File: tfr.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (4216 lines) | stat: -rw-r--r-- 139,334 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
"""A module which implements the time-frequency estimation.

Morlet code inspired by Matlab code from Sheraz Khan & Brainstorm & SPM
"""

# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

import inspect
from copy import deepcopy
from functools import partial

import matplotlib.pyplot as plt
import numpy as np
from scipy.fft import fft, ifft
from scipy.signal import argrelmax

from .._fiff.meas_info import ContainsMixin, Info
from .._fiff.pick import _picks_to_idx, pick_info
from ..baseline import _check_baseline, rescale
from ..channels.channels import UpdateChannelsMixin
from ..channels.layout import _find_topomap_coords, _merge_ch_data, _pair_grad_sensors
from ..defaults import _BORDER_DEFAULT, _EXTRAPOLATE_DEFAULT, _INTERPOLATION_DEFAULT
from ..filter import next_fast_len
from ..parallel import parallel_func
from ..utils import (
    ExtendedTimeMixin,
    GetEpochsMixin,
    SizeMixin,
    _build_data_frame,
    _check_combine,
    _check_event_id,
    _check_fname,
    _check_method_kwargs,
    _check_option,
    _check_pandas_index_arguments,
    _check_pandas_installed,
    _check_time_format,
    _convert_times,
    _ensure_events,
    _freq_mask,
    _import_h5io_funcs,
    _is_numeric,
    _pl,
    _prepare_read_metadata,
    _prepare_write_metadata,
    _time_mask,
    _validate_type,
    check_fname,
    copy_doc,
    copy_function_doc_to_method_doc,
    fill_doc,
    legacy,
    logger,
    object_diff,
    repr_html,
    sizeof_fmt,
    verbose,
    warn,
)
from ..utils.spectrum import _get_instance_type_string
from ..viz.topo import _imshow_tfr, _imshow_tfr_unified, _plot_topo
from ..viz.topomap import (
    _add_colorbar,
    _get_pos_outlines,
    _set_contour_locator,
    plot_tfr_topomap,
    plot_topomap,
)
from ..viz.utils import (
    _make_combine_callable,
    _prepare_joint_axes,
    _set_title_multiple_electrodes,
    _setup_cmap,
    _setup_vmin_vmax,
    add_background_image,
    figure_nobar,
    plt_show,
)
from .multitaper import dpss_windows, tfr_array_multitaper
from .spectrum import EpochsSpectrum


@fill_doc
def morlet(sfreq, freqs, n_cycles=7.0, sigma=None, zero_mean=False):
    """Compute Morlet wavelets for the given frequency range.

    Parameters
    ----------
    sfreq : float
        The sampling Frequency.
    freqs : float | array-like, shape (n_freqs,)
        Frequencies to compute Morlet wavelets for.
    n_cycles : float | array-like, shape (n_freqs,)
        Number of cycles. Can be a fixed number (float) or one per frequency
        (array-like).
    sigma : float, default None
        It controls the width of the wavelet ie its temporal
        resolution. If sigma is None the temporal resolution
        is adapted with the frequency like for all wavelet transform.
        The higher the frequency the shorter is the wavelet.
        If sigma is fixed the temporal resolution is fixed
        like for the short time Fourier transform and the number
        of oscillations increases with the frequency.
    zero_mean : bool, default False
        Make sure the wavelet has a mean of zero.

    Returns
    -------
    Ws : list of ndarray | ndarray
        The wavelets time series. If ``freqs`` was a float, a single
        ndarray is returned instead of a list of ndarray.

    See Also
    --------
    mne.time_frequency.fwhm

    Notes
    -----
    %(morlet_reference)s
    %(fwhm_morlet_notes)s

    References
    ----------
    .. footbibliography::

    Examples
    --------
    Let's show a simple example of the relationship between ``n_cycles`` and
    the FWHM using :func:`mne.time_frequency.fwhm`:

    .. plot::

        import numpy as np
        import matplotlib.pyplot as plt
        from mne.time_frequency import morlet, fwhm

        sfreq, freq, n_cycles = 1000., 10, 7  # i.e., 700 ms
        this_fwhm = fwhm(freq, n_cycles)
        wavelet = morlet(sfreq=sfreq, freqs=freq, n_cycles=n_cycles)
        M, w = len(wavelet), n_cycles # convert to SciPy convention
        s = w * sfreq / (2 * freq * np.pi)  # from SciPy docs

        _, ax = plt.subplots(layout="constrained")
        colors = dict(real="#66CCEE", imag="#EE6677")
        t = np.arange(-M // 2 + 1, M // 2 + 1) / sfreq
        for kind in ('real', 'imag'):
            ax.plot(
                t, getattr(wavelet, kind), label=kind, color=colors[kind],
            )
        ax.plot(t, np.abs(wavelet), label=f'abs', color='k', lw=1., zorder=6)
        half_max = np.max(np.abs(wavelet)) / 2.
        ax.plot([-this_fwhm / 2., this_fwhm / 2.], [half_max, half_max],
                color='k', linestyle='-', label='FWHM', zorder=6)
        ax.legend(loc='upper right')
        ax.set(xlabel='Time (s)', ylabel='Amplitude')
    """  # noqa: E501
    Ws = list()
    n_cycles = np.array(n_cycles, float).ravel()

    freqs = np.array(freqs, float)
    if np.any(freqs <= 0):
        raise ValueError("all frequencies in 'freqs' must be greater than 0.")

    if (n_cycles.size != 1) and (n_cycles.size != len(freqs)):
        raise ValueError("n_cycles should be fixed or defined for each frequency.")
    _check_option("freqs.ndim", freqs.ndim, [0, 1])
    singleton = freqs.ndim == 0
    if singleton:
        freqs = freqs[np.newaxis]
    for k, f in enumerate(freqs):
        if len(n_cycles) != 1:
            this_n_cycles = n_cycles[k]
        else:
            this_n_cycles = n_cycles[0]
        # sigma_t is the stddev of gaussian window in the time domain; can be
        # scale-dependent or fixed across freqs
        if sigma is None:
            sigma_t = this_n_cycles / (2.0 * np.pi * f)
        else:
            sigma_t = this_n_cycles / (2.0 * np.pi * sigma)
        # time vector. We go 5 standard deviations out to make sure we're
        # *very* close to zero at the ends. We also make sure that there's a
        # sample at exactly t=0
        t = np.arange(0.0, 5.0 * sigma_t, 1.0 / sfreq)
        t = np.r_[-t[::-1], t[1:]]
        oscillation = np.exp(2.0 * 1j * np.pi * f * t)
        if zero_mean:
            # this offset is equivalent to the κ_σ term in Wikipedia's
            # equations, and satisfies the "admissibility criterion" for CWTs
            real_offset = np.exp(-2 * (np.pi * f * sigma_t) ** 2)
            oscillation -= real_offset
        gaussian_envelope = np.exp(-(t**2) / (2.0 * sigma_t**2))
        W = oscillation * gaussian_envelope
        # the scaling factor here is proportional to what is used in
        # Tallon-Baudry 1997: (sigma_t*sqrt(pi))^(-1/2).  It yields a wavelet
        # with norm sqrt(2) for the full wavelet / norm 1 for the real part
        W /= np.sqrt(0.5) * np.linalg.norm(W.ravel())
        Ws.append(W)
    if singleton:
        Ws = Ws[0]
    return Ws


def fwhm(freq, n_cycles):
    """Compute the full-width half maximum of a Morlet wavelet.

    Uses the formula from :footcite:t:`Cohen2019`.

    Parameters
    ----------
    freq : float
        The oscillation frequency of the wavelet.
    n_cycles : float
        The duration of the wavelet, expressed as the number of oscillation
        cycles.

    Returns
    -------
    fwhm : float
        The full-width half maximum of the wavelet.

    Notes
    -----
     .. versionadded:: 1.3

    References
    ----------
    .. footbibliography::
    """
    return n_cycles * np.sqrt(2 * np.log(2)) / (np.pi * freq)


def _make_dpss(
    sfreq,
    freqs,
    n_cycles=7.0,
    time_bandwidth=4.0,
    zero_mean=False,
    return_weights=False,
):
    """Compute DPSS tapers for the given frequency range.

    Parameters
    ----------
    sfreq : float
        The sampling frequency.
    freqs : ndarray, shape (n_freqs,)
        The frequencies in Hz.
    n_cycles : float | ndarray, shape (n_freqs,), default 7.
        The number of cycles globally or for each frequency.
    time_bandwidth : float, default 4.0
        Time x Bandwidth product.
        The number of good tapers (low-bias) is chosen automatically based on
        this to equal floor(time_bandwidth - 1).
        Default is 4.0, giving 3 good tapers.
    zero_mean : bool | None, , default False
        Make sure the wavelet has a mean of zero.
    return_weights : bool
        Whether to return the concentration weights.

    Returns
    -------
    Ws : list of array
        The wavelets time series.
    """
    Ws = list()

    freqs = np.array(freqs)
    if np.any(freqs <= 0):
        raise ValueError("all frequencies in 'freqs' must be greater than 0.")

    if time_bandwidth < 2.0:
        raise ValueError("time_bandwidth should be >= 2.0 for good tapers")
    n_taps = int(np.floor(time_bandwidth - 1))
    n_cycles = np.atleast_1d(n_cycles)

    if n_cycles.size != 1 and n_cycles.size != len(freqs):
        raise ValueError("n_cycles should be fixed or defined for each frequency.")

    for m in range(n_taps):
        Wm = list()
        for k, f in enumerate(freqs):
            if len(n_cycles) != 1:
                this_n_cycles = n_cycles[k]
            else:
                this_n_cycles = n_cycles[0]

            t_win = this_n_cycles / float(f)
            t = np.arange(0.0, t_win, 1.0 / sfreq)
            # Making sure wavelets are centered before tapering
            oscillation = np.exp(2.0 * 1j * np.pi * f * (t - t_win / 2.0))

            # Get dpss tapers
            tapers, conc = dpss_windows(
                t.shape[0], time_bandwidth / 2.0, n_taps, sym=False
            )

            Wk = oscillation * tapers[m]
            if zero_mean:  # to make it zero mean
                real_offset = Wk.mean()
                Wk -= real_offset
            Wk /= np.sqrt(0.5) * np.linalg.norm(Wk.ravel())

            Wm.append(Wk)

        Ws.append(Wm)
    if return_weights:
        return Ws, conc
    return Ws


# Low level convolution


def _get_nfft(wavelets, X, use_fft=True, check=True):
    n_times = X.shape[-1]
    max_size = max(w.size for w in wavelets)
    if max_size > n_times:
        msg = (
            f"At least one of the wavelets ({max_size}) is longer than the "
            f"signal ({n_times}). Consider using a longer signal or "
            "shorter wavelets."
        )
        if check:
            if use_fft:
                warn(msg, UserWarning)
            else:
                raise ValueError(msg)
    nfft = n_times + max_size - 1
    nfft = next_fast_len(nfft)  # 2 ** int(np.ceil(np.log2(nfft)))
    return nfft


def _cwt_gen(X, Ws, *, fsize=0, mode="same", decim=1, use_fft=True):
    """Compute cwt with fft based convolutions or temporal convolutions.

    Parameters
    ----------
    X : array of shape (n_signals, n_times)
        The data.
    Ws : list of array
        Wavelets time series.
    fsize : int
        FFT length.
    mode : {'full', 'valid', 'same'}
        See numpy.convolve.
    decim : int | slice, default 1
        To reduce memory usage, decimation factor after time-frequency
        decomposition.
        If `int`, returns tfr[..., ::decim].
        If `slice`, returns tfr[..., decim].

        .. note:: Decimation may create aliasing artifacts.

    use_fft : bool, default True
        Use the FFT for convolutions or not.

    Returns
    -------
    out : array, shape (n_signals, n_freqs, n_time_decim)
        The time-frequency transform of the signals.
    """
    _check_option("mode", mode, ["same", "valid", "full"])
    decim = _ensure_slice(decim)
    X = np.asarray(X)

    # Precompute wavelets for given frequency range to save time
    _, n_times = X.shape
    n_times_out = X[:, decim].shape[1]
    n_freqs = len(Ws)

    # precompute FFTs of Ws
    if use_fft:
        fft_Ws = np.empty((n_freqs, fsize), dtype=np.complex128)
        for i, W in enumerate(Ws):
            fft_Ws[i] = fft(W, fsize)

    # Make generator looping across signals
    tfr = np.zeros((n_freqs, n_times_out), dtype=np.complex128)
    for x in X:
        if use_fft:
            fft_x = fft(x, fsize)

        # Loop across wavelets
        for ii, W in enumerate(Ws):
            if use_fft:
                ret = ifft(fft_x * fft_Ws[ii])[: n_times + W.size - 1]
            else:
                # Work around multarray.correlate->OpenBLAS bug on ppc64le
                # ret = np.correlate(x, W, mode=mode)
                ret = np.convolve(x, W.real, mode=mode) + 1j * np.convolve(
                    x, W.imag, mode=mode
                )

            # Center and decimate decomposition
            if mode == "valid":
                sz = int(abs(W.size - n_times)) + 1
                offset = (n_times - sz) // 2
                this_slice = slice(offset // decim.step, (offset + sz) // decim.step)
                if use_fft:
                    ret = _centered(ret, sz)
                tfr[ii, this_slice] = ret[decim]
            elif mode == "full" and not use_fft:
                start = (W.size - 1) // 2
                end = len(ret) - (W.size // 2)
                ret = ret[start:end]
                tfr[ii, :] = ret[decim]
            else:
                if use_fft:
                    ret = _centered(ret, n_times)
                tfr[ii, :] = ret[decim]
        yield tfr


# Loop of convolution: single trial


def _compute_tfr(
    epoch_data,
    freqs,
    sfreq=1.0,
    method="morlet",
    n_cycles=7.0,
    zero_mean=None,
    time_bandwidth=None,
    use_fft=True,
    decim=1,
    output="complex",
    n_jobs=None,
    *,
    verbose=None,
):
    """Compute time-frequency transforms.

    Parameters
    ----------
    epoch_data : array of shape (n_epochs, n_channels, n_times)
        The epochs.default ``'complex'``
    freqs : array-like of floats, shape (n_freqs)
        The frequencies.
    sfreq : float | int, default 1.0
        Sampling frequency of the data.
    method : 'multitaper' | 'morlet', default 'morlet'
        The time-frequency method. 'morlet' convolves a Morlet wavelet.
        'multitaper' uses complex exponentials windowed with multiple DPSS
        tapers.
    n_cycles : float | array of float, default 7.0
        Number of cycles in the wavelet. Fixed number
        or one per frequency.
    zero_mean : bool | None, default None
        None means True for method='multitaper' and False for method='morlet'.
        If True, make sure the wavelets have a mean of zero.
    time_bandwidth : float, default None
        If None and method=multitaper, will be set to 4.0 (3 tapers).
        Time x (Full) Bandwidth product. Only applies if
        method == 'multitaper'. The number of good tapers (low-bias) is
        chosen automatically based on this to equal floor(time_bandwidth - 1).
    use_fft : bool, default True
        Use the FFT for convolutions or not.
    decim : int | slice, default 1
        To reduce memory usage, decimation factor after time-frequency
        decomposition.
        If `int`, returns tfr[..., ::decim].
        If `slice`, returns tfr[..., decim].

        .. note::
            Decimation may create aliasing artifacts, yet decimation
            is done after the convolutions.

    output : str

        * 'complex' (default) : single trial complex.
        * 'power' : single trial power.
        * 'phase' : single trial phase.
        * 'avg_power' : average of single trial power.
        * 'itc' : inter-trial coherence.
        * 'avg_power_itc' : average of single trial power and inter-trial
          coherence across trials.

