1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
|
"""The check functions."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numbers
import operator
import os
import re
from builtins import input # noqa: A004, UP029
from difflib import get_close_matches
from importlib import import_module
from inspect import signature
from pathlib import Path
import numpy as np
from ..defaults import HEAD_SIZE_DEFAULT, _handle_default
from ..fixes import _compare_version, _median_complex
from ._logging import _record_warnings, _verbose_safe_false, logger, verbose, warn
def _ensure_int(x, name="unknown", must_be="an int", *, extra=""):
"""Ensure a variable is an integer."""
# This is preferred over numbers.Integral, see:
# https://github.com/scipy/scipy/pull/7351#issuecomment-299713159
extra = f" {extra}" if extra else extra
try:
# someone passing True/False is much more likely to be an error than
# intentional usage
if isinstance(x, bool):
raise TypeError()
x = int(operator.index(x))
except TypeError:
raise TypeError(f"{name} must be {must_be}{extra}, got {type(x)}")
return x
def _check_integer_or_list(arg, name):
"""Validate arguments that should be an integer or a list.
Always returns a list.
"""
if not isinstance(arg, list):
arg = [_ensure_int(arg, name=name, must_be="an integer or a list")]
return arg
def check_fname(fname, filetype, endings, endings_err=()):
"""Enforce MNE filename conventions.
Parameters
----------
fname : path-like
Name of the file.
filetype : str
Type of file. e.g., ICA, Epochs, etc.
endings : tuple
Acceptable endings for the filename.
endings_err : tuple
Obligatory possible endings for the filename.
"""
_validate_type(fname, "path-like", "fname")
fname = str(fname)
if len(endings_err) > 0 and not fname.endswith(endings_err):
print_endings = " or ".join([", ".join(endings_err[:-1]), endings_err[-1]])
raise OSError(
f"The filename ({fname}) for file type {filetype} must end "
f"with {print_endings}"
)
print_endings = " or ".join([", ".join(endings[:-1]), endings[-1]])
if not fname.endswith(endings):
warn(
f"This filename ({fname}) does not conform to MNE naming conventions. "
f"All {filetype} files should end with {print_endings}"
)
def check_version(library, min_version="0.0", *, strip=True, return_version=False):
r"""Check minimum library version required.
Parameters
----------
library : str
The library name to import. Must have a ``__version__`` property.
min_version : str
The minimum version string. Anything that matches
``'(\d+ | [a-z]+ | \.)'``. Can also be empty to skip version
check (just check for library presence).
strip : bool
If True (default), then PEP440 development markers like ``.devN``
will be stripped from the version. This makes it so that
``check_version('mne', '1.1')`` will be ``True`` even when on version
``'1.1.dev0'`` (prerelease/dev version). This option is provided for
backward compatibility with the behavior of ``LooseVersion``, and
diverges from how modern parsing in ``packaging.version.parse`` works.
.. versionadded:: 1.0
return_version : bool
If True (default False), also return the version (can be None if the
library is missing).
.. versionadded:: 1.0
Returns
-------
ok : bool
True if the library exists with at least the specified version.
version : str | None
The version. Only returned when ``return_version=True``.
"""
ok = True
version = None
try:
library = import_module(library)
except ImportError:
ok = False
else:
check_version = min_version and min_version != "0.0"
get_version = check_version or return_version
if get_version:
version = library.__version__
if strip:
version = _strip_dev(version)
if check_version:
if _compare_version(version, "<", min_version):
ok = False
out = (ok, version) if return_version else ok
return out
def _strip_dev(version):
# First capturing group () is what we want to keep, at the beginning:
#
# - at least one numeral, then
# - repeats of {dot, at least one numeral}
#
# The rest (consume to the end of the string) is the stuff we want to cut
# off:
#
# - A period (maybe), then
# - "dev", "rc", or "+", then
# - numerals, periods, dashes, and "a" through "g" (hex chars)
#
# Thanks https://www.regextester.com !
exp = r"^([0-9]+(?:\.[0-9]+)*)\.?(?:dev|rc|\+)[0-9+a-g\.\-]+$"
match = re.match(exp, version)
return match.groups()[0] if match is not None else version
def _require_version(lib, what, version="0.0"):
"""Require library for a purpose."""
ok, got = check_version(lib, version, return_version=True)
if not ok:
extra = f" (version >= {version})" if version != "0.0" else ""
why = "package was not found" if got is None else f"got {repr(got)}"
raise ImportError(f"The {lib} package{extra} is required to {what}, {why}")
def _import_h5py():
_require_version("h5py", "read MATLAB files >= v7.3")
import h5py
return h5py
def _import_h5io_funcs():
h5io = _soft_import("h5io", "HDF5-based I/O")
# Saving to HDF5 does not support pathlib.Path objects, which are more and more used
# in MNE-Python.
# Related issue in h5io: https://github.com/h5io/h5io/issues/113
def cast_path_to_str(data: dict) -> dict:
"""Cast all paths value to string in data."""
keys2cast = []
for key, value in data.items():
if isinstance(value, dict):
cast_path_to_str(value)
if isinstance(value, Path):
data[key] = value.as_posix()
if isinstance(key, Path):
keys2cast.append(key)
for key in keys2cast:
data[key.as_posix()] = data.pop(key)
return data
def write_hdf5(fname, data, *args, **kwargs):
"""Write h5 and cast all paths to string in data."""
if isinstance(data, dict):
data = cast_path_to_str(data)
elif isinstance(data, list):
for k, elt in enumerate(data):
if isinstance(elt, dict):
data[k] = cast_path_to_str(elt)
h5io.write_hdf5(fname, data, *args, **kwargs)
return h5io.read_hdf5, write_hdf5
def _import_pymatreader_funcs(purpose):
pymatreader = _soft_import("pymatreader", purpose)
return pymatreader.read_mat
# adapted from scikit-learn utils/validation.py
def check_random_state(seed):
"""Turn seed into a numpy.random.mtrand.RandomState instance.
