmin=0, fmax=np.inf, return_freqs=False
):
"""Get spectrum data in NumPy array format.
Parameters
----------
%(picks_good_data_noref)s
%(exclude_spectrum_get_data)s
%(fmin_fmax_psd)s
return_freqs : bool
Whether to return the frequency bin values for the requested
frequency range. Default is ``False``.
Returns
-------
data : array
The requested data in a NumPy array.
freqs : array
The frequency values for the requested range. Only returned if
``return_freqs`` is ``True``.
"""
picks = _picks_to_idx(
self.info, picks, "data_or_ica", exclude=exclude, with_ref_meg=False
)
fmin_idx = np.searchsorted(self.freqs, fmin)
fmax_idx = np.searchsorted(self.freqs, fmax, side="right")
freq_picks = np.arange(fmin_idx, fmax_idx)
freq_axis = self._dims.index("freq")
chan_axis = self._dims.index("channel")
# normally there's a risk of np.take reducing array dimension if there
# were only one channel or frequency selected, but `_picks_to_idx`
# always returns an array of picks, and np.arange always returns an
# array of freq bin indices, so we're safe; the result will always be
# 2D.
data = self._data.take(picks, chan_axis).take(freq_picks, freq_axis)
if return_freqs:
freqs = self._freqs[fmin_idx:fmax_idx]
return (data, freqs)
return data
@fill_doc
def plot(
self,
*,
picks=None,
average=False,
dB=True,
amplitude=False,
xscale="linear",
ci="sd",
ci_alpha=0.3,
color="black",
alpha=None,
spatial_colors=True,
sphere=None,
exclude=(),
axes=None,
show=True,
):
"""%(plot_psd_doc)s.
Parameters
----------
%(picks_all_data_noref)s
.. versionchanged:: 1.5
In version 1.5, the default behavior changed so that all
:term:`data channels` (not just "good" data channels) are shown by
default.
average : bool
Whether to average across channels before plotting. If ``True``, interactive
plotting of scalp topography is disabled, and parameters ``ci`` and
``ci_alpha`` control the style of the confidence band around the mean.
Default is ``False``.
%(dB_spectrum_plot)s
amplitude : bool
Whether to plot an amplitude spectrum (``True``) or power spectrum
(``False``).
.. versionchanged:: 1.8
In version 1.8, the default changed to ``amplitude=False``.
%(xscale_plot_psd)s
ci : float | 'sd' | 'range' | None
Type of confidence band drawn around the mean when ``average=True``. If
``'sd'`` the band spans ±1 standard deviation across channels. If
``'range'`` the band spans the range across channels at each frequency. If a
:class:`float`, it indicates the (bootstrapped) confidence interval to
display, and must satisfy ``0 < ci <= 100``. If ``None``, no band is drawn.
Default is ``sd``.
ci_alpha : float
Opacity of the confidence band. Must satisfy ``0 <= ci_alpha <= 1``. Default
is 0.3.
%(color_plot_psd)s
alpha : float | None
Opacity of the spectrum line(s). If :class:`float`, must satisfy
``0 <= alpha <= 1``. If ``None``, opacity will be ``1`` when
``average=True`` and ``0.1`` when ``average=False``. Default is ``None``.
%(spatial_colors_psd)s
%(sphere_topomap_auto)s
%(exclude_spectrum_plot)s
.. versionchanged:: 1.5
In version 1.5, the default behavior changed from ``exclude='bads'`` to
``exclude=()``.
%(axes_spectrum_plot_topomap)s
%(show)s
Returns
-------
fig : instance of matplotlib.figure.Figure
Figure with spectra plotted in separate subplots for each channel type.
"""
# Must nest this _mpl_figure import because of the BACKEND global
# stuff
from ..viz._mpl_figure import _line_figure, _split_picks_by_type
# arg checking
ci = _check_ci(ci)
_check_option("xscale", xscale, ("log", "linear"))
sphere = _check_sphere(sphere, self.info)
# defaults
scalings = _handle_default("scalings", None)
titles = _handle_default("titles", None)
units = _handle_default("units", None)
_validate_type(amplitude, bool, "amplitude")
estimate = "amplitude" if amplitude else "power"
logger.info(f"Plotting {estimate} spectral density ({dB=}).")