    %(n_jobs)s
        The number of epochs to process at the same time. The parallelization
        is implemented across channels.
    %(verbose)s

    Returns
    -------
    out : array
        Time frequency transform of epoch_data. If output is in ['complex',
        'phase', 'power'], then shape of ``out`` is ``(n_epochs, n_chans,
        n_freqs, n_times)``, else it is ``(n_chans, n_freqs, n_times)``.
        However, using multitaper method and output ``'complex'`` or
        ``'phase'`` results in shape of ``out`` being ``(n_epochs, n_chans,
        n_tapers, n_freqs, n_times)``. If output is ``'avg_power_itc'``, the
        real values in the ``output`` contain average power' and the imaginary
        values contain the ITC: ``out = avg_power + i * itc``.
    """
    # Check data
    epoch_data = np.asarray(epoch_data)
    if epoch_data.ndim != 3:
        raise ValueError(
            "epoch_data must be of shape (n_epochs, n_chans, "
            f"n_times), got {epoch_data.shape}"
        )

    # Check params
    freqs, sfreq, zero_mean, n_cycles, time_bandwidth, decim = _check_tfr_param(
        freqs,
        sfreq,
        method,
        zero_mean,
        n_cycles,
        time_bandwidth,
        use_fft,
        decim,
        output,
    )

    decim = _ensure_slice(decim)
    if (freqs > sfreq / 2.0).any():
        raise ValueError(
            "Cannot compute freq above Nyquist freq of the data "
            f"({sfreq / 2.0:0.1f} Hz), got {freqs.max():0.1f} Hz"
        )

    # We decimate *after* decomposition, so we need to create our kernels
    # for the original sfreq
    if method == "morlet":
        W = morlet(sfreq, freqs, n_cycles=n_cycles, zero_mean=zero_mean)
        Ws = [W]  # to have same dimensionality as the 'multitaper' case

    elif method == "multitaper":
        Ws = _make_dpss(
            sfreq,
            freqs,
            n_cycles=n_cycles,
            time_bandwidth=time_bandwidth,
            zero_mean=zero_mean,
        )

    # Check wavelets
    if len(Ws[0][0]) > epoch_data.shape[2]:
        raise ValueError(
            "At least one of the wavelets is longer than the "
            "signal. Use a longer signal or shorter wavelets."
        )

    # Initialize output
    n_freqs = len(freqs)
    n_tapers = len(Ws)
    n_epochs, n_chans, n_times = epoch_data[:, :, decim].shape
    if output in ("power", "phase", "avg_power", "itc"):
        dtype = np.float64
    elif output in ("complex", "avg_power_itc"):
        # avg_power_itc is stored as power + 1i * itc to keep a
        # simple dimensionality
        dtype = np.complex128

    if ("avg_" in output) or ("itc" in output):
        out = np.empty((n_chans, n_freqs, n_times), dtype)
    elif output in ["complex", "phase"] and method == "multitaper":
        out = np.empty((n_chans, n_tapers, n_epochs, n_freqs, n_times), dtype)
    else:
        out = np.empty((n_chans, n_epochs, n_freqs, n_times), dtype)

    # Parallel computation
    all_Ws = sum([list(W) for W in Ws], list())
    _get_nfft(all_Ws, epoch_data, use_fft)
    parallel, my_cwt, n_jobs = parallel_func(_time_frequency_loop, n_jobs)

    # Parallelization is applied across channels.
    tfrs = parallel(
        my_cwt(channel, Ws, output, use_fft, "same", decim, method)
        for channel in epoch_data.transpose(1, 0, 2)
    )

    # FIXME: to avoid overheads we should use np.array_split()
    for channel_idx, tfr in enumerate(tfrs):
        out[channel_idx] = tfr

    if ("avg_" not in output) and ("itc" not in output):
        # This is to enforce that the first dimension is for epochs
        if output in ["complex", "phase"] and method == "multitaper":
            out = out.transpose(2, 0, 1, 3, 4)
        else:
            out = out.transpose(1, 0, 2, 3)
    return out


def _check_tfr_param(
    freqs, sfreq, method, zero_mean, n_cycles, time_bandwidth, use_fft, decim, output
):
    """Aux. function to _compute_tfr to check the params validity."""
    # Check freqs
    if not isinstance(freqs, list | np.ndarray):
        raise ValueError(f"freqs must be an array-like, got {type(freqs)} instead.")
    freqs = np.asarray(freqs, dtype=float)
    if freqs.ndim != 1:
        raise ValueError(
            f"freqs must be of shape (n_freqs,), got {np.array(freqs.shape)} "
            "instead."
        )

    # Check sfreq
    if not isinstance(sfreq, float | int):
        raise ValueError(f"sfreq must be a float or an int, got {type(sfreq)} instead.")
    sfreq = float(sfreq)

    # Default zero_mean = True if multitaper else False
    zero_mean = method == "multitaper" if zero_mean is None else zero_mean
    if not isinstance(zero_mean, bool):
        raise ValueError(
            f"zero_mean should be of type bool, got {type(zero_mean)}. instead"
        )
    freqs = np.asarray(freqs)

    # Check n_cycles
    if isinstance(n_cycles, int | float):
        n_cycles = float(n_cycles)
    elif isinstance(n_cycles, list | np.ndarray):
        n_cycles = np.array(n_cycles)
        if len(n_cycles) != len(freqs):
            raise ValueError(
                "n_cycles must be a float or an array of length "
                f"{len(freqs)} frequencies, got {len(n_cycles)} cycles instead."
            )
    else:
        raise ValueError(
            f"n_cycles must be a float or an array, got {type(n_cycles)} instead."
        )

    # Check time_bandwidth
    if (method == "morlet") and (time_bandwidth is not None):
        raise ValueError('time_bandwidth only applies to "multitaper" method.')
    elif method == "multitaper":
        time_bandwidth = 4.0 if time_bandwidth is None else float(time_bandwidth)

    # Check use_fft
    if not isinstance(use_fft, bool):
        raise ValueError(f"use_fft must be a boolean, got {type(use_fft)} instead.")
    # Check decim
    if isinstance(decim, int):
        decim = slice(None, None, decim)
    if not isinstance(decim, slice):
        raise ValueError(
            f"decim must be an integer or a slice, got {type(decim)} instead."
        )

    # Check output
    _check_option(
        "output",
        output,
        ["complex", "power", "phase", "avg_power_itc", "avg_power", "itc"],
    )
    _check_option("method", method, ["multitaper", "morlet"])

    return freqs, sfreq, zero_mean, n_cycles, time_bandwidth, decim


def _time_frequency_loop(X, Ws, output, use_fft, mode, decim, method=None):
    """Aux. function to _compute_tfr.

    Loops time-frequency transform across wavelets and epochs.

    Parameters
    ----------
    X : array, shape (n_epochs, n_times)
        The epochs data of a single channel.
    Ws : list, shape (n_tapers, n_wavelets, n_times)
        The wavelets.
    output : str

        * 'complex' : single trial complex.
        * 'power' : single trial power.
        * 'phase' : single trial phase.
        * 'avg_power' : average of single trial power.
        * 'itc' : inter-trial coherence.
        * 'avg_power_itc' : average of single trial power and inter-trial
          coherence across trials.

    use_fft : bool
        Use the FFT for convolutions or not.
    mode : {'full', 'valid', 'same'}
        See numpy.convolve.
    decim : slice
        The decimation slice: e.g. power[:, decim]
    method : str | None
        Used only for multitapering to create tapers dimension in the output
        if ``output in ['complex', 'phase']``.
    """
    # Set output type
    dtype = np.float64
    if output in ["complex", "avg_power_itc"]:
        dtype = np.complex128

    # Init outputs
    decim = _ensure_slice(decim)
    n_tapers = len(Ws)
    n_epochs, n_times = X[:, decim].shape
    n_freqs = len(Ws[0])
    if ("avg_" in output) or ("itc" in output):
        tfrs = np.zeros((n_freqs, n_times), dtype=dtype)
    elif output in ["complex", "phase"] and method == "multitaper":
        tfrs = np.zeros((n_tapers, n_epochs, n_freqs, n_times), dtype=dtype)
    else:
        tfrs = np.zeros((n_epochs, n_freqs, n_times), dtype=dtype)

    # Loops across tapers.
    for taper_idx, W in enumerate(Ws):
        # No need to check here, it's done earlier (outside parallel part)
        nfft = _get_nfft(W, X, use_fft, check=False)
        coefs = _cwt_gen(X, W, fsize=nfft, mode=mode, decim=decim, use_fft=use_fft)

        # Inter-trial phase locking is apparently computed per taper...
        if "itc" in output:
            plf = np.zeros((n_freqs, n_times), dtype=np.complex128)

        # Loop across epochs
        for epoch_idx, tfr in enumerate(coefs):
            # Transform complex values
            if output in ["power", "avg_power"]:
                tfr = (tfr * tfr.conj()).real  # power
            elif output == "phase":
                tfr = np.angle(tfr)
            elif output == "avg_power_itc":
                tfr_abs = np.abs(tfr)
                plf += tfr / tfr_abs  # phase
                tfr = tfr_abs**2  # power
            elif output == "itc":
                plf += tfr / np.abs(tfr)  # phase
                continue  # not need to stack anything else than plf

            # Stack or add
            if ("avg_" in output) or ("itc" in output):
                tfrs += tfr
            elif output in ["complex", "phase"] and method == "multitaper":
                tfrs[taper_idx, epoch_idx] += tfr
            else:
                tfrs[epoch_idx] += tfr

        # Compute inter trial coherence
        if output == "avg_power_itc":
            tfrs += 1j * np.abs(plf)
        elif output == "itc":
            tfrs += np.abs(plf)

    # Normalization of average metrics
    if ("avg_" in output) or ("itc" in output):
        tfrs /= n_epochs

    # Normalization by number of taper
    if n_tapers > 1 and output not in ["complex", "phase"]:
        tfrs /= n_tapers
    return tfrs


@fill_doc
def cwt(X, Ws, use_fft=True, mode="same", decim=1):
    """Compute time-frequency decomposition with continuous wavelet transform.

    Parameters
    ----------
    X : array, shape (n_signals, n_times)
        The signals.
    Ws : list of array
        Wavelets time series.
    use_fft : bool
        Use FFT for convolutions. Defaults to True.
    mode : 'same' | 'valid' | 'full'
        Convention for convolution. 'full' is currently not implemented with
        ``use_fft=False``. Defaults to ``'same'``.
    %(decim_tfr)s

    Returns
    -------
    tfr : array, shape (n_signals, n_freqs, n_times)
        The time-frequency decompositions.

    See Also
    --------
    mne.time_frequency.tfr_morlet : Compute time-frequency decomposition
                                    with Morlet wavelets.
    """
    nfft = _get_nfft(Ws, X, use_fft)
    return _cwt_array(X, Ws, nfft, mode, decim, use_fft)


def _cwt_array(X, Ws, nfft, mode, decim, use_fft):
    decim = _ensure_slice(decim)
    coefs = _cwt_gen(X, Ws, fsize=nfft, mode=mode, decim=decim, use_fft=use_fft)

    n_signals, n_times = X[:, decim].shape
    tfrs = np.empty((n_signals, len(Ws), n_times), dtype=np.complex128)
    for k, tfr in enumerate(coefs):
        tfrs[k] = tfr

    return tfrs


def _tfr_aux(
    method, inst, freqs, decim, return_itc, picks, average, output, **tfr_params
):
    from ..epochs import BaseEpochs

    kwargs = dict(
        method=method,
        freqs=freqs,
        picks=picks,
        decim=decim,
        output=output,
        **tfr_params,
    )
    if isinstance(inst, BaseEpochs):
        kwargs.update(average=average, return_itc=return_itc)
    elif average:
        logger.info("inst is Evoked, setting `average=False`")
        average = False
    if average and output == "complex":
        raise ValueError('output must be "power" if average=True')
    if not average and return_itc:
        raise ValueError("Inter-trial coherence is not supported with average=False")
    return inst.compute_tfr(**kwargs)


@legacy(alt='.compute_tfr(method="morlet")')
@verbose
def tfr_morlet(
    inst,
    freqs,
    n_cycles,
    use_fft=False,
    return_itc=True,
    decim=1,
    n_jobs=None,
    picks=None,
    zero_mean=True,
    average=True,
    output="power",
    verbose=None,
):
    """Compute Time-Frequency Representation (TFR) using Morlet wavelets.

    Same computation as `~mne.time_frequency.tfr_array_morlet`, but
    operates on `~mne.Epochs` or `~mne.Evoked` objects instead of
    :class:`NumPy arrays <numpy.ndarray>`.

    Parameters
    ----------
    inst : Epochs | Evoked
        The epochs or evoked object.
    %(freqs_tfr_array)s
    %(n_cycles_tfr)s
    use_fft : bool, default False
        The fft based convolution or not.
    return_itc : bool, default True
        Return inter-trial coherence (ITC) as well as averaged power.
        Must be ``False`` for evoked data.
    %(decim_tfr)s
    %(n_jobs)s
    picks : array-like of int | None, default None
        The indices of the channels to decompose. If None, all available
        good data channels are decomposed.
    zero_mean : bool, default True
        Make sure the wavelet has a mean of zero.

        .. versionadded:: 0.13.0
    %(average_tfr)s
    output : str
        Can be ``"power"`` (default) or ``"complex"``. If ``"complex"``, then
        ``average`` must be ``False``.

        .. versionadded:: 0.15.0
    %(verbose)s

    Returns
    -------
    power : AverageTFR | EpochsTFR
        The averaged or single-trial power.
    itc : AverageTFR | EpochsTFR
        The inter-trial coherence (ITC). Only returned if return_itc
        is True.

    See Also
    --------
    mne.time_frequency.tfr_array_morlet
    mne.time_frequency.tfr_multitaper
    mne.time_frequency.tfr_array_multitaper
    mne.time_frequency.tfr_stockwell
    mne.time_frequency.tfr_array_stockwell

    Notes
    -----
    %(morlet_reference)s
    %(temporal_window_tfr_intro)s
    %(temporal_window_tfr_morlet_notes)s

    See :func:`mne.time_frequency.morlet` for more information about the
    Morlet wavelet.

    References
    ----------
    .. footbibliography::
    """
    tfr_params = dict(
        n_cycles=n_cycles,
        n_jobs=n_jobs,
        use_fft=use_fft,
        zero_mean=zero_mean,
        output=output,
    )
    return _tfr_aux(
        "morlet", inst, freqs, decim, return_itc, picks, average, **tfr_params
    )


@verbose
def tfr_array_morlet(
    data,
    sfreq,
    freqs,
    n_cycles=7.0,
    zero_mean=True,
    use_fft=True,
    decim=1,
    output="complex",
    n_jobs=None,
    *,
    verbose=None,
):
    """Compute Time-Frequency Representation (TFR) using Morlet wavelets.

    Same computation as `~mne.time_frequency.tfr_morlet`, but operates on
    :class:`NumPy arrays <numpy.ndarray>` instead of `~mne.Epochs` objects.

    Parameters
    ----------
    data : array of shape (n_epochs, n_channels, n_times)
        The epochs.
    sfreq : float | int
        Sampling frequency of the data.
    %(freqs_tfr_array)s
    %(n_cycles_tfr)s
    zero_mean : bool | None
        If True, make sure the wavelets have a mean of zero. default False.

        .. versionchanged:: 1.8
            The default will change from ``zero_mean=False`` in 1.6 to ``True`` in
            1.8.

    use_fft : bool
        Use the FFT for convolutions or not. default True.
    %(decim_tfr)s
    output : str, default ``'complex'``

        * ``'complex'`` : single trial complex.
        * ``'power'`` : single trial power.
        * ``'phase'`` : single trial phase.
        * ``'avg_power'`` : average of single trial power.
        * ``'itc'`` : inter-trial coherence.
        * ``'avg_power_itc'`` : average of single trial power and inter-trial
          coherence across trials.
    %(n_jobs)s
        The number of epochs to process at the same time. The parallelization
        is implemented across channels. Default 1.
    %(verbose)s

    Returns
    -------
    out : array
        Time frequency transform of ``data``.

        - if ``output in ('complex', 'phase', 'power')``, array of shape
          ``(n_epochs, n_chans, n_freqs, n_times)``
        - else, array of shape ``(n_chans, n_freqs, n_times)``

        If ``output`` is ``'avg_power_itc'``, the real values in ``out``
        contain the average power and the imaginary values contain the ITC:
        :math:`out = power_{avg} + i * itc`.

    See Also
    --------
    mne.time_frequency.tfr_morlet
    mne.time_frequency.tfr_multitaper
    mne.time_frequency.tfr_array_multitaper
    mne.time_frequency.tfr_stockwell
    mne.time_frequency.tfr_array_stockwell

    Notes
    -----
    %(morlet_reference)s
    %(temporal_window_tfr_intro)s
    %(temporal_window_tfr_morlet_notes)s

    .. versionadded:: 0.14.0

    References
    ----------
    .. footbibliography::
    """
    return _compute_tfr(
        epoch_data=data,
        freqs=freqs,
        sfreq=sfreq,
        method="morlet",
        n_cycles=n_cycles,
        zero_mean=zero_mean,
        time_bandwidth=None,
        use_fft=use_fft,
        decim=decim,
        output=output,
        n_jobs=n_jobs,
        verbose=verbose,
    )


@legacy(alt='.compute_tfr(method="multitaper")')
@verbose
def tfr_multitaper(
    inst,
    freqs,
    n_cycles,
    time_bandwidth=4.0,
    use_fft=True,
    return_itc=True,
    decim=1,
    n_jobs=None,
    picks=None,
    average=True,
    *,
    verbose=None,
):
    """Compute Time-Frequency Representation (TFR) using DPSS tapers.