# split picks by channel type
picks = _picks_to_idx(
self.info, picks, "data", exclude=exclude, with_ref_meg=False
)
(picks_list, units_list, scalings_list, titles_list) = _split_picks_by_type(
self, picks, units, scalings, titles
)
# prepare data (e.g. aggregate across dims, convert complex to power)
psd_list = [
self._prepare_data_for_plot(
self._data.take(_p, axis=self._dims.index("channel"))
)
for _p in picks_list
]
# initialize figure
fig, axes = _line_figure(self, axes, picks=picks)
# don't add ylabels & titles if figure has unexpected number of axes
make_label = len(axes) == len(fig.axes)
# Plot Frequency [Hz] xlabel only on the last axis
xlabels_list = [False] * (len(axes) - 1) + [True]
# plot
_plot_psd(
self,
fig,
self.freqs,
psd_list,
picks_list,
titles_list,
units_list,
scalings_list,
axes,
make_label,
color,
area_mode=ci,
area_alpha=ci_alpha,
dB=dB,
estimate=estimate,
average=average,
spatial_colors=spatial_colors,
xscale=xscale,
line_alpha=alpha,
sphere=sphere,
xlabels_list=xlabels_list,
)
plt_show(show, fig)
return fig
@fill_doc
def plot_topo(
self,
*,
dB=True,
layout=None,
color="w",
fig_facecolor="k",
axis_facecolor="k",
axes=None,
block=False,
show=True,
):
"""Plot power spectral density, separately for each channel.
Parameters
----------
%(dB_spectrum_plot_topo)s
%(layout_spectrum_plot_topo)s
%(color_spectrum_plot_topo)s
%(fig_facecolor)s
%(axis_facecolor)s
%(axes_spectrum_plot_topo)s
%(block)s
%(show)s
Returns
-------
fig : instance of matplotlib.figure.Figure
Figure distributing one image per channel across sensor topography.
"""
if layout is None:
layout = find_layout(self.info)
psds, freqs = self.get_data(return_freqs=True)
# prepare data (e.g. aggregate across dims, convert complex to power)
psds = self._prepare_data_for_plot(psds)
if dB:
psds = 10 * np.log10(psds)
y_label = "dB"
else:
y_label = "Power"
show_func = partial(
_plot_timeseries_unified, data=[psds], color=color, times=[freqs]
)
click_func = partial(_plot_timeseries, data=[psds], color=color, times=[freqs])
picks = _pick_data_channels(self.info)
info = pick_info(self.info, picks)
fig = _plot_topo(
info,
times=freqs,
show_func=show_func,
click_func=click_func,
layout=layout,
axis_facecolor=axis_facecolor,
fig_facecolor=fig_facecolor,
x_label="Frequency (Hz)",
unified=True,
y_label=y_label,
axes=axes,
)
plt_show(show, block=block)
return fig
@fill_doc
def plot_topomap(
self,
bands=None,
ch_type=None,
*,
normalize=False,
agg_fun=None,
dB=False,
sensors=True,
show_names=False,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="auto",
units=None,
axes=None,
show=True,
):
"""Plot scalp topography of PSD for chosen frequency bands.
Parameters
----------
%(bands_psd_topo)s
%(ch_type_topomap_psd)s
%(normalize_psd_topo)s
%(agg_fun_psd_topo)s
%(dB_plot_topomap)s
%(sensors_topomap)s
%(show_names_topomap)s
%(mask_evoked_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
%(border_topomap)s
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap_psd)s
%(cnorm)s
%(colorbar_topomap)s
%(cbar_fmt_topomap_psd)s
%(units_topomap)s
%(axes_spectrum_plot_topomap)s
%(show)s
Returns
-------
fig : instance of Figure
Figure showing one scalp topography per frequency band.