    Same computation as :func:`~mne.time_frequency.tfr_array_multitaper`, but
    operates on :class:`~mne.Epochs` or :class:`~mne.Evoked` objects instead of
    :class:`NumPy arrays <numpy.ndarray>`.

    Parameters
    ----------
    inst : Epochs | Evoked
        The epochs or evoked object.
    %(freqs_tfr_array)s
    %(n_cycles_tfr)s
    %(time_bandwidth_tfr)s
    use_fft : bool, default True
        The fft based convolution or not.
    return_itc : bool, default True
        Return inter-trial coherence (ITC) as well as averaged (or
        single-trial) power.
    %(decim_tfr)s
    %(n_jobs)s
    %(picks_good_data)s
    %(average_tfr)s
    %(verbose)s

    Returns
    -------
    power : AverageTFR | EpochsTFR
        The averaged or single-trial power.
    itc : AverageTFR | EpochsTFR
        The inter-trial coherence (ITC). Only returned if return_itc
        is True.

    See Also
    --------
    mne.time_frequency.tfr_array_multitaper
    mne.time_frequency.tfr_stockwell
    mne.time_frequency.tfr_array_stockwell
    mne.time_frequency.tfr_morlet
    mne.time_frequency.tfr_array_morlet

    Notes
    -----
    %(temporal_window_tfr_intro)s
    %(temporal_window_tfr_multitaper_notes)s
    %(time_bandwidth_tfr_notes)s

    .. versionadded:: 0.9.0
    """
    from ..epochs import EpochsArray
    from ..evoked import Evoked

    tfr_params = dict(
        n_cycles=n_cycles,
        n_jobs=n_jobs,
        use_fft=use_fft,
        zero_mean=True,
        time_bandwidth=time_bandwidth,
    )
    if isinstance(inst, Evoked) and not average:
        # convert AverageTFR to EpochsTFR for backwards compatibility
        inst = EpochsArray(inst.data[np.newaxis], inst.info, tmin=inst.tmin, proj=False)
    return _tfr_aux(
        method="multitaper",
        inst=inst,
        freqs=freqs,
        decim=decim,
        return_itc=return_itc,
        picks=picks,
        average=average,
        output="power",
        **tfr_params,
    )


# TFR(s) class


@fill_doc
class BaseTFR(ContainsMixin, UpdateChannelsMixin, SizeMixin, ExtendedTimeMixin):
    """Base class for RawTFR, EpochsTFR, and AverageTFR (for type checking only).

    .. note::
        This class should not be instantiated directly; it is provided in the public API
        only for type-checking purposes (e.g., ``isinstance(my_obj, BaseTFR)``). To
        create TFR objects, use the ``.compute_tfr()`` methods on :class:`~mne.io.Raw`,
        :class:`~mne.Epochs`, or :class:`~mne.Evoked`, or use the constructors listed
        below under "See Also".

    Parameters
    ----------
    inst : instance of Raw, Epochs, or Evoked
        The data from which to compute the time-frequency representation.
    %(method_tfr)s
    %(freqs_tfr)s
    %(tmin_tmax_psd)s
    %(picks_good_data_noref)s
    %(proj_psd)s
    %(decim_tfr)s
    %(n_jobs)s
    %(reject_by_annotation_tfr)s
    %(verbose)s
    %(method_kw_tfr)s

    See Also
    --------
    mne.time_frequency.RawTFR
    mne.time_frequency.RawTFRArray
    mne.time_frequency.EpochsTFR
    mne.time_frequency.EpochsTFRArray
    mne.time_frequency.AverageTFR
    mne.time_frequency.AverageTFRArray
    """

    def __init__(
        self,
        inst,
        method,
        freqs,
        tmin,
        tmax,
        picks,
        proj,
        *,
        decim,
        n_jobs,
        reject_by_annotation=None,
        verbose=None,
        **method_kw,
    ):
        from ..epochs import BaseEpochs
        from ._stockwell import tfr_array_stockwell

        # triage reading from file
        if isinstance(inst, dict):
            self.__setstate__(inst)
            return
        if method is None or freqs is None:
            problem = [
                f"{k}=None"
                for k, v in dict(method=method, freqs=freqs).items()
                if v is None
            ]
            # TODO when py3.11 is min version, replace if/elif/else block with
            # classname = inspect.currentframe().f_back.f_code.co_qualname.split(".")[0]
            _varnames = inspect.currentframe().f_back.f_code.co_varnames
            if "BaseRaw" in _varnames:
                classname = "RawTFR"
            elif "Evoked" in _varnames:
                classname = "AverageTFR"
            else:
                assert "BaseEpochs" in _varnames and "Evoked" not in _varnames
                classname = "EpochsTFR"
            # end TODO
            raise ValueError(
                f'{classname} got unsupported parameter value{_pl(problem)} '
                f'{" and ".join(problem)}.'
            )
        # shim for tfr_array_morlet deprecation warning (TODO: remove after 1.7 release)
        if method == "morlet":
            method_kw.setdefault("zero_mean", True)
        # check method
        valid_methods = ["morlet", "multitaper"]
        if isinstance(inst, BaseEpochs):
            valid_methods.append("stockwell")
        method = _check_option("method", method, valid_methods)
        # for stockwell, `tmin, tmax` already added to `method_kw` by calling method,
        # and `freqs` vector has been pre-computed
        if method != "stockwell":
            method_kw.update(freqs=freqs)
            # ↓↓↓ if constructor called directly, prevents key error
            method_kw.setdefault("output", "power")
        self._freqs = np.asarray(freqs, dtype=np.float64)
        del freqs
        # check validity of kwargs manually to save compute time if any are invalid
        tfr_funcs = dict(
            morlet=tfr_array_morlet,
            multitaper=tfr_array_multitaper,
            stockwell=tfr_array_stockwell,
        )
        _check_method_kwargs(tfr_funcs[method], method_kw, msg=f'TFR method "{method}"')
        self._tfr_func = partial(tfr_funcs[method], **method_kw)
        # apply proj if desired
        if proj:
            inst = inst.copy().apply_proj()
        self.inst = inst

        # prep picks and add the info object. bads and non-data channels are dropped by
        # _picks_to_idx() so we update the info accordingly:
        self._picks = _picks_to_idx(inst.info, picks, "data", with_ref_meg=False)
        self.info = pick_info(inst.info, sel=self._picks, copy=True)
        # assign some attributes
        self._method = method
        self._inst_type = type(inst)
        self._baseline = None
        self.preload = True  # needed for __getitem__, never False for TFRs
        # self._dims may also get updated by child classes
        self._dims = ["channel", "freq", "time"]
        self._needs_taper_dim = method == "multitaper" and method_kw["output"] in (
            "complex",
            "phase",
        )
        if self._needs_taper_dim:
            self._dims.insert(1, "taper")
        self._dims = tuple(self._dims)
        # get the instance data.
        time_mask = _time_mask(inst.times, tmin, tmax, sfreq=self.sfreq)
        get_instance_data_kw = dict(time_mask=time_mask)
        if reject_by_annotation is not None:
            get_instance_data_kw.update(reject_by_annotation=reject_by_annotation)
        data = self._get_instance_data(**get_instance_data_kw)
        # compute the TFR
        self._decim = _ensure_slice(decim)
        self._raw_times = inst.times[time_mask]
        self._compute_tfr(data, n_jobs, verbose)
        self._update_epoch_attributes()
        # "apply" decim to the rest of the object (data is decimated in _compute_tfr)
        with self.info._unlock():
            self.info["sfreq"] /= self._decim.step
        _decim_times = inst.times[self._decim]
        _decim_time_mask = _time_mask(_decim_times, tmin, tmax, sfreq=self.sfreq)
        self._raw_times = _decim_times[_decim_time_mask].copy()
        self._set_times(self._raw_times)
        self._decim = 1
        # record data type (for repr and html_repr). ITC handled in the calling method.
        if method == "stockwell":
            self._data_type = "Power Estimates"
        else:
            data_types = dict(
                power="Power Estimates",
                avg_power="Average Power Estimates",
                avg_power_itc="Average Power Estimates",
                phase="Phase",
                complex="Complex Amplitude",
            )
            self._data_type = data_types[method_kw["output"]]
        # check for correct shape and bad values. `tfr_array_stockwell` doesn't take kw
        # `output` so it may be missing here, so use `.get()`
        negative_ok = method_kw.get("output", "") in ("complex", "phase")
        # if method_kw.get("output", None) in ("phase", "complex"):
        #     raise RuntimeError
        self._check_values(negative_ok=negative_ok)
        # we don't need these anymore, and they make save/load harder
        del self._picks
        del self._tfr_func
        del self._needs_taper_dim
        del self._shape  # calculated from self._data henceforth
        del self.inst  # save memory

    def __abs__(self):
        """Return the absolute value."""
        tfr = self.copy()
        tfr.data = np.abs(tfr.data)
        return tfr

    @fill_doc
    def __add__(self, other):
        """Add two TFR instances.

        %(__add__tfr)s
        """
        self._check_compatibility(other)
        out = self.copy()
        out.data += other.data
        return out

    @fill_doc
    def __iadd__(self, other):
        """Add a TFR instance to another, in-place.

        %(__iadd__tfr)s
        """
        self._check_compatibility(other)
        self.data += other.data
        return self

    @fill_doc
    def __sub__(self, other):
        """Subtract two TFR instances.

        %(__sub__tfr)s
        """
        self._check_compatibility(other)
        out = self.copy()
        out.data -= other.data
        return out

    @fill_doc
    def __isub__(self, other):
        """Subtract a TFR instance from another, in-place.

        %(__isub__tfr)s
        """
        self._check_compatibility(other)
        self.data -= other.data
        return self

    @fill_doc
    def __mul__(self, num):
        """Multiply a TFR instance by a scalar.

        %(__mul__tfr)s
        """
        out = self.copy()
        out.data *= num
        return out

    @fill_doc
    def __imul__(self, num):
        """Multiply a TFR instance by a scalar, in-place.

        %(__imul__tfr)s
        """
        self.data *= num
        return self

    @fill_doc
    def __truediv__(self, num):
        """Divide a TFR instance by a scalar.

        %(__truediv__tfr)s
        """
        out = self.copy()
        out.data /= num
        return out

    @fill_doc
    def __itruediv__(self, num):
        """Divide a TFR instance by a scalar, in-place.

        %(__itruediv__tfr)s
        """
        self.data /= num
        return self

    def __eq__(self, other):
        """Test equivalence of two TFR instances."""
        return object_diff(vars(self), vars(other)) == ""

    def __getstate__(self):
        """Prepare object for serialization."""
        return dict(
            method=self.method,
            data=self._data,
            sfreq=self.sfreq,
            dims=self._dims,
            freqs=self.freqs,
            times=self.times,
            inst_type_str=_get_instance_type_string(self),
            data_type=self._data_type,
            info=self.info,
            baseline=self._baseline,
            decim=self._decim,
        )

    def __setstate__(self, state):
        """Unpack from serialized format."""
        from ..epochs import Epochs
        from ..evoked import Evoked
        from ..io import Raw

        defaults = dict(
            method="unknown",
            dims=("epoch", "channel", "freq", "time")[-state["data"].ndim :],
            baseline=None,
            decim=1,
            data_type="TFR",
            inst_type_str="Unknown",
        )
        defaults.update(**state)
        self._method = defaults["method"]
        self._data = defaults["data"]
        self._freqs = np.asarray(defaults["freqs"], dtype=np.float64)
        self._dims = defaults["dims"]
        self._raw_times = np.asarray(defaults["times"], dtype=np.float64)
        self._baseline = defaults["baseline"]
        self.info = Info(**defaults["info"])
        self._data_type = defaults["data_type"]
        self._decim = defaults["decim"]
        self.preload = True
        self._set_times(self._raw_times)
        # Handle instance type. Prior to gh-11282, Raw was not a possibility so if
        # `inst_type_str` is missing it must be Epochs or Evoked
        unknown_class = Epochs if "epoch" in self._dims else Evoked
        inst_types = dict(Raw=Raw, Epochs=Epochs, Evoked=Evoked, Unknown=unknown_class)
        self._inst_type = inst_types[defaults["inst_type_str"]]
        # sanity check data/freqs/times/info agreement
        self._check_state()

    def __repr__(self):
        """Build string representation of the TFR object."""
        inst_type_str = _get_instance_type_string(self)
        nave = f" (nave={self.nave})" if hasattr(self, "nave") else ""
        # shape & dimension names
        dims = " × ".join(
            [f"{size} {dim}s" for size, dim in zip(self.shape, self._dims)]
        )
        freq_range = f"{self.freqs[0]:0.1f} - {self.freqs[-1]:0.1f} Hz"
        time_range = f"{self.times[0]:0.2f} - {self.times[-1]:0.2f} s"
        return (
            f"<{self._data_type} from {inst_type_str}{nave}, "
            f"{self.method} method | {dims}, {freq_range}, {time_range}, "
            f"{sizeof_fmt(self._size)}>"
        )

    @repr_html
    def _repr_html_(self, caption=None):
        """Build HTML representation of the TFR object."""
        from ..html_templates import _get_html_template

        inst_type_str = _get_instance_type_string(self)
        nave = getattr(self, "nave", 0)
        t = _get_html_template("repr", "tfr.html.jinja")
        t = t.render(tfr=self, inst_type=inst_type_str, nave=nave, caption=caption)
        return t

    def _check_compatibility(self, other):
        """Check compatibility of two TFR instances, in preparation for arithmetic."""
        operation = inspect.currentframe().f_back.f_code.co_name.strip("_")
        if operation.startswith("i"):
            operation = operation[1:]
        msg = f"Cannot {operation} the two TFR instances: {{}} do not match{{}}."
        extra = ""
        if not isinstance(other, type(self)):
            problem = "types"
            extra = f" (self is {type(self)}, other is {type(other)})"
        elif not self.times.shape == other.times.shape or np.any(
            self.times != other.times
        ):
            problem = "times"
        elif not self.freqs.shape == other.freqs.shape or np.any(
            self.freqs != other.freqs
        ):
            problem = "freqs"
        else:  # should be OK
            return
        raise RuntimeError(msg.format(problem, extra))

    def _check_state(self):
        """Check data/freqs/times/info agreement during __setstate__."""
        msg = "{} axis of data ({}) doesn't match {} attribute ({})"
        n_chan_info = len(self.info["chs"])
        n_chan = self._data.shape[self._dims.index("channel")]
        n_freq = self._data.shape[self._dims.index("freq")]
        n_time = self._data.shape[self._dims.index("time")]
        if n_chan_info != n_chan:
            msg = msg.format("Channel", n_chan, "info", n_chan_info)
        elif n_freq != len(self.freqs):
            msg = msg.format("Frequency", n_freq, "freqs", self.freqs.size)
        elif n_time != len(self.times):
            msg = msg.format("Time", n_time, "times", self.times.size)
        else:
            return
        raise ValueError(msg)

    def _check_values(self, negative_ok=False):
        """Check TFR results for correct shape and bad values."""
        assert len(self._dims) == self._data.ndim
        assert self._data.shape == self._shape
        # Check for implausible power values: take min() across all but the channel axis
        # TODO: should this be more fine-grained (report "chan X in epoch Y")?
        ch_dim = self._dims.index("channel")
        dims = np.arange(self._data.ndim).tolist()
        dims.pop(ch_dim)
        negative_values = self._data.min(axis=tuple(dims)) < 0
        if negative_values.any() and not negative_ok:
            chs = np.array(self.ch_names)[negative_values].tolist()
            s = _pl(negative_values.sum())
            warn(
                f"Negative value in time-frequency decomposition for channel{s} "
                f'{", ".join(chs)}',
                UserWarning,
            )

    def _compute_tfr(self, data, n_jobs, verbose):
        result = self._tfr_func(
            data,
            self.sfreq,
            decim=self._decim,
            n_jobs=n_jobs,
            verbose=verbose,
        )
        # assign ._data and maybe ._itc
        # tfr_array_stockwell always returns ITC (sometimes it's None)
        if self.method == "stockwell":
            self._data, self._itc, freqs = result
            assert np.array_equal(self._freqs, freqs)
        elif self._tfr_func.keywords.get("output", "").endswith("_itc"):
            self._data, self._itc = result.real, result.imag
        else:
            self._data = result
        # remove fake "epoch" dimension
        if self.method != "stockwell" and _get_instance_type_string(self) != "Epochs":
            self._data = np.squeeze(self._data, axis=0)

        # this is *expected* shape, it gets asserted later in _check_values()
        # (and then deleted afterwards)
        expected_shape = [
            len(self.ch_names),
            len(self.freqs),
            len(self._raw_times[self._decim]),  # don't use self.times, not set yet
        ]
        # deal with the "taper" dimension
        if self._needs_taper_dim:
            tapers_dim = 1 if _get_instance_type_string(self) != "Epochs" else 2
            expected_shape.insert(1, self._data.shape[tapers_dim])
        self._shape = tuple(expected_shape)