"""
ch_type = _get_plot_ch_type(self, ch_type)
if units is None:
units = _handle_default("units", None)
unit = units[ch_type] if hasattr(units, "keys") else units
scalings = _handle_default("scalings", None)
scaling = scalings[ch_type]
(
picks,
pos,
merge_channels,
names,
ch_type,
sphere,
clip_origin,
) = _prepare_topomap_plot(self, ch_type, sphere=sphere)
outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
psds, freqs = self.get_data(picks=picks, return_freqs=True)
# prepare data (e.g. aggregate across dims, convert complex to power)
psds = self._prepare_data_for_plot(psds)
psds *= scaling**2
if merge_channels:
psds, names = _merge_ch_data(psds, ch_type, names, method="mean")
names = _prepare_sensor_names(names, show_names)
return plot_psds_topomap(
psds=psds,
freqs=freqs,
pos=pos,
bands=bands,
ch_type=ch_type,
normalize=normalize,
agg_fun=agg_fun,
dB=dB,
sensors=sensors,
names=names,
mask=mask,
mask_params=mask_params,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=cmap,
vlim=vlim,
cnorm=cnorm,
colorbar=colorbar,
cbar_fmt=cbar_fmt,
unit=unit,
axes=axes,
show=show,
)
def _prepare_data_for_plot(self, data):
# handle unaggregated Welch
if "segment" in self._dims:
logger.info("Aggregating Welch estimates (median) before plotting...")
data = np.nanmedian(data, axis=self._dims.index("segment"))
# handle unaggregated multitaper (also handles complex -> power)
elif "taper" in self._dims:
logger.info("Aggregating multitaper estimates before plotting...")
data = _psd_from_mt(data, self.weights)
# handle complex data (should only be Welch remaining)
if np.iscomplexobj(data):
data = (data * data.conj()).real # Scaling may be slightly off
# handle epochs
if "epoch" in self._dims:
# XXX TODO FIXME decide how to properly aggregate across repeated
# measures (epochs) and non-repeated but correlated measures
# (channels) when calculating stddev or a CI. For across-channel
# aggregation, doi:10.1007/s10162-012-0321-8 used hotellings T**2
# with a correction factor that estimated data rank using monte
# carlo simulations; seems like we could use our own data rank
# estimation methods to similar effect. Their exact approach used
# complex spectra though, here we've already converted to power;
# not sure if that makes an important difference? Anyway that
# aggregation would need to happen in the _plot_psd function
# though, not here... for now we just average like we always did.
# only log message if averaging will actually have an effect
if data.shape[0] > 1:
logger.info("Averaging across epochs before plotting...")
# epoch axis should always be the first axis
data = data.mean(axis=0)
return data
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Save spectrum data to disk (in HDF5 format).
Parameters
----------
fname : path-like
Path of file to save to.
%(overwrite)s
%(verbose)s
See Also
--------
mne.time_frequency.read_spectrum
"""
_, write_hdf5 = _import_h5io_funcs()
check_fname(fname, "spectrum", (".h5", ".hdf5"))
fname = _check_fname(fname, overwrite=overwrite, verbose=verbose)
out = self.__getstate__()
write_hdf5(fname, out, overwrite=overwrite, title="mnepython")
@verbose
def to_data_frame(
self, picks=None, index=None, copy=True, long_format=False, *, verbose=None
):
"""Export data in tabular structure as a pandas DataFrame.
Channels are converted to columns in the DataFrame. By default,
an additional column "freq" is added, unless ``index='freq'``
(in which case frequency values form the DataFrame's index).
Parameters
----------
%(picks_all)s
index : str | list of str | None
Kind of index to use for the DataFrame. If ``None``, a sequential
integer index (:class:`pandas.RangeIndex`) will be used. If a
:class:`str`, a :class:`pandas.Index` will be used (see Notes). If
a list of two or more string values, a :class:`pandas.MultiIndex`
will be used. Defaults to ``None``.
%(copy_df)s
%(long_format_df_spe)s
%(verbose)s
Returns
-------
%(df_return)s
Notes
-----
Valid values for ``index`` depend on whether the Spectrum was created
from continuous data (:class:`~mne.io.Raw`, :class:`~mne.Evoked`) or
discontinuous data (:class:`~mne.Epochs`). For continuous data, only
``None`` or ``'freq'`` is supported. For discontinuous data, additional
valid values are ``'epoch'`` and ``'condition'``, or a :class:`list`
comprising some of the valid string values (e.g.,
``['freq', 'epoch']``).
"""
# check pandas once here, instead of in each private utils function
pd = _check_pandas_installed() # noqa
# triage for Epoch-derived or unaggregated spectra
from_epo = _get_instance_type_string(self) == "Epochs"
unagg_welch = "segment" in self._dims
unagg_mt = "taper" in self._dims
# arg checking
valid_index_args = ["freq"]
if from_epo:
valid_index_args += ["epoch", "condition"]
index = _check_pandas_index_arguments(index, valid_index_args)
# get data
picks = _picks_to_idx(self.info, picks, "all", exclude=())
data = self.get_data(picks)
if copy:
data = data.copy()
# reshape
if unagg_mt:
data = np.moveaxis(data, self._dims.index("freq"), -2)
if from_epo:
n_epochs, n_picks, n_freqs = data.shape[:3]
else:
n_epochs, n_picks, n_freqs = (1,) + data.shape[:2]
n_segs = data.shape[-1] if unagg_mt or unagg_welch else 1
data = np.moveaxis(data, self._dims.index("channel"), -1)
# at this point, should be ([epoch], freq, [segment/taper], channel)
data = data.reshape(n_epochs * n_freqs * n_segs, n_picks)
# prepare extra columns / multiindex
mindex = list()
default_index = list()
if from_epo:
rev_event_id = {v: k for k, v in self.event_id.items()}
_conds = [rev_event_id[k] for k in self.events[:, 2]]
conditions = np.repeat(_conds, n_freqs * n_segs)
epoch_nums = np.repeat(self.selection, n_freqs * n_segs)
mindex.extend([("condition", conditions), ("epoch", epoch_nums)])
default_index.extend(["condition", "epoch"])
freqs = np.tile(np.repeat(self.freqs, n_segs), n_epochs)
mindex.append(("freq", freqs))
default_index.append("freq")
if unagg_mt or unagg_welch:
name = "taper" if unagg_mt else "segment"
seg_nums = np.tile(np.arange(n_segs), n_epochs * n_freqs)
mindex.append((name, seg_nums))
default_index.append(name)
# build DataFrame
df = _build_data_frame(
self, data, picks, long_format, mindex, index, default_index=default_index
)
return df
def units(self, latex=False):
"""Get the spectrum units for each channel type.
Parameters
----------
latex : bool
Whether to format the unit strings as LaTeX. Default is ``False``.
Returns
-------
units : dict
Mapping from channel type to a string representation of the units
for that channel type.
"""
units = _handle_default("si_units", None)
return {
ch_type: _format_units_psd(units[ch_type], power=True, latex=latex)
for ch_type in sorted(self.get_channel_types(unique=True))
}
@fill_doc
class Spectrum(BaseSpectrum):
"""Data object for spectral representations of continuous data.
.. warning:: The preferred means of creating Spectrum objects from
continuous or averaged data is via the instance methods
:meth:`mne.io.Raw.compute_psd` or
:meth:`mne.Evoked.compute_psd`. Direct class instantiation
is not supported.
Parameters
----------
inst : instance of Raw or Evoked
The data from which to compute the frequency spectrum.
%(method_psd_auto)s
``'auto'`` (default) uses Welch's method for continuous data
and multitaper for :class:`~mne.Evoked` data.
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(exclude_psd)s
%(proj_psd)s
%(remove_dc)s
%(reject_by_annotation_psd)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Attributes
----------
ch_names : list
The channel names.
freqs : array
Frequencies at which the amplitude, power, or fourier coefficients
have been computed.
%(info_not_none)s
method : ``'welch'``| ``'multitaper'``
The method used to compute the spectrum.
nave : int | None
The number of trials averaged together when generating the spectrum. ``None``
indicates no averaging is known to have occurred.
weights : array | None
The weights for each taper. Only present if spectra computed with
``method='multitaper'`` and ``output='complex'``.