    @verbose
    def _onselect(
        self,
        eclick,
        erelease,
        picks=None,
        exclude="bads",
        combine="mean",
        baseline=None,
        mode=None,
        cmap=None,
        source_plot_joint=False,
        topomap_args=None,
        verbose=None,
    ):
        """Respond to rectangle selector in TFR image plots with a topomap plot."""
        if abs(eclick.x - erelease.x) < 0.1 or abs(eclick.y - erelease.y) < 0.1:
            return
        t_range = (min(eclick.xdata, erelease.xdata), max(eclick.xdata, erelease.xdata))
        f_range = (min(eclick.ydata, erelease.ydata), max(eclick.ydata, erelease.ydata))
        # snap to nearest measurement point
        t_idx = np.abs(self.times - np.atleast_2d(t_range).T).argmin(axis=1)
        f_idx = np.abs(self.freqs - np.atleast_2d(f_range).T).argmin(axis=1)
        tmin, tmax = self.times[t_idx]
        fmin, fmax = self.freqs[f_idx]
        # immutable → mutable default
        if topomap_args is None:
            topomap_args = dict()
        topomap_args.setdefault("cmap", cmap)
        topomap_args.setdefault("vlim", (None, None))
        # figure out which channel types we're dealing with
        types = list()
        if "eeg" in self:
            types.append("eeg")
        if "mag" in self:
            types.append("mag")
        if "grad" in self:
            grad_picks = _pair_grad_sensors(
                self.info, topomap_coords=False, raise_error=False
            )
            if len(grad_picks) > 1:
                types.append("grad")
            elif len(types) == 0:
                logger.info(
                    "Need at least 2 gradiometer pairs to plot a gradiometer topomap."
                )
                return  # Don't draw a figure for nothing.

        fig = figure_nobar()
        t_range = f"{tmin:.3f}" if tmin == tmax else f"{tmin:.3f} - {tmax:.3f}"
        f_range = f"{fmin:.2f}" if fmin == fmax else f"{fmin:.2f} - {fmax:.2f}"
        fig.suptitle(f"{t_range} s,\n{f_range} Hz")

        if source_plot_joint:
            ax = fig.add_subplot()
            data, times, freqs = self.get_data(
                picks=picks, exclude=exclude, return_times=True, return_freqs=True
            )
            # merge grads before baselining (makes ERDs visible)
            ch_types = np.array(self.get_channel_types(unique=True))
            ch_type = ch_types.item()  # will error if there are more than one
            data, pos = _merge_if_grads(
                data=data,
                info=self.info,
                ch_type=ch_type,
                sphere=topomap_args.get("sphere"),
                combine=combine,
            )
            # baseline and crop
            data, *_ = _prep_data_for_plot(
                data,
                times,
                freqs,
                tmin=tmin,
                tmax=tmax,
                fmin=fmin,
                fmax=fmax,
                baseline=baseline,
                mode=mode,
                verbose=verbose,
            )
            # average over times and freqs
            data = data.mean((-2, -1))

            im, _ = plot_topomap(data, pos, axes=ax, show=False, **topomap_args)
            _add_colorbar(ax, im, topomap_args["cmap"], title="AU")
            plt_show(fig=fig)
        else:
            for idx, ch_type in enumerate(types):
                ax = fig.add_subplot(1, len(types), idx + 1)
                plot_tfr_topomap(
                    self,
                    ch_type=ch_type,
                    tmin=tmin,
                    tmax=tmax,
                    fmin=fmin,
                    fmax=fmax,
                    baseline=baseline,
                    mode=mode,
                    axes=ax,
                    **topomap_args,
                )
                ax.set_title(ch_type)

    def _update_epoch_attributes(self):
        # overwritten in EpochsTFR; adds things needed for to_data_frame and __getitem__
        pass

    @property
    def _detrend_picks(self):
        """Provide compatibility with __iter__."""
        return list()

    @property
    def baseline(self):
        """Start and end of the baseline period (in seconds)."""
        return self._baseline

    @property
    def ch_names(self):
        """The channel names."""
        return self.info["ch_names"]

    @property
    def data(self):
        """The time-frequency-resolved power estimates."""
        return self._data

    @data.setter
    def data(self, data):
        self._data = data

    @property
    def freqs(self):
        """The frequencies at which power estimates were computed."""
        return self._freqs

    @property
    def method(self):
        """The method used to compute the time-frequency power estimates."""
        return self._method

    @property
    def sfreq(self):
        """Sampling frequency of the data."""
        return self.info["sfreq"]

    @property
    def shape(self):
        """Data shape."""
        return self._data.shape

    @property
    def times(self):
        """The time points present in the data (in seconds)."""
        return self._times_readonly

    @fill_doc
    def crop(self, tmin=None, tmax=None, fmin=None, fmax=None, include_tmax=True):
        """Crop data to a given time interval in place.

        Parameters
        ----------
        %(tmin_tmax_psd)s
        fmin : float | None
            Lowest frequency of selection in Hz.

            .. versionadded:: 0.18.0
        fmax : float | None
            Highest frequency of selection in Hz.

            .. versionadded:: 0.18.0
        %(include_tmax)s

        Returns
        -------
        %(inst_tfr)s
            The modified instance.
        """
        super().crop(tmin=tmin, tmax=tmax, include_tmax=include_tmax)

        if fmin is not None or fmax is not None:
            freq_mask = _freq_mask(
                self.freqs, sfreq=self.info["sfreq"], fmin=fmin, fmax=fmax
            )
        else:
            freq_mask = slice(None)

        self._freqs = self.freqs[freq_mask]
        # Deal with broadcasting (boolean arrays do not broadcast, but indices
        # do, so we need to convert freq_mask to make use of broadcasting)
        if isinstance(freq_mask, np.ndarray):
            freq_mask = np.where(freq_mask)[0]
        self._data = self._data[..., freq_mask, :]
        return self

    def copy(self):
        """Return copy of the TFR instance.

        Returns
        -------
        %(inst_tfr)s
            A copy of the object.
        """
        return deepcopy(self)

    @verbose
    def apply_baseline(self, baseline, mode="mean", verbose=None):
        """Baseline correct the data.

        Parameters
        ----------
        %(baseline_rescale)s

            How baseline is computed is determined by the ``mode`` parameter.
        mode : 'mean' | 'ratio' | 'logratio' | 'percent' | 'zscore' | 'zlogratio'
            Perform baseline correction by

            - subtracting the mean of baseline values ('mean')
            - dividing by the mean of baseline values ('ratio')
            - dividing by the mean of baseline values and taking the log
              ('logratio')
            - subtracting the mean of baseline values followed by dividing by
              the mean of baseline values ('percent')
            - subtracting the mean of baseline values and dividing by the
              standard deviation of baseline values ('zscore')
            - dividing by the mean of baseline values, taking the log, and
              dividing by the standard deviation of log baseline values
              ('zlogratio')
        %(verbose)s

        Returns
        -------
        %(inst_tfr)s
            The modified instance.
        """
        self._baseline = _check_baseline(baseline, times=self.times, sfreq=self.sfreq)
        rescale(self.data, self.times, self.baseline, mode, copy=False, verbose=verbose)
        return self

    @fill_doc
    def get_data(
        self,
        picks=None,
        exclude="bads",
        fmin=None,
        fmax=None,
        tmin=None,
        tmax=None,
        return_times=False,
        return_freqs=False,
    ):
        """Get time-frequency data in NumPy array format.

        Parameters
        ----------
        %(picks_good_data_noref)s
        %(exclude_spectrum_get_data)s
        %(fmin_fmax_tfr)s
        %(tmin_tmax_psd)s
        return_times : bool
            Whether to return the time values for the requested time range.
            Default is ``False``.
        return_freqs : bool
            Whether to return the frequency bin values for the requested
            frequency range. Default is ``False``.

        Returns
        -------
        data : array
            The requested data in a NumPy array.
        times : array
            The time values for the requested data range. Only returned if
            ``return_times`` is ``True``.
        freqs : array
            The frequency values for the requested data range. Only returned if
            ``return_freqs`` is ``True``.

        Notes
        -----
        Returns a copy of the underlying data (not a view).
        """
        tmin = self.times[0] if tmin is None else tmin
        tmax = self.times[-1] if tmax is None else tmax
        fmin = 0 if fmin is None else fmin
        fmax = np.inf if fmax is None else fmax
        picks = _picks_to_idx(
            self.info, picks, "data_or_ica", exclude=exclude, with_ref_meg=False
        )
        fmin_idx = np.searchsorted(self.freqs, fmin)
        fmax_idx = np.searchsorted(self.freqs, fmax, side="right")
        tmin_idx = np.searchsorted(self.times, tmin)
        tmax_idx = np.searchsorted(self.times, tmax, side="right")
        freq_picks = np.arange(fmin_idx, fmax_idx)
        time_picks = np.arange(tmin_idx, tmax_idx)
        freq_axis = self._dims.index("freq")
        time_axis = self._dims.index("time")
        chan_axis = self._dims.index("channel")
        # normally there's a risk of np.take reducing array dimension if there
        # were only one channel or frequency selected, but `_picks_to_idx`
        # and np.arange both always return arrays, so we're safe; the result
        # will always have the same `ndim` as it started with.
        data = (
            self._data.take(picks, chan_axis)
            .take(freq_picks, freq_axis)
            .take(time_picks, time_axis)
        )
        out = [data]
        if return_times:
            times = self._raw_times[tmin_idx:tmax_idx]
            out.append(times)
        if return_freqs:
            freqs = self._freqs[fmin_idx:fmax_idx]
            out.append(freqs)
        if not return_times and not return_freqs:
            return out[0]
        return tuple(out)

    @verbose
    def plot(
        self,
        picks=None,
        *,
        exclude=(),
        tmin=None,
        tmax=None,
        fmin=0.0,
        fmax=np.inf,
        baseline=None,
        mode="mean",
        dB=False,
        combine=None,
        layout=None,  # TODO deprecate? not used in orig implementation either
        yscale="auto",
        vlim=(None, None),
        cnorm=None,
        cmap=None,
        colorbar=True,
        title=None,  # don't deprecate this one; has (useful) option title="auto"
        mask=None,
        mask_style=None,
        mask_cmap="Greys",
        mask_alpha=0.1,
        axes=None,
        show=True,
        verbose=None,
    ):
        """Plot TFRs as two-dimensional time-frequency images.

        Parameters
        ----------
        %(picks_good_data)s
        %(exclude_spectrum_plot)s
        %(tmin_tmax_psd)s
        %(fmin_fmax_tfr)s
        %(baseline_rescale)s

            How baseline is computed is determined by the ``mode`` parameter.
        %(mode_tfr_plot)s
        %(dB_spectrum_plot)s
        %(combine_tfr_plot)s

            .. versionchanged:: 1.3
               Added support for ``callable``.
        %(layout_spectrum_plot_topo)s
        %(yscale_tfr_plot)s

            .. versionadded:: 0.14.0
        %(vlim_tfr_plot)s
        %(cnorm)s

            .. versionadded:: 0.24
        %(cmap_topomap)s
        %(colorbar)s
        %(title_tfr_plot)s
        %(mask_tfr_plot)s

            .. versionadded:: 0.16.0
        %(mask_style_tfr_plot)s

            .. versionadded:: 0.17
        %(mask_cmap_tfr_plot)s

            .. versionadded:: 0.17
        %(mask_alpha_tfr_plot)s

            .. versionadded:: 0.16.0
        %(axes_tfr_plot)s
        %(show)s
        %(verbose)s

        Returns
        -------
        figs : list of instances of matplotlib.figure.Figure
            A list of figures containing the time-frequency power.
        """
        # the rectangle selector plots topomaps, which needs all channels uncombined,
        # so we keep a reference to that state here, and (because the topomap plotting
        # function wants an AverageTFR) update it with `comment` and `nave` values in
        # case we started out with a singleton EpochsTFR or RawTFR
        initial_state = self.__getstate__()
        initial_state.setdefault("comment", "")
        initial_state.setdefault("nave", 1)
        # `_picks_to_idx` also gets done inside `get_data()`` below, but we do it here
        # because we need the indices later
        idx_picks = _picks_to_idx(
            self.info, picks, "data_or_ica", exclude=exclude, with_ref_meg=False
        )
        pick_names = np.array(self.ch_names)[idx_picks].tolist()  # for titles
        ch_types = self.get_channel_types(idx_picks)
        # get data arrays
        data, times, freqs = self.get_data(
            picks=idx_picks, exclude=(), return_times=True, return_freqs=True
        )
        # pass tmin/tmax here ↓↓↓, not here ↑↑↑; we want to crop *after* baselining
        data, times, freqs = _prep_data_for_plot(
            data,
            times,
            freqs,
            tmin=tmin,
            tmax=tmax,
            fmin=fmin,
            fmax=fmax,
            baseline=baseline,
            mode=mode,
            dB=dB,
            verbose=verbose,
        )
        # shape
        ch_axis = self._dims.index("channel")
        freq_axis = self._dims.index("freq")
        time_axis = self._dims.index("time")
        want_shape = list(self.shape)
        want_shape[ch_axis] = len(idx_picks) if combine is None else 1
        want_shape[freq_axis] = len(freqs)  # in case there was fmin/fmax cropping
        want_shape[time_axis] = len(times)  # in case there was tmin/tmax cropping
        want_shape = tuple(want_shape)
        # combine
        combine_was_none = combine is None
        combine = _make_combine_callable(
            combine, axis=ch_axis, valid=("mean", "rms"), keepdims=True
        )
        try:
            data = combine(data)  # no need to copy; get_data() never returns a view
        except Exception as e:
            msg = (
                "Something went wrong with the callable passed to 'combine'; see "
                "traceback."
            )
            raise ValueError(msg) from e
        # call succeeded, check type and shape
        mismatch = False
        if not isinstance(data, np.ndarray):
            mismatch = "type"
            extra = ""
        elif data.shape not in (want_shape, want_shape[1:]):
            mismatch = "shape"
            extra = f" of shape {data.shape}"
        if mismatch:
            raise RuntimeError(
                f"Wrong {mismatch} yielded by callable passed to 'combine'. Make sure "
                "your function takes a single argument (an array of shape "
                "(n_channels, n_freqs, n_times)) and returns an array of shape "
                f"(n_freqs, n_times); yours yielded: {type(data)}{extra}."
            )
        # restore singleton collapsed axis (removed by user-provided callable):
        # (n_freqs, n_times) → (1, n_freqs, n_times)
        if data.shape == (len(freqs), len(times)):
            data = data[np.newaxis]

        assert data.shape == want_shape
        # cmap handling. power may be negative depending on baseline strategy so set
        # `norm` empirically — but only if user didn't set limits explicitly.
        norm = False if vlim == (None, None) else data.min() >= 0.0
        vmin, vmax = _setup_vmin_vmax(data, *vlim, norm=norm)
        cmap = _setup_cmap(cmap, norm=norm)
        # prepare figure(s)
        if axes is None:
            figs = [plt.figure(layout="constrained") for _ in range(data.shape[0])]
            axes = [fig.add_subplot() for fig in figs]
        elif isinstance(axes, plt.Axes):
            figs = [axes.get_figure()]
            axes = [axes]
        elif isinstance(axes, np.ndarray):  # allow plotting into a grid of axes
            figs = [ax.get_figure() for ax in axes.flat]
        elif hasattr(axes, "__iter__") and len(axes):
            figs = [ax.get_figure() for ax in axes]
        else:
            raise ValueError(
                f"axes must be None, Axes, or list/array of Axes, got {type(axes)}"
            )
        if len(axes) != data.shape[0]:
            raise RuntimeError(
                f"Mismatch between picked channels ({data.shape[0]}) and axes "
                f"({len(axes)}); there must be one axes for each picked channel."
            )
        # check if we're being called from within plot_joint(). If so, get the
        # `topomap_args` from the calling context and pass it to the onselect handler.
        # (we need 2 `f_back` here because of the verbose decorator)
        calling_frame = inspect.currentframe().f_back.f_back
        source_plot_joint = calling_frame.f_code.co_name == "plot_joint"
        topomap_args = (
            dict()
            if not source_plot_joint
            else calling_frame.f_locals.get("topomap_args", dict())
        )
        # plot
        for ix, _fig in enumerate(figs):
            # restrict the onselect instance to the channel type of the picks used in
            # the image plot
            uniq_types = np.unique(ch_types)
            ch_type = None if len(uniq_types) > 1 else uniq_types.item()
            this_tfr = AverageTFR(inst=initial_state).pick(ch_type, verbose=verbose)
            _onselect_callback = partial(
                this_tfr._onselect,
                picks=None,  # already restricted the picks in `this_tfr`
                exclude=(),
                baseline=baseline,
                mode=mode,
                cmap=cmap,
                source_plot_joint=source_plot_joint,
                topomap_args=topomap_args,
            )
            # draw the image plot
            _imshow_tfr(
                ax=axes[ix],
                tfr=data[[ix]],
                ch_idx=0,
                tmin=times[0],
                tmax=times[-1],
                vmin=vmin,
                vmax=vmax,
                onselect=_onselect_callback,
                ylim=None,
                freq=freqs,
                x_label="Time (s)",
                y_label="Frequency (Hz)",
                colorbar=colorbar,
                cmap=cmap,
                yscale=yscale,
                mask=mask,
                mask_style=mask_style,
                mask_cmap=mask_cmap,
                mask_alpha=mask_alpha,
                cnorm=cnorm,
            )
            # handle title. automatic title is:
            #   f"{Baselined} {power} ({ch_name})" or
            #   f"{Baselined} {power} ({combination} of {N} {ch_type}s)"
            if title == "auto":
                if combine_was_none:  # one plot per channel
                    which_chs = pick_names[ix]
                elif len(pick_names) == 1:  # there was only one pick anyway
                    which_chs = pick_names[0]
                else:  # one plot for all chs combined
                    which_chs = _set_title_multiple_electrodes(
                        None, combine, pick_names, all_=True, ch_type=ch_type
                    )
                _prefix = "Power" if baseline is None else "Baselined power"
                _title = f"{_prefix} ({which_chs})"
            else:
                _title = title
            _fig.suptitle(_title)
        plt_show(show)
        return figs

    @verbose
    def plot_joint(
        self,
        *,
        timefreqs=None,
        picks=None,
        exclude=(),
        combine="mean",
        tmin=None,
        tmax=None,
        fmin=None,
        fmax=None,
        baseline=None,
        mode="mean",
        dB=False,
        yscale="auto",
        vlim=(None, None),
        cnorm=None,
        cmap=None,
        colorbar=True,
        title=None,  # TODO consider deprecating this one, or adding an "auto" option
        show=True,
        topomap_args=None,
        image_args=None,
        verbose=None,
    ):
        """Plot TFRs as a two-dimensional image with topomap highlights.