.. versionadded:: 1.8
See Also
--------
EpochsSpectrum
SpectrumArray
mne.io.Raw.compute_psd
mne.Epochs.compute_psd
mne.Evoked.compute_psd
References
----------
.. footbibliography::
"""
def __init__(
self,
inst,
method,
fmin,
fmax,
tmin,
tmax,
picks,
exclude,
proj,
remove_dc,
reject_by_annotation,
*,
n_jobs,
verbose=None,
**method_kw,
):
from ..io import BaseRaw
# triage reading from file
if isinstance(inst, dict):
self.__setstate__(inst)
return
# do the basic setup
super().__init__(
inst,
method,
fmin,
fmax,
tmin,
tmax,
picks,
exclude,
proj,
remove_dc,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
# get just the data we want
if isinstance(self.inst, BaseRaw):
start, stop = np.where(self._time_mask)[0][[0, -1]]
rba = "NaN" if reject_by_annotation else None
data = self.inst.get_data(
self._picks, start, stop + 1, reject_by_annotation=rba
)
if np.any(np.isnan(data)) and method == "multitaper":
raise NotImplementedError(
'Cannot use method="multitaper" when reject_by_annotation=True. '
'Please use method="welch" instead.'
)
else: # Evoked
data = self.inst.data[self._picks][:, self._time_mask]
# set nave
self._nave = getattr(inst, "nave", None)
# compute the spectra
self._compute_spectra(data, fmin, fmax, n_jobs, method_kw, verbose)
# check for correct shape and bad values
self._check_values()
del self._shape # calculated from self._data henceforth
# save memory
del self.inst
def __getitem__(self, item):
"""Get Spectrum data.
Parameters
----------
item : int | slice | array-like
Indexing is similar to a :class:`NumPy array<numpy.ndarray>`; see
Notes.
Returns
-------
%(getitem_spectrum_return)s
Notes
-----
Integer-, list-, and slice-based indexing is possible:
- ``spectrum[0]`` gives all frequency bins in the first channel
- ``spectrum[:3]`` gives all frequency bins in the first 3 channels
- ``spectrum[[0, 2], 5]`` gives the value in the sixth frequency bin of
the first and third channels
- ``spectrum[(4, 7)]`` is the same as ``spectrum[4, 7]``.
.. note::
Unlike :class:`~mne.io.Raw` objects (which returns a tuple of the
requested data values and the corresponding times), accessing
:class:`~mne.time_frequency.Spectrum` values via subscript does
**not** return the corresponding frequency bin values. If you need
them, use ``spectrum.freqs[freq_indices]`` or
``spectrum.get_data(..., return_freqs=True)``.
"""
from ..io import BaseRaw
self._parse_get_set_params = partial(BaseRaw._parse_get_set_params, self)
return BaseRaw._getitem(self, item, return_times=False)
def _check_data_shape(data, info, freqs, dim_names, weights, is_epoched):
if data.ndim != len(dim_names):
raise ValueError(
f"Expected data to have {len(dim_names)} dimensions, got {data.ndim}."
)
allowed_dims = ["epoch", "channel", "freq", "segment", "taper"]
if not is_epoched:
allowed_dims.remove("epoch")
# TODO maybe we should be nice and allow plural versions of each dimname?
for dim in dim_names:
_check_option("dim_names", dim, allowed_dims)
if "channel" not in dim_names or "freq" not in dim_names:
raise ValueError("Both 'channel' and 'freq' must be present in `dim_names`.")
if list(dim_names).index("channel") != int(is_epoched):
raise ValueError(
f"'channel' must be the {'second' if is_epoched else 'first'} dimension of "
"the data."
)
want_n_chan = _pick_data_channels(info, exclude=()).size
got_n_chan = data.shape[list(dim_names).index("channel")]
if got_n_chan != want_n_chan:
raise ValueError(
f"The number of channels in `data` ({got_n_chan}) must match the number of "
f"good + bad data channels in `info` ({want_n_chan})."
)
# given we limit max array size and ensure channel & freq dims present, only one of
# taper or segment can be present
if "taper" in dim_names:
if dim_names[-2] != "taper": # _psd_from_mt assumes this (called when plotting)
raise ValueError(
"'taper' must be the second to last dimension of the data."
)
# expect weights for each taper
actual = None if weights is None else weights.size
expected = data.shape[list(dim_names).index("taper")]
if actual != expected:
raise ValueError(
f"Expected size of `weights` to be {expected} to match 'n_tapers' in "
f"`data`, got {actual}."
)
elif "segment" in dim_names and dim_names[-1] != "segment":
raise ValueError("'segment' must be the last dimension of the data.")
# freq being in wrong position ruled out by above checks
want_n_freq = freqs.size
got_n_freq = data.shape[list(dim_names).index("freq")]
if got_n_freq != want_n_freq:
raise ValueError(
f"The number of frequencies in `data` ({got_n_freq}) must match the number "
f"of elements in `freqs` ({want_n_freq})."
)
@fill_doc
class SpectrumArray(Spectrum):
"""Data object for precomputed spectral data (in NumPy array format).
Parameters
----------
data : ndarray, shape (n_channels, [n_tapers], n_freqs, [n_segments])
The spectra for each channel.
%(info_not_none)s
%(freqs_tfr_array)s
dim_names : tuple of str
The name of the dimensions in the data, in the order they occur. Must contain
``'channel'`` and ``'freq'``; if data are unaggregated estimates, also include
either a ``'segment'`` (e.g., Welch-like algorithms) or ``'taper'`` (e.g.,
multitaper algorithms) dimension. If including ``'taper'``, you should also pass
a ``weights`` parameter.
.. versionadded:: 1.8
weights : ndarray | None
Weights for the ``'taper'`` dimension, if present (see ``dim_names``).
.. versionadded:: 1.8
%(verbose)s
See Also
--------
mne.create_info
mne.EvokedArray
mne.io.RawArray
EpochsSpectrumArray
Notes
-----
%(notes_spectrum_array)s
.. versionadded:: 1.6
"""
@verbose
def __init__(
self,
data,
info,
freqs,
dim_names=("channel", "freq"),
weights=None,
*,
verbose=None,
):
# (channel, [taper], freq, [segment])
_check_option("data.ndim", data.ndim, (2, 3)) # only allow one extra dimension
_check_data_shape(data, info, freqs, dim_names, weights, is_epoched=False)
self.__setstate__(
dict(
method="unknown",
data=data,
sfreq=info["sfreq"],
dims=dim_names,
freqs=freqs,
inst_type_str="Array",
data_type=(
"Fourier Coefficients"
if np.iscomplexobj(data)
else "Power Spectrum"
),
info=info,
weights=weights,
)
)
@fill_doc
class EpochsSpectrum(BaseSpectrum, GetEpochsMixin):
"""Data object for spectral representations of epoched data.
.. warning:: The preferred means of creating Spectrum objects from Epochs
is via the instance method :meth:`mne.Epochs.compute_psd`.
Direct class instantiation is not supported.
Parameters
----------
inst : instance of Epochs
The data from which to compute the frequency spectrum.
%(method_psd)s
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(exclude_psd)s
%(proj_psd)s
%(remove_dc)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Attributes
----------
ch_names : list
The channel names.
freqs : array
Frequencies at which the amplitude, power, or fourier coefficients
have been computed.
%(info_not_none)s
method : ``'welch'``| ``'multitaper'``
The method used to compute the spectrum.
weights : array | None
The weights for each taper. Only present if spectra computed with
``method='multitaper'`` and ``output='complex'``.