        Parameters
        ----------
        %(timefreqs)s
        %(picks_good_data)s
        %(exclude_psd)s
            Default is an empty :class:`tuple` which includes all channels.
        %(combine_tfr_plot_joint)s

            .. versionchanged:: 1.3
                Added support for ``callable``.
        %(tmin_tmax_psd)s
        %(fmin_fmax_tfr)s
        %(baseline_rescale)s

            How baseline is computed is determined by the ``mode`` parameter.
        %(mode_tfr_plot)s
        %(dB_tfr_plot_topo)s
        %(yscale_tfr_plot)s
        %(vlim_tfr_plot_joint)s
        %(cnorm)s
        %(cmap_tfr_plot_topo)s
        %(colorbar_tfr_plot_joint)s
        %(title_none)s
        %(show)s
        %(topomap_args)s
        %(image_args)s
        %(verbose)s

        Returns
        -------
        fig : matplotlib.figure.Figure
            The figure containing the topography.

        Notes
        -----
        %(notes_timefreqs_tfr_plot_joint)s

        .. versionadded:: 0.16.0
        """
        from matplotlib import ticker
        from matplotlib.patches import ConnectionPatch

        # handle recursion
        picks = _picks_to_idx(
            self.info, picks, "data_or_ica", exclude=exclude, with_ref_meg=False
        )
        all_ch_types = np.array(self.get_channel_types())
        uniq_ch_types = sorted(set(all_ch_types[picks]))
        if len(uniq_ch_types) > 1:
            msg = "Multiple channel types selected, returning one figure per type."
            logger.info(msg)
            figs = list()
            for this_type in uniq_ch_types:
                this_picks = np.intersect1d(
                    picks,
                    np.nonzero(np.isin(all_ch_types, this_type))[0],
                    assume_unique=True,
                )
                # TODO might be nice to not "copy first, then pick"; alternative might
                # be to subset the data with `this_picks` and then construct the "copy"
                # using __getstate__ and __setstate__
                _tfr = self.copy().pick(this_picks)
                figs.append(
                    _tfr.plot_joint(
                        timefreqs=timefreqs,
                        picks=None,
                        baseline=baseline,
                        mode=mode,
                        tmin=tmin,
                        tmax=tmax,
                        fmin=fmin,
                        fmax=fmax,
                        vlim=vlim,
                        cmap=cmap,
                        dB=dB,
                        colorbar=colorbar,
                        show=False,
                        title=title,
                        yscale=yscale,
                        combine=combine,
                        exclude=(),
                        topomap_args=topomap_args,
                        verbose=verbose,
                    )
                )
            return figs
        else:
            ch_type = uniq_ch_types[0]

        # handle defaults
        _validate_type(combine, ("str", "callable"), item_name="combine")  # no `None`
        image_args = dict() if image_args is None else image_args
        topomap_args = dict() if topomap_args is None else topomap_args.copy()
        # make sure if topomap_args["ch_type"] is set, it matches what is in `self.info`
        topomap_args.setdefault("ch_type", ch_type)
        if topomap_args["ch_type"] != ch_type:
            raise ValueError(
                f"topomap_args['ch_type'] is {topomap_args['ch_type']} which does not "
                f"match the channel type present in the object ({ch_type})."
            )
        # some necessary defaults
        topomap_args.setdefault("outlines", "head")
        topomap_args.setdefault("contours", 6)
        # don't pass these:
        topomap_args.pop("axes", None)
        topomap_args.pop("show", None)
        topomap_args.pop("colorbar", None)

        # get the time/freq limits of the image plot, to make sure requested annotation
        # times/freqs are in range
        _, times, freqs = self.get_data(
            picks=picks,
            exclude=(),
            tmin=tmin,
            tmax=tmax,
            fmin=fmin,
            fmax=fmax,
            return_times=True,
            return_freqs=True,
        )
        # validate requested annotation times and freqs
        timefreqs = _get_timefreqs(self, timefreqs)
        valid_timefreqs = dict()
        while timefreqs:
            (_time, _freq), (t_win, f_win) = timefreqs.popitem()
            # convert to half-windows
            t_win /= 2
            f_win /= 2
            # make sure the times / freqs are in-bounds
            msg = (
                "Requested {} exceeds the range of the data ({}). Choose different "
                "`timefreqs`."
            )
            if (times > _time).all() or (times < _time).all():
                _var = f"time point ({_time:0.3f} s)"
                _range = f"{times[0]:0.3f} - {times[-1]:0.3f} s"
                raise ValueError(msg.format(_var, _range))
            elif (freqs > _freq).all() or (freqs < _freq).all():
                _var = f"frequency ({_freq:0.1f} Hz)"
                _range = f"{freqs[0]:0.1f} - {freqs[-1]:0.1f} Hz"
                raise ValueError(msg.format(_var, _range))
            # snap the times/freqs to the nearest point we have an estimate for, and
            # store the validated points
            if t_win == 0:
                _time = times[np.argmin(np.abs(times - _time))]
            if f_win == 0:
                _freq = freqs[np.argmin(np.abs(freqs - _freq))]
            valid_timefreqs[(_time, _freq)] = (t_win, f_win)

        # prep data for topomaps (unlike image plot, must include all channels of the
        # current ch_type). Don't pass tmin/tmax here (crop later after baselining)
        topomap_picks = _picks_to_idx(self.info, ch_type)
        data, times, freqs = self.get_data(
            picks=topomap_picks, exclude=(), return_times=True, return_freqs=True
        )
        # merge grads before baselining (makes ERDS visible)
        info = pick_info(self.info, sel=topomap_picks, copy=True)
        data, pos = _merge_if_grads(
            data=data,
            info=info,
            ch_type=ch_type,
            sphere=topomap_args.get("sphere"),
            combine=combine,
        )
        # loop over intended topomap locations, to find one vlim that works for all.
        tf_array = np.array(list(valid_timefreqs))  # each row is [time, freq]
        tf_array = tf_array[tf_array[:, 0].argsort()]  # sort by time
        _vmin, _vmax = (np.inf, -np.inf)
        topomap_arrays = list()
        topomap_titles = list()
        for _time, _freq in tf_array:
            # reduce data to the range of interest in the TF plane (i.e., finally crop)
            t_win, f_win = valid_timefreqs[(_time, _freq)]
            _tmin, _tmax = np.array([-1, 1]) * t_win + _time
            _fmin, _fmax = np.array([-1, 1]) * f_win + _freq
            _data, *_ = _prep_data_for_plot(
                data,
                times,
                freqs,
                tmin=_tmin,
                tmax=_tmax,
                fmin=_fmin,
                fmax=_fmax,
                baseline=baseline,
                mode=mode,
                verbose=verbose,
            )
            _data = _data.mean(axis=(-1, -2))  # avg over times and freqs
            topomap_arrays.append(_data)
            _vmin = min(_data.min(), _vmin)
            _vmax = max(_data.max(), _vmax)
            # construct topopmap subplot title
            t_pm = "" if t_win == 0 else f" ± {t_win:0.2f}"
            f_pm = "" if f_win == 0 else f" ± {f_win:0.1f}"
            _title = f"{_time:0.2f}{t_pm} s,\n{_freq:0.1f}{f_pm} Hz"
            topomap_titles.append(_title)
        # handle cmap. Power may be negative depending on baseline strategy so set
        # `norm` empirically. vmin/vmax will be handled separately within the `plot()`
        # call for the image plot.
        norm = np.min(topomap_arrays) >= 0.0
        cmap = _setup_cmap(cmap, norm=norm)
        topomap_args.setdefault("cmap", cmap[0])  # prevent interactive cbar
        # finalize topomap vlims and compute contour locations.
        # By passing `data=None` here ↓↓↓↓ we effectively assert vmin & vmax aren't None
        _vlim = _setup_vmin_vmax(data=None, vmin=_vmin, vmax=_vmax, norm=norm)
        topomap_args.setdefault("vlim", _vlim)
        locator, topomap_args["contours"] = _set_contour_locator(
            *topomap_args["vlim"], topomap_args["contours"]
        )
        # initialize figure and do the image plot. `self.plot()` needed to wait to be
        # called until after `topomap_args` was fully populated --- we don't pass the
        # dict through to `self.plot()` explicitly here, but we do "reach back" and get
        # it if it's needed by the interactive rectangle selector.
        fig, image_ax, topomap_axes = _prepare_joint_axes(len(valid_timefreqs))
        fig = self.plot(
            picks=picks,
            exclude=(),
            tmin=tmin,
            tmax=tmax,
            fmin=fmin,
            fmax=fmax,
            baseline=baseline,
            mode=mode,
            dB=dB,
            combine=combine,
            yscale=yscale,
            vlim=vlim,
            cnorm=cnorm,
            cmap=cmap,
            colorbar=False,
            title=title,
            # mask, mask_style, mask_cmap, mask_alpha
            axes=image_ax,
            show=False,
            verbose=verbose,
            **image_args,
        )[0]  # [0] because `.plot()` always returns a list
        # now, actually plot the topomaps
        for ax, title, _data in zip(topomap_axes, topomap_titles, topomap_arrays):
            ax.set_title(title)
            plot_topomap(_data, pos, axes=ax, show=False, **topomap_args)
        # draw colorbar
        if colorbar:
            cbar = fig.colorbar(ax.images[0])
            cbar.locator = ticker.MaxNLocator(nbins=5) if locator is None else locator
            cbar.update_ticks()
        # draw the connection lines between time-frequency image and topoplots
        for (time_, freq_), topo_ax in zip(tf_array, topomap_axes):
            con = ConnectionPatch(
                xyA=[time_, freq_],
                xyB=[0.5, 0],
                coordsA="data",
                coordsB="axes fraction",
                axesA=image_ax,
                axesB=topo_ax,
                color="grey",
                linestyle="-",
                linewidth=1.5,
                alpha=0.66,
                zorder=1,
                clip_on=False,
            )
            fig.add_artist(con)

        plt_show(show)
        return fig

    @verbose
    def plot_topo(
        self,
        picks=None,
        baseline=None,
        mode="mean",
        tmin=None,
        tmax=None,
        fmin=None,
        fmax=None,
        vmin=None,  # TODO deprecate in favor of `vlim` (needs helper func refactor)
        vmax=None,
        layout=None,
        cmap="RdBu_r",
        title=None,  # don't deprecate; topo titles aren't standard (color, size, just.)
        dB=False,
        colorbar=True,
        layout_scale=0.945,
        show=True,
        border="none",
        fig_facecolor="k",
        fig_background=None,
        font_color="w",
        yscale="auto",
        verbose=None,
    ):
        """Plot a TFR image for each channel in a sensor layout arrangement.

        Parameters
        ----------
        %(picks_good_data)s
        %(baseline_rescale)s

            How baseline is computed is determined by the ``mode`` parameter.
        %(mode_tfr_plot)s
        %(tmin_tmax_psd)s
        %(fmin_fmax_tfr)s
        %(vmin_vmax_tfr_plot_topo)s
        %(layout_spectrum_plot_topo)s
        %(cmap_tfr_plot_topo)s
        %(title_none)s
        %(dB_tfr_plot_topo)s
        %(colorbar)s
        %(layout_scale)s
        %(show)s
        %(border_topo)s
        %(fig_facecolor)s
        %(fig_background)s
        %(font_color)s
        %(yscale_tfr_plot)s
        %(verbose)s

        Returns
        -------
        fig : matplotlib.figure.Figure
            The figure containing the topography.
        """
        # convenience vars
        times = self.times.copy()
        freqs = self.freqs
        data = self.data
        info = self.info

        info, data = _prepare_picks(info, data, picks, axis=0)
        del picks

        # TODO this is the only remaining call to _preproc_tfr; should be refactored
        #      (to use _prep_data_for_plot?)
        data, times, freqs, vmin, vmax = _preproc_tfr(
            data,
            times,
            freqs,
            tmin,
            tmax,
            fmin,
            fmax,
            mode,
            baseline,
            vmin,
            vmax,
            dB,
            info["sfreq"],
        )

        if layout is None:
            from mne import find_layout

            layout = find_layout(self.info)
        onselect_callback = partial(self._onselect, baseline=baseline, mode=mode)

        click_fun = partial(
            _imshow_tfr,
            tfr=data,
            freq=freqs,
            yscale=yscale,
            cmap=(cmap, True),
            onselect=onselect_callback,
        )
        imshow = partial(
            _imshow_tfr_unified,
            tfr=data,
            freq=freqs,
            cmap=cmap,
            onselect=onselect_callback,
        )

        fig = _plot_topo(
            info=info,
            times=times,
            show_func=imshow,
            click_func=click_fun,
            layout=layout,
            colorbar=colorbar,
            vmin=vmin,
            vmax=vmax,
            cmap=cmap,
            layout_scale=layout_scale,
            title=title,
            border=border,
            x_label="Time (s)",
            y_label="Frequency (Hz)",
            fig_facecolor=fig_facecolor,
            font_color=font_color,
            unified=True,
            img=True,
        )

        add_background_image(fig, fig_background)
        plt_show(show)
        return fig

    @copy_function_doc_to_method_doc(plot_tfr_topomap)
    def plot_topomap(
        self,
        tmin=None,
        tmax=None,
        fmin=0.0,
        fmax=np.inf,
        *,
        ch_type=None,
        baseline=None,
        mode="mean",
        sensors=True,
        show_names=False,
        mask=None,
        mask_params=None,
        contours=6,
        outlines="head",
        sphere=None,
        image_interp=_INTERPOLATION_DEFAULT,
        extrapolate=_EXTRAPOLATE_DEFAULT,
        border=_BORDER_DEFAULT,
        res=64,
        size=2,
        cmap=None,
        vlim=(None, None),
        cnorm=None,
        colorbar=True,
        cbar_fmt="%1.1e",
        units=None,
        axes=None,
        show=True,
    ):
        return plot_tfr_topomap(
            self,
            tmin=tmin,
            tmax=tmax,
            fmin=fmin,
            fmax=fmax,
            ch_type=ch_type,
            baseline=baseline,
            mode=mode,
            sensors=sensors,
            show_names=show_names,
            mask=mask,
            mask_params=mask_params,
            contours=contours,
            outlines=outlines,
            sphere=sphere,
            image_interp=image_interp,
            extrapolate=extrapolate,
            border=border,
            res=res,
            size=size,
            cmap=cmap,
            vlim=vlim,
            cnorm=cnorm,
            colorbar=colorbar,
            cbar_fmt=cbar_fmt,
            units=units,
            axes=axes,
            show=show,
        )

    @verbose
    def save(self, fname, *, overwrite=False, verbose=None):
        """Save time-frequency data to disk (in HDF5 format).

        Parameters
        ----------
        fname : path-like
            Path of file to save to, which should end with ``-tfr.h5`` or ``-tfr.hdf5``.
        %(overwrite)s
        %(verbose)s

        See Also
        --------
        mne.time_frequency.read_tfrs
        """
        _, write_hdf5 = _import_h5io_funcs()
        check_fname(fname, "time-frequency object", (".h5", ".hdf5"))
        fname = _check_fname(fname, overwrite=overwrite, verbose=verbose)
        out = self.__getstate__()
        if "metadata" in out:
            out["metadata"] = _prepare_write_metadata(out["metadata"])
        write_hdf5(fname, out, overwrite=overwrite, title="mnepython", slash="replace")

    @verbose
    def to_data_frame(
        self,
        picks=None,
        index=None,
        long_format=False,
        time_format=None,
        *,
        verbose=None,
    ):
        """Export data in tabular structure as a pandas DataFrame.

        Channels are converted to columns in the DataFrame. By default,
        additional columns ``'time'``, ``'freq'``, ``'epoch'``, and
        ``'condition'`` (epoch event description) are added, unless ``index``
        is not ``None`` (in which case the columns specified in ``index`` will
        be used to form the DataFrame's index instead). ``'epoch'``, and
        ``'condition'`` are not supported for ``AverageTFR``.

        Parameters
        ----------
        %(picks_all)s
        %(index_df_epo)s
            Valid string values are ``'time'``, ``'freq'``, ``'epoch'``, and
            ``'condition'`` for ``EpochsTFR`` and ``'time'`` and ``'freq'``
            for ``AverageTFR``.
            Defaults to ``None``.
        %(long_format_df_epo)s
        %(time_format_df)s

            .. versionadded:: 0.23
        %(verbose)s

        Returns
        -------
        %(df_return)s
        """
        # check pandas once here, instead of in each private utils function
        pd = _check_pandas_installed()  # noqa
        # arg checking
        valid_index_args = ["time", "freq"]
        if isinstance(self, EpochsTFR):
            valid_index_args.extend(["epoch", "condition"])
        valid_time_formats = ["ms", "timedelta"]
        index = _check_pandas_index_arguments(index, valid_index_args)
        time_format = _check_time_format(time_format, valid_time_formats)
        # get data
        picks = _picks_to_idx(self.info, picks, "all", exclude=())
        data, times, freqs = self.get_data(picks, return_times=True, return_freqs=True)
        axis = self._dims.index("channel")
        if not isinstance(self, EpochsTFR):
            data = data[np.newaxis]  # add singleton "epochs" axis
            axis += 1
        n_epochs, n_picks, n_freqs, n_times = data.shape
        # reshape to (epochs*freqs*times) x signals
        data = np.moveaxis(data, axis, -1)
        data = data.reshape(n_epochs * n_freqs * n_times, n_picks)
        # prepare extra columns / multiindex
        mindex = list()
        times = _convert_times(times, time_format, self.info["meas_date"])
        times = np.tile(times, n_epochs * n_freqs)
        freqs = np.tile(np.repeat(freqs, n_times), n_epochs)
        mindex.append(("time", times))
        mindex.append(("freq", freqs))
        if isinstance(self, EpochsTFR):
            mindex.append(("epoch", np.repeat(self.selection, n_times * n_freqs)))
            rev_event_id = {v: k for k, v in self.event_id.items()}
            conditions = [rev_event_id[k] for k in self.events[:, 2]]
            mindex.append(("condition", np.repeat(conditions, n_times * n_freqs)))
        assert all(len(mdx) == len(mindex[0]) for mdx in mindex[1:])
        # build DataFrame
        if isinstance(self, EpochsTFR):
            default_index = ["condition", "epoch", "freq", "time"]
        else:
            default_index = ["freq", "time"]
        df = _build_data_frame(
            self, data, picks, long_format, mindex, index, default_index=default_index
        )
        return df


@fill_doc
class AverageTFR(BaseTFR):
    """Data object for spectrotemporal representations of averaged data.

    .. warning:: The preferred means of creating AverageTFR objects is via the
                 instance methods :meth:`mne.Epochs.compute_tfr` and
                 :meth:`mne.Evoked.compute_tfr`, or via
                 :meth:`mne.time_frequency.EpochsTFR.average`. Direct class
                 instantiation is discouraged.

    Parameters
    ----------
    inst : instance of Evoked | instance of Epochs | dict
        The data from which to compute the time-frequency representation. Passing a
        :class:`dict` will create the AverageTFR using the ``__setstate__`` interface
        and is not recommended for typical use cases.
    freqs : ndarray, shape (n_freqs,)
        The frequencies in Hz.
    %(method_tfr)s
    %(freqs_tfr)s
    %(tmin_tmax_psd)s
    %(picks_good_data_noref)s
    %(proj_psd)s
    %(decim_tfr)s
    %(comment_averagetfr)s
    %(n_jobs)s
    %(verbose)s
    %(method_kw_tfr)s

    Attributes
    ----------
    %(baseline_tfr_attr)s
    %(ch_names_tfr_attr)s
    %(comment_averagetfr_attr)s
    %(freqs_tfr_attr)s
    %(info_not_none)s
    %(method_tfr_attr)s
    %(nave_tfr_attr)s
    %(sfreq_tfr_attr)s
    %(shape_tfr_attr)s

    See Also
    --------
    RawTFR
    EpochsTFR
    AverageTFRArray
    mne.Evoked.compute_tfr
    mne.time_frequency.EpochsTFR.average

    Notes
    -----
    The old API (prior to version 1.7) was::

        AverageTFR(info, data, times, freqs, nave, comment=None, method=None)

    That API is still available via :class:`~mne.time_frequency.AverageTFRArray` for
    cases where the data are precomputed or do not originate from MNE-Python objects.
    The preferred new API uses instance methods::

        evoked.compute_tfr(method, freqs, ...)
        epochs.compute_tfr(method, freqs, average=True, ...)

    The new API also supports AverageTFR instantiation from a :class:`dict`, but this
    is primarily for save/load and internal purposes, and wraps ``__setstate__``.
    During the transition from the old to the new API, it may be expedient to use
    :class:`~mne.time_frequency.AverageTFRArray` as a "quick-fix" approach to updating
    scripts under active development.

    References
    ----------
    .. footbibliography::
    """

    def __init__(
        self,
        *,
        inst=None,
        freqs=None,
        method=None,
        tmin=None,
        tmax=None,
        picks=None,
        proj=False,
        decim=1,
        comment=None,
        n_jobs=None,
        verbose=None,
        **method_kw,
    ):
        from ..epochs import BaseEpochs
        from ..evoked import Evoked
        from ._stockwell import _check_input_st, _compute_freqs_st

        # dict is allowed for __setstate__ compatibility, and Epochs.compute_tfr() can
        # return an AverageTFR depending on its parameters, so Epochs input is allowed
        _validate_type(
            inst, (BaseEpochs, Evoked, dict), "object passed to AverageTFR constructor"
        )
        # stockwell API is very different from multitaper/morlet
        if method == "stockwell" and not isinstance(inst, dict):
            if isinstance(freqs, str) and freqs == "auto":
                fmin, fmax = None, None
            elif len(freqs) == 2:
                fmin, fmax = freqs
            else:
                raise ValueError(
                    "for Stockwell method, freqs must be a length-2 iterable "
                    f'or "auto", got {freqs}.'
                )
            method_kw.update(fmin=fmin, fmax=fmax)
            # Compute freqs. We need a couple lines of code dupe here (also in
            # BaseTFR.__init__) to get the subset of times to pass to _check_input_st()
            _mask = _time_mask(inst.times, tmin, tmax, sfreq=inst.info["sfreq"])
            _times = inst.times[_mask].copy()
            _, default_nfft, _ = _check_input_st(_times, None)
            n_fft = method_kw.get("n_fft", default_nfft)
            *_, freqs = _compute_freqs_st(fmin, fmax, n_fft, inst.info["sfreq"])

        # use Evoked.comment or str(Epochs.event_id) as the default comment...
        if comment is None:
            comment = getattr(inst, "comment", ",".join(getattr(inst, "event_id", "")))
        # ...but don't overwrite if it's coming in with a comment already set
        if isinstance(inst, dict):
            inst.setdefault("comment", comment)
        else:
            self._comment = getattr(self, "_comment", comment)
        super().__init__(
            inst,
            method,
            freqs,
            tmin=tmin,
            tmax=tmax,
            picks=picks,
            proj=proj,
            decim=decim,
            n_jobs=n_jobs,
            verbose=verbose,
            **method_kw,
        )

    def __getstate__(self):
        """Prepare AverageTFR object for serialization."""
        out = super().__getstate__()
        out.update(nave=self.nave, comment=self.comment)
        # NOTE: self._itc should never exist in the instance returned to the user; it
        # is temporarily present in the output from the tfr_array_* function, and is
        # split out into a separate AverageTFR object (and deleted from the object
        # holding power estimates) before those objects are passed back to the user.
        # The following lines are there because we make use of __getstate__ to achieve
        # that splitting of objects.
        if hasattr(self, "_itc"):
            out.update(itc=self._itc)
        return out

    def __setstate__(self, state):
        """Unpack AverageTFR from serialized format."""
        super().__setstate__(state)
        self._comment = state.get("comment", "")
        self._nave = state.get("nave", 1)

    @property
    def comment(self):
        return self._comment

    @comment.setter
    def comment(self, comment):
        self._comment = comment

    @property
    def nave(self):
        return self._nave

    @nave.setter
    def nave(self, nave):
        self._nave = nave

    def _get_instance_data(self, time_mask):
        # AverageTFRs can be constructed from Epochs data, so we triage shape here.
        # Evoked data get a fake singleton "epoch" axis prepended
        dim = slice(None) if _get_instance_type_string(self) == "Epochs" else np.newaxis
        data = self.inst.get_data(picks=self._picks)[dim, :, time_mask]
        self._nave = getattr(self.inst, "nave", data.shape[0])
        return data


@fill_doc
class AverageTFRArray(AverageTFR):
    """Data object for *precomputed* spectrotemporal representations of averaged data.

    Parameters
    ----------
    %(info_not_none)s
    %(data_tfr)s
    %(times)s
    %(freqs_tfr_array)s
    nave : int
        The number of averaged TFRs.
    %(comment_averagetfr_attr)s
    %(method_tfr_array)s

    Attributes
    ----------
    %(baseline_tfr_attr)s
    %(ch_names_tfr_attr)s
    %(comment_averagetfr_attr)s
    %(freqs_tfr_attr)s
    %(info_not_none)s
    %(method_tfr_attr)s
    %(nave_tfr_attr)s
    %(sfreq_tfr_attr)s
    %(shape_tfr_attr)s

    See Also
    --------
    AverageTFR
    EpochsTFRArray
    mne.Epochs.compute_tfr
    mne.Evoked.compute_tfr
    """

    def __init__(
        self, info, data, times, freqs, *, nave=None, comment=None, method=None
    ):
        state = dict(info=info, data=data, times=times, freqs=freqs)
        for name, optional in dict(nave=nave, comment=comment, method=method).items():
            if optional is not None:
                state[name] = optional
        self.__setstate__(state)


@fill_doc
class EpochsTFR(BaseTFR, GetEpochsMixin):
    """Data object for spectrotemporal representations of epoched data.

    .. important::
        The preferred means of creating EpochsTFR objects from :class:`~mne.Epochs`
        objects is via the instance method :meth:`~mne.Epochs.compute_tfr`.
        To create an EpochsTFR object from pre-computed data (i.e., a NumPy array) use
        :class:`~mne.time_frequency.EpochsTFRArray`.

    Parameters
    ----------
    inst : instance of Epochs
        The data from which to compute the time-frequency representation.
    %(freqs_tfr_epochs)s
    %(method_tfr_epochs)s
    %(tmin_tmax_psd)s
    %(picks_good_data_noref)s
    %(proj_psd)s
    %(decim_tfr)s
    %(events_epochstfr)s

        .. deprecated:: 1.7
            Pass an instance of :class:`~mne.Epochs` as ``inst`` instead, or use
            :class:`~mne.time_frequency.EpochsTFRArray` which retains the old API.
    %(event_id_epochstfr)s

        .. deprecated:: 1.7
            Pass an instance of :class:`~mne.Epochs` as ``inst`` instead, or use
            :class:`~mne.time_frequency.EpochsTFRArray` which retains the old API.
    selection : array
        List of indices of selected events (not dropped or ignored etc.). For
        example, if the original event array had 4 events and the second event
        has been dropped, this attribute would be np.array([0, 2, 3]).

        .. deprecated:: 1.7
            Pass an instance of :class:`~mne.Epochs` as ``inst`` instead, or use
            :class:`~mne.time_frequency.EpochsTFRArray` which retains the old API.
    drop_log : tuple of tuple
        A tuple of the same length as the event array used to initialize the
        ``EpochsTFR`` object. If the i-th original event is still part of the
        selection, drop_log[i] will be an empty tuple; otherwise it will be
        a tuple of the reasons the event is not longer in the selection, e.g.:

        - ``'IGNORED'``
            If it isn't part of the current subset defined by the user
        - ``'NO_DATA'`` or ``'TOO_SHORT'``
            If epoch didn't contain enough data names of channels that
            exceeded the amplitude threshold
        - ``'EQUALIZED_COUNTS'``
            See :meth:`~mne.Epochs.equalize_event_counts`
        - ``'USER'``
            For user-defined reasons (see :meth:`~mne.Epochs.drop`).

        .. deprecated:: 1.7
            Pass an instance of :class:`~mne.Epochs` as ``inst`` instead, or use
            :class:`~mne.time_frequency.EpochsTFRArray` which retains the old API.
    %(metadata_epochstfr)s

        .. deprecated:: 1.7
            Pass an instance of :class:`~mne.Epochs` as ``inst`` instead, or use
            :class:`~mne.time_frequency.EpochsTFRArray` which retains the old API.
    %(n_jobs)s
    %(verbose)s
    %(method_kw_tfr)s

    Attributes
    ----------
    %(baseline_tfr_attr)s
    %(ch_names_tfr_attr)s
    %(comment_tfr_attr)s
    %(drop_log)s
    %(event_id_attr)s
    %(events_attr)s
    %(freqs_tfr_attr)s
    %(info_not_none)s
    %(metadata_attr)s
    %(method_tfr_attr)s
    %(selection_attr)s
    %(sfreq_tfr_attr)s
    %(shape_tfr_attr)s

    See Also
    --------
    mne.Epochs.compute_tfr
    RawTFR
    AverageTFR
    EpochsTFRArray

    References
    ----------
    .. footbibliography::
    """

    def __init__(
        self,
        *,
        inst=None,
        freqs=None,
        method=None,
        tmin=None,
        tmax=None,
        picks=None,
        proj=False,
        decim=1,
        events=None,
        event_id=None,
        selection=None,
        drop_log=None,
        metadata=None,
        n_jobs=None,
        verbose=None,
        **method_kw,
    ):
        from ..epochs import BaseEpochs

        # dict is allowed for __setstate__ compatibility
        _validate_type(
            inst, (BaseEpochs, dict), "object passed to EpochsTFR constructor", "Epochs"
        )
        super().__init__(
            inst,
            method,
            freqs,
            tmin=tmin,
            tmax=tmax,
            picks=picks,
            proj=proj,
            decim=decim,
            n_jobs=n_jobs,
            verbose=verbose,
            **method_kw,
        )

    @fill_doc
    def __getitem__(self, item):
        """Subselect epochs from an EpochsTFR.

        Parameters
        ----------
        %(item)s
            Access options are the same as for :class:`~mne.Epochs` objects, see the
            docstring Notes section of :meth:`mne.Epochs.__getitem__` for explanation.

        Returns
        -------
        %(getitem_epochstfr_return)s
        """
        return super().__getitem__(item)

    def __getstate__(self):
        """Prepare EpochsTFR object for serialization."""
        out = super().__getstate__()
        out.update(
            metadata=self._metadata,
            drop_log=self.drop_log,
            event_id=self.event_id,
            events=self.events,
            selection=self.selection,
            raw_times=self._raw_times,
        )
        return out

    def __setstate__(self, state):
        """Unpack EpochsTFR from serialized format."""
        if state["data"].ndim != 4:
            raise ValueError(f"EpochsTFR data should be 4D, got {state['data'].ndim}.")
        super().__setstate__(state)
        self._metadata = state.get("metadata", None)
        n_epochs = self.shape[0]
        n_times = self.shape[-1]
        fake_samps = np.linspace(
            n_times, n_times * (n_epochs + 1), n_epochs, dtype=int, endpoint=False
        )
        fake_events = np.dstack(
            (fake_samps, np.zeros_like(fake_samps), np.ones_like(fake_samps))
        ).squeeze(axis=0)
        self.events = state.get("events", _ensure_events(fake_events))
        self.event_id = state.get("event_id", _check_event_id(None, self.events))
        self.drop_log = state.get("drop_log", tuple())
        self.selection = state.get("selection", np.arange(n_epochs))
        self._bad_dropped = True  # always true, need for `equalize_event_counts()`

    def __next__(self, return_event_id=False):
        """Iterate over EpochsTFR objects.