.. versionadded:: 1.8
See Also
--------
EpochsSpectrumArray
Spectrum
mne.Epochs.compute_psd
References
----------
.. footbibliography::
"""
def __init__(
self,
inst,
method,
fmin,
fmax,
tmin,
tmax,
picks,
exclude,
proj,
remove_dc,
*,
n_jobs,
verbose=None,
**method_kw,
):
# triage reading from file
if isinstance(inst, dict):
self.__setstate__(inst)
return
# do the basic setup
super().__init__(
inst,
method,
fmin,
fmax,
tmin,
tmax,
picks,
exclude,
proj,
remove_dc,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
# get just the data we want
data = self.inst._get_data(picks=self._picks, on_empty="raise")[
:, :, self._time_mask
]
# compute the spectra
self._compute_spectra(data, fmin, fmax, n_jobs, method_kw, verbose)
self._dims = ("epoch",) + self._dims
self._shape = (len(self.inst),) + self._shape
# check for correct shape and bad values
self._check_values()
del self._shape
# we need these for to_data_frame()
self.event_id = self.inst.event_id.copy()
self.events = self.inst.events.copy()
self.selection = self.inst.selection.copy()
# we need these for __getitem__()
self.drop_log = deepcopy(self.inst.drop_log)
self._metadata = self.inst.metadata
# save memory
del self.inst
def __getitem__(self, item):
"""Subselect epochs from an EpochsSpectrum.
Parameters
----------
item : int | slice | array-like | str
Access options are the same as for :class:`~mne.Epochs` objects,
see the docstring of :meth:`mne.Epochs.__getitem__` for
explanation.
Returns
-------
%(getitem_epochspectrum_return)s
"""
return super().__getitem__(item)
def __getstate__(self):
"""Prepare object for serialization."""
out = super().__getstate__()
out.update(
metadata=self._metadata,
drop_log=self.drop_log,
event_id=self.event_id,
events=self.events,
selection=self.selection,
)
return out
def __setstate__(self, state):
"""Unpack from serialized format."""
super().__setstate__(state)
self._metadata = state["metadata"]
self.drop_log = state["drop_log"]
self.event_id = state["event_id"]
self.events = state["events"]
self.selection = state["selection"]
def average(self, method="mean"):
"""Average the spectra across epochs.
Parameters
----------
method : 'mean' | 'median' | callable
How to aggregate spectra across epochs. If callable, must take a
:class:`NumPy array<numpy.ndarray>` of shape
``(n_epochs, n_channels, n_freqs)`` and return an array of shape
``(n_channels, n_freqs)``. Default is ``'mean'``.
Returns
-------
spectrum : instance of Spectrum
The aggregated spectrum object.
"""
_validate_type(method, ("str", "callable"), "method")
method = _make_combine_callable(
method, axis=0, valid=("mean", "median"), keepdims=False
)
if not callable(method):
raise ValueError(
'"method" must be a valid string or callable, '
f"got a {type(method).__name__} ({method})."
)
# averaging unaggregated spectral estimates are not supported
if "segment" in self._dims:
raise NotImplementedError(
"Averaging individual Welch segments across epochs is not "
"supported. Consider averaging the signals before computing "
"the Welch spectrum estimates."
)
if "taper" in self._dims:
raise NotImplementedError(
"Averaging multitaper tapers across epochs is not supported. Consider "
"averaging the signals before computing the complex spectrum."
)
# serialize the object and update data, dims, and data type
state = super().__getstate__()
state["nave"] = state["data"].shape[0]
state["data"] = method(state["data"])
state["dims"] = state["dims"][1:]
state["data_type"] = f'Averaged {state["data_type"]}'
defaults = dict(
method=None,
fmin=None,
fmax=None,
tmin=None,
tmax=None,
picks=None,
exclude=(),
proj=None,
remove_dc=None,
reject_by_annotation=None,
n_jobs=None,
verbose=None,
)
return Spectrum(state, **defaults)
@fill_doc
class EpochsSpectrumArray(EpochsSpectrum):
"""Data object for precomputed epoched spectral data (in NumPy array format).
Parameters
----------
data : ndarray, shape (n_epochs, n_channels, [n_tapers], n_freqs, [n_segments])
The spectra for each channel in each epoch.
%(info_not_none)s
%(freqs_tfr_array)s
%(events_epochs)s
%(event_id)s
dim_names : tuple of str
The name of the dimensions in the data, in the order they occur. Must contain
``'channel'`` and ``'freq'``; if data are unaggregated estimates, also include
either a ``'segment'`` (e.g., Welch-like algorithms) or ``'taper'`` (e.g.,
multitaper algorithms) dimension. If including ``'taper'``, you should also pass
a ``weights`` parameter.