        NOTE: __iter__() and _stop_iter() are defined by the GetEpochs mixin.

        Parameters
        ----------
        return_event_id : bool
            If ``True``, return both the EpochsTFR data and its associated ``event_id``.

        Returns
        -------
        epoch : array of shape (n_channels, n_freqs, n_times)
            The single-epoch time-frequency data.
        event_id : int
            The integer event id associated with the epoch. Only returned if
            ``return_event_id`` is ``True``.
        """
        if self._current >= len(self._data):
            self._stop_iter()
        epoch = self._data[self._current]
        event_id = self.events[self._current][-1]
        self._current += 1
        if return_event_id:
            return epoch, event_id
        return epoch

    def _check_singleton(self):
        """Check if self contains only one Epoch, and return it as an AverageTFR."""
        if self.shape[0] > 1:
            calling_func = inspect.currentframe().f_back.f_code.co_name
            raise NotImplementedError(
                f"Cannot call {calling_func}() from EpochsTFR with multiple epochs; "
                "please subselect a single epoch before plotting."
            )
        return list(self.iter_evoked())[0]

    def _get_instance_data(self, time_mask):
        return self.inst.get_data(picks=self._picks)[:, :, time_mask]

    def _update_epoch_attributes(self):
        # adjust dims and shape
        if self.method != "stockwell":  # stockwell consumes epochs dimension
            self._dims = ("epoch",) + self._dims
            self._shape = (len(self.inst),) + self._shape
        # we need these for to_data_frame()
        self.event_id = self.inst.event_id.copy()
        self.events = self.inst.events.copy()
        self.selection = self.inst.selection.copy()
        # we need these for __getitem__()
        self.drop_log = deepcopy(self.inst.drop_log)
        self._metadata = self.inst.metadata
        # we need this for compatibility with equalize_event_counts()
        self._bad_dropped = True

    def average(self, method="mean", *, dim="epochs", copy=False):
        """Aggregate the EpochsTFR across epochs, frequencies, or times.

        Parameters
        ----------
        method : "mean" | "median" | callable
            How to aggregate the data across the given ``dim``. If callable,
            must take a :class:`NumPy array<numpy.ndarray>` of shape
            ``(n_epochs, n_channels, n_freqs, n_times)`` and return an array
            with one fewer dimensions (which dimension is collapsed depends on
            the value of ``dim``). Default is ``"mean"``.
        dim : "epochs" | "freqs" | "times"
            The dimension along which to combine the data.
        copy : bool
            Whether to return a copy of the modified instance, or modify in place.
            Ignored when ``dim="epochs"`` or ``"times"`` because those options return
            different types (:class:`~mne.time_frequency.AverageTFR` and
            :class:`~mne.time_frequency.EpochsSpectrum`, respectively).

        Returns
        -------
        tfr : instance of EpochsTFR | AverageTFR | EpochsSpectrum
            The aggregated TFR object.

        Notes
        -----
        Passing in ``np.median`` is considered unsafe for complex data; pass
        the string ``"median"`` instead to compute the *marginal* median
        (i.e. the median of the real and imaginary components separately).
        See discussion here:

        https://github.com/scipy/scipy/pull/12676#issuecomment-783370228
        """
        _check_option("dim", dim, ("epochs", "freqs", "times"))
        axis = self._dims.index(dim[:-1])  # self._dims entries aren't plural

        func = _check_combine(mode=method, axis=axis)
        data = func(self.data)

        n_epochs, n_channels, n_freqs, n_times = self.data.shape
        freqs, times = self.freqs, self.times
        if dim == "epochs":
            expected_shape = self._data.shape[1:]
        elif dim == "freqs":
            expected_shape = (n_epochs, n_channels, n_times)
            freqs = np.mean(self.freqs, keepdims=True)
        elif dim == "times":
            expected_shape = (n_epochs, n_channels, n_freqs)
            times = np.mean(self.times, keepdims=True)

        if data.shape != expected_shape:
            raise RuntimeError(
                "EpochsTFR.average() got a method that resulted in data of shape "
                f"{data.shape}, but it should be {expected_shape}."
            )
        state = self.__getstate__()
        # restore singleton freqs axis (not necessary for epochs/times: class changes)
        if dim == "freqs":
            data = np.expand_dims(data, axis=axis)
        else:
            state["dims"] = (*state["dims"][:axis], *state["dims"][axis + 1 :])
        state["data"] = data
        state["info"] = deepcopy(self.info)
        state["freqs"] = freqs
        state["times"] = times
        if dim == "epochs":
            state["inst_type_str"] = "Evoked"
            state["nave"] = n_epochs
            state["comment"] = f"{method} of {n_epochs} EpochsTFR{_pl(n_epochs)}"
            out = AverageTFR(inst=state)
            out._data_type = "Average Power"
            return out

        elif dim == "times":
            return EpochsSpectrum(
                state,
                method=None,
                fmin=None,
                fmax=None,
                tmin=None,
                tmax=None,
                picks=None,
                exclude=None,
                proj=None,
                remove_dc=None,
                n_jobs=None,
            )
        # ↓↓↓ these two are for dim == "freqs"
        elif copy:
            return EpochsTFR(inst=state, method=None, freqs=None)
        else:
            self._data = np.expand_dims(data, axis=axis)
            self._freqs = freqs
            return self

    @verbose
    def drop(self, indices, reason="USER", verbose=None):
        """Drop epochs based on indices or boolean mask.

        .. note:: The indices refer to the current set of undropped epochs
                  rather than the complete set of dropped and undropped epochs.
                  They are therefore not necessarily consistent with any
                  external indices (e.g., behavioral logs). To drop epochs
                  based on external criteria, do not use the ``preload=True``
                  flag when constructing an Epochs object, and call this
                  method before calling the :meth:`mne.Epochs.drop_bad` or
                  :meth:`mne.Epochs.load_data` methods.

        Parameters
        ----------
        indices : array of int or bool
            Set epochs to remove by specifying indices to remove or a boolean
            mask to apply (where True values get removed). Events are
            correspondingly modified.
        reason : str
            Reason for dropping the epochs ('ECG', 'timeout', 'blink' etc).
            Default: 'USER'.
        %(verbose)s

        Returns
        -------
        epochs : instance of Epochs or EpochsTFR
            The epochs with indices dropped. Operates in-place.
        """
        from ..epochs import BaseEpochs

        BaseEpochs.drop(self, indices=indices, reason=reason, verbose=verbose)

        return self

    def iter_evoked(self, copy=False):
        """Iterate over EpochsTFR to yield a sequence of AverageTFR objects.

        The AverageTFR objects will each contain a single epoch (i.e., no averaging is
        performed). This method resets the EpochTFR instance's iteration state to the
        first epoch.

        Parameters
        ----------
        copy : bool
            Whether to yield copies of the data and measurement info, or views/pointers.
        """
        self.__iter__()
        state = self.__getstate__()
        state["inst_type_str"] = "Evoked"
        state["dims"] = state["dims"][1:]  # drop "epochs"

        while True:
            try:
                data, event_id = self.__next__(return_event_id=True)
            except StopIteration:
                break
            if copy:
                state["info"] = deepcopy(self.info)
                state["data"] = data.copy()
            else:
                state["data"] = data
            state["nave"] = 1
            yield AverageTFR(inst=state, method=None, freqs=None, comment=str(event_id))

    @verbose
    @copy_doc(BaseTFR.plot)
    def plot(
        self,
        picks=None,
        *,
        exclude=(),
        tmin=None,
        tmax=None,
        fmin=None,
        fmax=None,
        baseline=None,
        mode="mean",
        dB=False,
        combine=None,
        layout=None,  # TODO deprecate; not used in orig implementation
        yscale="auto",
        vlim=(None, None),
        cnorm=None,
        cmap=None,
        colorbar=True,
        title=None,  # don't deprecate this one; has (useful) option title="auto"
        mask=None,
        mask_style=None,
        mask_cmap="Greys",
        mask_alpha=0.1,
        axes=None,
        show=True,
        verbose=None,
    ):
        singleton_epoch = self._check_singleton()
        return singleton_epoch.plot(
            picks=picks,
            exclude=exclude,
            tmin=tmin,
            tmax=tmax,
            fmin=fmin,
            fmax=fmax,
            baseline=baseline,
            mode=mode,
            dB=dB,
            combine=combine,
            layout=layout,
            yscale=yscale,
            vlim=vlim,
            cnorm=cnorm,
            cmap=cmap,
            colorbar=colorbar,
            title=title,
            mask=mask,
            mask_style=mask_style,
            mask_cmap=mask_cmap,
            mask_alpha=mask_alpha,
            axes=axes,
            show=show,
            verbose=verbose,
        )

    @verbose
    @copy_doc(BaseTFR.plot_topo)
    def plot_topo(
        self,
        picks=None,
        baseline=None,
        mode="mean",
        tmin=None,
        tmax=None,
        fmin=None,
        fmax=None,
        vmin=None,  # TODO deprecate in favor of `vlim` (needs helper func refactor)
        vmax=None,
        layout=None,
        cmap=None,
        title=None,  # don't deprecate; topo titles aren't standard (color, size, just.)
        dB=False,
        colorbar=True,
        layout_scale=0.945,
        show=True,
        border="none",
        fig_facecolor="k",
        fig_background=None,
        font_color="w",
        yscale="auto",
        verbose=None,
    ):
        singleton_epoch = self._check_singleton()
        return singleton_epoch.plot_topo(
            picks=picks,
            baseline=baseline,
            mode=mode,
            tmin=tmin,
            tmax=tmax,
            fmin=fmin,
            fmax=fmax,
            vmin=vmin,
            vmax=vmax,
            layout=layout,
            cmap=cmap,
            title=title,
            dB=dB,
            colorbar=colorbar,
            layout_scale=layout_scale,
            show=show,
            border=border,
            fig_facecolor=fig_facecolor,
            fig_background=fig_background,
            font_color=font_color,
            yscale=yscale,
            verbose=verbose,
        )

    @verbose
    @copy_doc(BaseTFR.plot_joint)
    def plot_joint(
        self,
        *,
        timefreqs=None,
        picks=None,
        exclude=(),
        combine="mean",
        tmin=None,
        tmax=None,
        fmin=None,
        fmax=None,
        baseline=None,
        mode="mean",
        dB=False,
        yscale="auto",
        vlim=(None, None),
        cnorm=None,
        cmap=None,
        colorbar=True,
        title=None,
        show=True,
        topomap_args=None,
        image_args=None,
        verbose=None,
    ):
        singleton_epoch = self._check_singleton()
        return singleton_epoch.plot_joint(
            timefreqs=timefreqs,
            picks=picks,
            exclude=exclude,
            combine=combine,
            tmin=tmin,
            tmax=tmax,
            fmin=fmin,
            fmax=fmax,
            baseline=baseline,
            mode=mode,
            dB=dB,
            yscale=yscale,
            vlim=vlim,
            cnorm=cnorm,
            cmap=cmap,
            colorbar=colorbar,
            title=title,
            show=show,
            topomap_args=topomap_args,
            image_args=image_args,
            verbose=verbose,
        )

    @copy_doc(BaseTFR.plot_topomap)
    def plot_topomap(
        self,
        tmin=None,
        tmax=None,
        fmin=0.0,
        fmax=np.inf,
        *,
        ch_type=None,
        baseline=None,
        mode="mean",
        sensors=True,
        show_names=False,
        mask=None,
        mask_params=None,
        contours=6,
        outlines="head",
        sphere=None,
        image_interp=_INTERPOLATION_DEFAULT,
        extrapolate=_EXTRAPOLATE_DEFAULT,
        border=_BORDER_DEFAULT,
        res=64,
        size=2,
        cmap=None,
        vlim=(None, None),
        cnorm=None,
        colorbar=True,
        cbar_fmt="%1.1e",
        units=None,
        axes=None,
        show=True,
    ):
        singleton_epoch = self._check_singleton()
        return singleton_epoch.plot_topomap(
            tmin=tmin,
            tmax=tmax,
            fmin=fmin,
            fmax=fmax,
            ch_type=ch_type,
            baseline=baseline,
            mode=mode,
            sensors=sensors,
            show_names=show_names,
            mask=mask,
            mask_params=mask_params,
            contours=contours,
            outlines=outlines,
            sphere=sphere,
            image_interp=image_interp,
            extrapolate=extrapolate,
            border=border,
            res=res,
            size=size,
            cmap=cmap,
            vlim=vlim,
            cnorm=cnorm,
            colorbar=colorbar,
            cbar_fmt=cbar_fmt,
            units=units,
            axes=axes,
            show=show,
        )


@fill_doc
class EpochsTFRArray(EpochsTFR):
    """Data object for *precomputed* spectrotemporal representations of epoched data.

    Parameters
    ----------
    %(info_not_none)s
    %(data_tfr)s
    %(times)s
    %(freqs_tfr_array)s
    %(comment_tfr_attr)s
    %(method_tfr_array)s
    %(events_epochstfr)s
    %(event_id_epochstfr)s
    %(selection)s
    %(drop_log)s
    %(metadata_epochstfr)s

    Attributes
    ----------
    %(baseline_tfr_attr)s
    %(ch_names_tfr_attr)s
    %(comment_tfr_attr)s
    %(drop_log)s
    %(event_id_attr)s
    %(events_attr)s
    %(freqs_tfr_attr)s
    %(info_not_none)s
    %(metadata_attr)s
    %(method_tfr_attr)s
    %(selection_attr)s
    %(sfreq_tfr_attr)s
    %(shape_tfr_attr)s

    See Also
    --------
    AverageTFR
    mne.Epochs.compute_tfr
    mne.Evoked.compute_tfr
    """

    def __init__(
        self,
        info,
        data,
        times,
        freqs,
        *,
        comment=None,
        method=None,
        events=None,
        event_id=None,
        selection=None,
        drop_log=None,
        metadata=None,
    ):
        state = dict(info=info, data=data, times=times, freqs=freqs)
        optional = dict(
            comment=comment,
            method=method,
            events=events,
            event_id=event_id,
            selection=selection,
            drop_log=drop_log,
            metadata=metadata,
        )
        for name, value in optional.items():
            if value is not None:
                state[name] = value
        self.__setstate__(state)


@fill_doc
class RawTFR(BaseTFR):
    """Data object for spectrotemporal representations of continuous data.

    .. warning:: The preferred means of creating RawTFR objects from
                 :class:`~mne.io.Raw` objects is via the instance method
                 :meth:`~mne.io.Raw.compute_tfr`. Direct class instantiation
                 is not supported.

    Parameters
    ----------
    inst : instance of Raw
        The data from which to compute the time-frequency representation.
    %(method_tfr)s
    %(freqs_tfr)s
    %(tmin_tmax_psd)s
    %(picks_good_data_noref)s
    %(proj_psd)s
    %(reject_by_annotation_tfr)s
    %(decim_tfr)s
    %(n_jobs)s
    %(verbose)s
    %(method_kw_tfr)s

    Attributes
    ----------
    ch_names : list
        The channel names.
    freqs : array
        Frequencies at which the amplitude, power, or fourier coefficients
        have been computed.
    %(info_not_none)s
    method : str
        The method used to compute the spectra (``'morlet'``, ``'multitaper'``
        or ``'stockwell'``).

    See Also
    --------
    mne.io.Raw.compute_tfr
    EpochsTFR
    AverageTFR

    References
    ----------
    .. footbibliography::
    """

    def __init__(
        self,
        inst,
        method=None,
        freqs=None,
        *,
        tmin=None,
        tmax=None,
        picks=None,
        proj=False,
        reject_by_annotation=False,
        decim=1,
        n_jobs=None,
        verbose=None,
        **method_kw,
    ):
        from ..io import BaseRaw

        # dict is allowed for __setstate__ compatibility
        _validate_type(
            inst, (BaseRaw, dict), "object passed to RawTFR constructor", "Raw"
        )
        super().__init__(
            inst,
            method,
            freqs,
            tmin=tmin,
            tmax=tmax,
            picks=picks,
            proj=proj,
            reject_by_annotation=reject_by_annotation,
            decim=decim,
            n_jobs=n_jobs,
            verbose=verbose,
            **method_kw,
        )

    def __getitem__(self, item):
        """Get RawTFR data.

        Parameters
        ----------
        item : int | slice | array-like
            Indexing is similar to a :class:`NumPy array<numpy.ndarray>`; see
            Notes.

        Returns
        -------
        %(getitem_tfr_return)s

        Notes
        -----
        The last axis is always time, the next-to-last axis is always
        frequency, and the first axis is always channel. If
        ``method='multitaper'`` and ``output='complex'`` then the second axis
        will be taper index.

        Integer-, list-, and slice-based indexing is possible:

        - ``raw_tfr[[0, 2]]`` gives the whole time-frequency plane for the
          first and third channels.
        - ``raw_tfr[..., :3, :]`` gives the first 3 frequency bins and all
          times for all channels (and tapers, if present).
        - ``raw_tfr[..., :100]`` gives the first 100 time samples in all
          frequency bins for all channels (and tapers).
        - ``raw_tfr[(4, 7)]`` is the same as ``raw_tfr[4, 7]``.

        .. note::

           Unlike :class:`~mne.io.Raw` objects (which returns a tuple of the
           requested data values and the corresponding times), accessing
           :class:`~mne.time_frequency.RawTFR` values via subscript does
           **not** return the corresponding frequency bin values. If you need
           them, use ``RawTFR.freqs[freq_indices]`` or
           ``RawTFR.get_data(..., return_freqs=True)``.
        """
        from ..io import BaseRaw

        self._parse_get_set_params = partial(BaseRaw._parse_get_set_params, self)
        return BaseRaw._getitem(self, item, return_times=False)

    def _get_instance_data(self, time_mask, reject_by_annotation):
        start, stop = np.where(time_mask)[0][[0, -1]]
        rba = "NaN" if reject_by_annotation else None
        data = self.inst.get_data(
            self._picks, start, stop + 1, reject_by_annotation=rba
        )
        # prepend a singleton "epochs" axis
        return data[np.newaxis]


@fill_doc
class RawTFRArray(RawTFR):
    """Data object for *precomputed* spectrotemporal representations of continuous data.

    Parameters
    ----------
    %(info_not_none)s
    %(data_tfr)s
    %(times)s
    %(freqs_tfr_array)s
    %(method_tfr_array)s

    Attributes
    ----------
    %(baseline_tfr_attr)s
    %(ch_names_tfr_attr)s
    %(freqs_tfr_attr)s
    %(info_not_none)s
    %(method_tfr_attr)s
    %(sfreq_tfr_attr)s
    %(shape_tfr_attr)s

    See Also
    --------
    RawTFR
    mne.io.Raw.compute_tfr
    EpochsTFRArray
    AverageTFRArray
    """

    def __init__(
        self,
        info,
        data,
        times,
        freqs,
        *,
        method=None,
    ):
        state = dict(info=info, data=data, times=times, freqs=freqs)
        if method is not None:
            state["method"] = method
        self.__setstate__(state)


def combine_tfr(all_tfr, weights="nave"):
    """Merge AverageTFR data by weighted addition.

    Create a new AverageTFR instance, using a combination of the supplied
    instances as its data. By default, the mean (weighted by trials) is used.
    Subtraction can be performed by passing negative weights (e.g., [1, -1]).
    Data must have the same channels and the same time instants.

    Parameters
    ----------
    all_tfr : list of AverageTFR
        The tfr datasets.
    weights : list of float | str
        The weights to apply to the data of each AverageTFR instance.
        Can also be ``'nave'`` to weight according to tfr.nave,
        or ``'equal'`` to use equal weighting (each weighted as ``1/N``).

    Returns
    -------
    tfr : AverageTFR
        The new TFR data.

    Notes
    -----
    .. versionadded:: 0.11.0
    """
    tfr = all_tfr[0].copy()
    if isinstance(weights, str):
        if weights not in ("nave", "equal"):
            raise ValueError('Weights must be a list of float, or "nave" or "equal"')
        if weights == "nave":
            weights = np.array([e.nave for e in all_tfr], float)
            weights /= weights.sum()
        else:  # == 'equal'
            weights = [1.0 / len(all_tfr)] * len(all_tfr)
    weights = np.array(weights, float)
    if weights.ndim != 1 or weights.size != len(all_tfr):
        raise ValueError("Weights must be the same size as all_tfr")

    ch_names = tfr.ch_names
    for t_ in all_tfr[1:]:
        assert t_.ch_names == ch_names, ValueError(
            f"{tfr} and {t_} do not contain the same channels"
        )
        assert np.max(np.abs(t_.times - tfr.times)) < 1e-7, ValueError(
            f"{tfr} and {t_} do not contain the same time instants"
        )

    # use union of bad channels
    bads = list(set(tfr.info["bads"]).union(*(t_.info["bads"] for t_ in all_tfr[1:])))
    tfr.info["bads"] = bads

    # XXX : should be refactored with combined_evoked function
    tfr.data = sum(w * t_.data for w, t_ in zip(weights, all_tfr))
    tfr.nave = max(int(1.0 / sum(w**2 / e.nave for w, e in zip(weights, all_tfr))), 1)
    return tfr


# Utils


# ↓↓↓↓↓↓↓↓↓↓↓ this is still used in _stockwell.py
def _get_data(inst, return_itc):
    """Get data from Epochs or Evoked instance as epochs x ch x time."""
    from ..epochs import BaseEpochs
    from ..evoked import Evoked

    if not isinstance(inst, BaseEpochs | Evoked):
        raise TypeError("inst must be Epochs or Evoked")
    if isinstance(inst, BaseEpochs):
        data = inst.get_data(copy=False)
    else:
        if return_itc:
            raise ValueError("return_itc must be False for evoked data")
        data = inst.data[np.newaxis].copy()
    return data


def _prepare_picks(info, data, picks, axis):
    """Prepare the picks."""
    picks = _picks_to_idx(info, picks, exclude="bads")
    info = pick_info(info, picks)
    sl = [slice(None)] * data.ndim
    sl[axis] = picks
    data = data[tuple(sl)]
    return info, data


def _centered(arr, newsize):
    """Aux Function to center data."""
    # Return the center newsize portion of the array.
    newsize = np.asarray(newsize)
    currsize = np.array(arr.shape)
    startind = (currsize - newsize) // 2
    endind = startind + newsize
    myslice = [slice(startind[k], endind[k]) for k in range(len(endind))]
    return arr[tuple(myslice)]


def _preproc_tfr(
    data,
    times,
    freqs,
    tmin,
    tmax,
    fmin,
    fmax,
    mode,
    baseline,
    vmin,
    vmax,
    dB,
    sfreq,
    copy=None,
):
    """Aux Function to prepare tfr computation."""
    if copy is None:
        copy = baseline is not None
    data = rescale(data, times, baseline, mode, copy=copy)

    if np.iscomplexobj(data):
        # complex amplitude → real power (for plotting); if data are
        # real-valued they should already be power
        data = (data * data.conj()).real

    # crop time
    itmin, itmax = None, None
    idx = np.where(_time_mask(times, tmin, tmax, sfreq=sfreq))[0]
    if tmin is not None:
        itmin = idx[0]
    if tmax is not None:
        itmax = idx[-1] + 1

    times = times[itmin:itmax]

    # crop freqs
    ifmin, ifmax = None, None
    idx = np.where(_time_mask(freqs, fmin, fmax, sfreq=sfreq))[0]
    if fmin is not None:
        ifmin = idx[0]
    if fmax is not None:
        ifmax = idx[-1] + 1

    freqs = freqs[ifmin:ifmax]

    # crop data
    data = data[:, ifmin:ifmax, itmin:itmax]

    if dB:
        data = 10 * np.log10(data)

    vmin, vmax = _setup_vmin_vmax(data, vmin, vmax)
    return data, times, freqs, vmin, vmax


def _ensure_slice(decim):
    """Aux function checking the decim parameter."""
    _validate_type(decim, ("int-like", slice), "decim")
    if not isinstance(decim, slice):
        decim = slice(None, None, int(decim))
    # ensure that we can actually use `decim.step`
    if decim.step is None:
        decim = slice(decim.start, decim.stop, 1)
    return decim


# i/o


@verbose
def write_tfrs(fname, tfr, overwrite=False, *, verbose=None):
    """Write a TFR dataset to hdf5.

    Parameters
    ----------
    fname : path-like
        The file name, which should end with ``-tfr.h5``.
    tfr : RawTFR | EpochsTFR | AverageTFR | list of RawTFR | list of EpochsTFR | list of AverageTFR
        The (list of) TFR object(s) to save in one file. If ``tfr.comment`` is ``None``,
        a sequential numeric string name will be generated on the fly, based on the
        order in which the TFR objects are passed. This can be used to selectively load
        single TFR objects from the file later.
    %(overwrite)s
    %(verbose)s

    See Also
    --------
    read_tfrs

    Notes
    -----
    .. versionadded:: 0.9.0
    """  # noqa E501
    _, write_hdf5 = _import_h5io_funcs()
    out = []
    if not isinstance(tfr, list | tuple):
        tfr = [tfr]
    for ii, tfr_ in enumerate(tfr):
        comment = ii if getattr(tfr_, "comment", None) is None else tfr_.comment
        state = tfr_.__getstate__()
        if "metadata" in state:
            state["metadata"] = _prepare_write_metadata(state["metadata"])
        out.append((comment, state))
    write_hdf5(fname, out, overwrite=overwrite, title="mnepython", slash="replace")


@verbose
def read_tfrs(fname, condition=None, *, verbose=None):
    """Load a TFR object from disk.

    Parameters
    ----------
    fname : path-like
        Path to a TFR file in HDF5 format, which should end with ``-tfr.h5`` or
        ``-tfr.hdf5``.
    condition : int or str | list of int or str | None
        The condition to load. If ``None``, all conditions will be returned.
        Defaults to ``None``.
    %(verbose)s

    Returns
    -------
    tfr : RawTFR | EpochsTFR | AverageTFR | list of RawTFR | list of EpochsTFR | list of AverageTFR
        The loaded time-frequency object.

    See Also
    --------
    mne.time_frequency.RawTFR.save
    mne.time_frequency.EpochsTFR.save
    mne.time_frequency.AverageTFR.save
    write_tfrs

    Notes
    -----
    .. versionadded:: 0.9.0
    """  # noqa E501
    read_hdf5, _ = _import_h5io_funcs()
    fname = _check_fname(fname=fname, overwrite="read", must_exist=False)
    valid_fnames = tuple(
        f"{sep}tfr.{ext}" for sep in ("-", "_") for ext in ("h5", "hdf5")
    )
    check_fname(fname, "tfr", valid_fnames)
    logger.info(f"Reading {fname} ...")
    hdf5_dict = read_hdf5(fname, title="mnepython", slash="replace")
    # single TFR from TFR.save()
    if "inst_type_str" in hdf5_dict:
        if "epoch" in hdf5_dict["dims"]:
            Klass = EpochsTFR
        elif "nave" in hdf5_dict:
            Klass = AverageTFR
        else:
            Klass = RawTFR
        out = Klass(inst=hdf5_dict)
        if getattr(out, "metadata", None) is not None:
            out.metadata = _prepare_read_metadata(out.metadata)
        return out
    # maybe multiple TFRs from write_tfrs()
    return _read_multiple_tfrs(hdf5_dict, condition=condition, verbose=verbose)


@verbose
def _read_multiple_tfrs(tfr_data, condition=None, *, verbose=None):
    """Read (possibly multiple) TFR datasets from an h5 file written by write_tfrs()."""
    out = list()
    keys = list()
    # tfr_data is a list of (comment, tfr_dict) tuples
    for key, tfr in tfr_data:
        keys.append(str(key))  # auto-assigned keys are ints
        is_epochs = tfr["data"].ndim == 4
        is_average = "nave" in tfr
        if condition is not None:
            if not is_average:
                raise NotImplementedError(
                    "condition is only supported when reading AverageTFRs."
                )
            if key != condition:
                continue
        tfr = dict(tfr)
        tfr["info"] = Info(tfr["info"])
        tfr["info"]._check_consistency()
        if "metadata" in tfr:
            tfr["metadata"] = _prepare_read_metadata(tfr["metadata"])
        # additional keys needed for TFR __setstate__
        defaults = dict(baseline=None, data_type="Power Estimates")
        if is_epochs:
            Klass = EpochsTFR
            defaults.update(
                inst_type_str="Epochs", dims=("epoch", "channel", "freq", "time")
            )
        elif is_average:
            Klass = AverageTFR
            defaults.update(inst_type_str="Evoked", dims=("channel", "freq", "time"))
        else:
            Klass = RawTFR
            defaults.update(inst_type_str="Raw", dims=("channel", "freq", "time"))
        out.append(Klass(inst=defaults | tfr))
    if len(out) == 0:
        raise ValueError(
            f'Cannot find condition "{condition}" in this file. '
            f'The file contains conditions {", ".join(keys)}'
        )
    if len(out) == 1:
        out = out[0]
    return out


def _get_timefreqs(tfr, timefreqs):
    """Find and/or setup timefreqs for `tfr.plot_joint`."""
    # Input check
    timefreq_error_msg = (
        "Supplied `timefreqs` are somehow malformed. Please supply None, "
        "a list of tuple pairs, or a dict of such tuple pairs, not {}"
    )
    if isinstance(timefreqs, dict):
        for k, v in timefreqs.items():
            for item in (k, v):
                if len(item) != 2 or any(not _is_numeric(n) for n in item):
                    raise ValueError(timefreq_error_msg, item)
    elif timefreqs is not None:
        if not hasattr(timefreqs, "__len__"):
            raise ValueError(timefreq_error_msg.format(timefreqs))
        if len(timefreqs) == 2 and all(_is_numeric(v) for v in timefreqs):
            timefreqs = [tuple(timefreqs)]  # stick a pair of numbers in a list
        else:
            for item in timefreqs:
                if (
                    hasattr(item, "__len__")
                    and len(item) == 2
                    and all(_is_numeric(n) for n in item)
                ):
                    pass
                else:
                    raise ValueError(timefreq_error_msg.format(item))

    # If None, automatic identification of max peak
    else:
        order = max((1, tfr.data.shape[2] // 30))
        peaks_idx = argrelmax(tfr.data, order=order, axis=2)
        if peaks_idx[0].size == 0:
            _, p_t, p_f = np.unravel_index(tfr.data.argmax(), tfr.data.shape)
            timefreqs = [(tfr.times[p_t], tfr.freqs[p_f])]
        else:
            peaks = [tfr.data[0, f, t] for f, t in zip(peaks_idx[1], peaks_idx[2])]
            peakmax_idx = np.argmax(peaks)
            peakmax_time = tfr.times[peaks_idx[2][peakmax_idx]]
            peakmax_freq = tfr.freqs[peaks_idx[1][peakmax_idx]]

            timefreqs = [(peakmax_time, peakmax_freq)]

    timefreqs = {
        tuple(k): np.asarray(timefreqs[k])
        if isinstance(timefreqs, dict)
        else np.array([0, 0])
        for k in timefreqs
    }

    return timefreqs


def _check_tfr_complex(tfr, reason="source space estimation"):
    """Check that time-frequency epochs or average data is complex."""
    if not np.iscomplexobj(tfr.data):
        raise RuntimeError(f"Time-frequency data must be complex for {reason}")


def _merge_if_grads(data, info, ch_type, sphere, combine=None):
    if ch_type == "grad":
        grad_picks = _pair_grad_sensors(info, topomap_coords=False)
        pos = _find_topomap_coords(info, picks=grad_picks[::2], sphere=sphere)
        grad_method = combine if isinstance(combine, str) else "rms"
        data, _ = _merge_ch_data(data[grad_picks], ch_type, [], method=grad_method)
    else:
        pos, _ = _get_pos_outlines(info, picks=ch_type, sphere=sphere)
    return data, pos


@verbose
def _prep_data_for_plot(
    data,
    times,
    freqs,
    *,
    tmin=None,
    tmax=None,
    fmin=None,
    fmax=None,
    baseline=None,
    mode=None,
    dB=False,
    verbose=None,
):
    # baseline
    copy = baseline is not None
    data = rescale(data, times, baseline, mode, copy=copy, verbose=verbose)
    # crop times
    time_mask = np.nonzero(_time_mask(times, tmin, tmax))[0]
    times = times[time_mask]
    # crop freqs
    freq_mask = np.nonzero(_time_mask(freqs, fmin, fmax))[0]
    freqs = freqs[freq_mask]
    # crop data
    data = data[..., freq_mask, :][..., time_mask]
    # complex amplitude → real power; real-valued data is already power (or ITC)
    if np.iscomplexobj(data):
        data = (data * data.conj()).real
    if dB:
        data = 10 * np.log10(data)
    return data, times, freqs