.. versionadded:: 1.8
weights : ndarray | None
Weights for the ``'taper'`` dimension, if present (see ``dim_names``).
.. versionadded:: 1.8
%(verbose)s
See Also
--------
mne.create_info
mne.EpochsArray
SpectrumArray
Notes
-----
%(notes_spectrum_array)s
.. versionadded:: 1.6
"""
@verbose
def __init__(
self,
data,
info,
freqs,
events=None,
event_id=None,
dim_names=("epoch", "channel", "freq"),
weights=None,
*,
verbose=None,
):
# (epoch, channel, [taper], freq, [segment])
_check_option("data.ndim", data.ndim, (3, 4)) # only allow one extra dimension
if list(dim_names).index("epoch") != 0:
raise ValueError("'epoch' must be the first dimension of `data`.")
if events is not None and data.shape[0] != events.shape[0]:
raise ValueError(
f"The first dimension of `data` ({data.shape[0]}) must match the first "
f"dimension of `events` ({events.shape[0]})."
)
_check_data_shape(data, info, freqs, dim_names, weights, is_epoched=True)
self.__setstate__(
dict(
method="unknown",
data=data,
sfreq=info["sfreq"],
dims=dim_names,
freqs=freqs,
inst_type_str="Array",
data_type=(
"Fourier Coefficients"
if np.iscomplexobj(data)
else "Power Spectrum"
),
info=info,
events=events,
event_id=event_id,
metadata=None,
selection=np.arange(data.shape[0]),
drop_log=tuple(tuple() for _ in range(data.shape[0])),
weights=weights,
)
)
def read_spectrum(fname):
"""Load a :class:`mne.time_frequency.Spectrum` object from disk.
Parameters
----------
fname : path-like
Path to a spectrum file in HDF5 format, which should end with ``.h5`` or
``.hdf5``.
Returns
-------
spectrum : instance of Spectrum
The loaded Spectrum object.
See Also
--------
mne.time_frequency.Spectrum.save
"""
read_hdf5, _ = _import_h5io_funcs()
_validate_type(fname, "path-like", "fname")
fname = _check_fname(fname=fname, overwrite="read", must_exist=False)
# read it in
hdf5_dict = read_hdf5(fname, title="mnepython")
defaults = dict(
method=None,
fmin=None,
fmax=None,
tmin=None,
tmax=None,
picks=None,
exclude=(),
proj=None,
remove_dc=None,
reject_by_annotation=None,
n_jobs=None,
verbose=None,
)
Klass = EpochsSpectrum if hdf5_dict["inst_type_str"] == "Epochs" else Spectrum
return Klass(hdf5_dict, **defaults)
def _check_ci(ci):
ci = "sd" if ci == "std" else ci # be forgiving
if _is_numeric(ci):
if not (0 < ci <= 100):
raise ValueError(f"ci must satisfy 0 < ci <= 100, got {ci}")
ci /= 100.0
else:
_check_option("ci", ci, [None, "sd", "range"])
return ci
def _compute_n_welch_segments(n_times, method_kw):
# get default values from psd_array_welch
_defaults = dict()
for param in ("n_fft", "n_per_seg", "n_overlap"):
_defaults[param] = signature(psd_array_welch).parameters[param].default
# override defaults with user-specified values
for key, val in _defaults.items():
_defaults.update({key: method_kw.get(key, val)})
# sanity check values / replace `None`s with real numbers
n_fft, n_per_seg, n_overlap = _check_nfft(n_times, **_defaults)
# compute expected number of segments
step = n_per_seg - n_overlap
return (n_times - n_overlap) // step
def _validate_method(method, instance_type):
"""Convert 'auto' to a real method name, and validate."""
if method == "auto":
method = "welch" if instance_type.startswith("Raw") else "multitaper"
_check_option("method", method, ("welch", "multitaper"))
return method
|