If seed is None, return the RandomState singleton used by np.random.mtrand.
If seed is an int, return a new RandomState instance seeded with seed.
If seed is already a RandomState instance, return it.
Otherwise raise ValueError.
"""
if seed is None or seed is np.random:
return np.random.mtrand._rand
if isinstance(seed, int | np.integer):
return np.random.mtrand.RandomState(seed)
if isinstance(seed, np.random.mtrand.RandomState):
return seed
if isinstance(seed, np.random.Generator):
return seed
raise ValueError(
f"{seed!r} cannot be used to seed a numpy.random.mtrand.RandomState instance"
)
def _check_event_id(event_id, events):
"""Check event_id and convert to default format."""
# check out event_id dict
if event_id is None: # convert to int to make typing-checks happy
event_id = list(np.unique(events[:, 2]))
if isinstance(event_id, dict):
for key in event_id.keys():
_validate_type(key, str, "Event names")
event_id = {
key: _ensure_int(val, f"event_id[{key}]") for key, val in event_id.items()
}
elif isinstance(event_id, list):
event_id = [_ensure_int(v, f"event_id[{vi}]") for vi, v in enumerate(event_id)]
event_id = dict(zip((str(i) for i in event_id), event_id))
else:
event_id = _ensure_int(event_id, "event_id")
event_id = {str(event_id): event_id}
return event_id
@verbose
def _check_fname(
fname,
overwrite=False,
must_exist=False,
name="File",
need_dir=False,
*,
check_bids_split=False,
verbose=None,
) -> Path:
"""Check for file existence, and return its absolute path."""
_validate_type(fname, "path-like", name)
# special case for MNE-BIDS, check split
fname_path = Path(fname)
if check_bids_split:
try:
from mne_bids import BIDSPath
except Exception:
pass
else:
if isinstance(fname, BIDSPath) and fname.split is not None:
raise ValueError(
f"Passing a BIDSPath {name} with `{fname.split=}` is unsafe as it "
"can unexpectedly lead to invalid BIDS split naming. Explicitly "
f"set `{name}.split = None` to avoid ambiguity. If you want the "
f"old misleading split naming, you can pass `str({name})`."
)
fname = fname_path.expanduser().absolute()
del fname_path
if fname.exists():
if not overwrite:
raise FileExistsError(
"Destination file exists. Please use option "
'"overwrite=True" to force overwriting.'
)
elif overwrite != "read":
logger.info("Overwriting existing file.")
if must_exist:
if need_dir:
if not fname.is_dir():
raise OSError(
f"Need a directory for {name} but found a file at {fname}"
)
else:
if not fname.is_file():
raise OSError(
f"Need a file for {name} but found a directory at {fname}"
)
if not os.access(fname, os.R_OK):
raise PermissionError(f"{name} does not have read permissions: {fname}")
elif must_exist:
raise FileNotFoundError(f'{name} does not exist: "{fname}"')
return fname
def _check_subject(
first,
second,
*,
raise_error=True,
first_kind="class subject attribute",
second_kind="input subject",
):
"""Get subject name from class."""
if second is not None:
_validate_type(second, "str", "subject input")
if first is not None and first != second:
raise ValueError(
f"{first_kind} ({repr(first)}) did not match "
f"{second_kind} ({second})"
)
return second
elif first is not None:
_validate_type(first, "str", f"Either {second_kind} subject or {first_kind}")
return first
elif raise_error is True:
raise ValueError(f"Neither {second_kind} subject nor {first_kind} was a string")
return None
def _check_preload(inst, msg):
"""Ensure data are preloaded."""
from ..epochs import BaseEpochs
from ..evoked import Evoked
from ..source_estimate import _BaseSourceEstimate
from ..time_frequency import BaseTFR
from ..time_frequency.spectrum import BaseSpectrum
if isinstance(inst, BaseTFR | Evoked | BaseSpectrum | _BaseSourceEstimate):
pass
else:
name = "epochs" if isinstance(inst, BaseEpochs) else "raw"
if not inst.preload:
raise RuntimeError(
"By default, MNE does not load data into main memory to "
"conserve resources. " + msg + f" requires {name} data to be "
"loaded. Use preload=True (or string) in the constructor or "
f"{name}.load_data()."
)
if name == "epochs":
inst._handle_empty("raise", msg)
def _check_compensation_grade(info1, info2, name1, name2="data", ch_names=None):
"""Ensure that objects have same compensation_grade."""
from .._fiff.compensator import get_current_comp
from .._fiff.meas_info import Info
from .._fiff.pick import pick_channels, pick_info
for t_info in (info1, info2):
if t_info is None:
return
assert isinstance(t_info, Info), t_info # or internal code is wrong
if ch_names is not None:
info1 = info1.copy()
info2 = info2.copy()
# pick channels
for t_info in [info1, info2]:
if t_info["comps"]:
with t_info._unlock():
t_info["comps"] = []
picks = pick_channels(t_info["ch_names"], ch_names, ordered=False)
pick_info(t_info, picks, copy=False)
# "or 0" here aliases None -> 0, as they are equivalent
grade1 = get_current_comp(info1) or 0
grade2 = get_current_comp(info2) or 0
# perform check
if grade1 != grade2:
raise RuntimeError(
f"Compensation grade of {name1} ({grade1}) and {name2} ({grade2}) "
"do not match"
)
def _soft_import(name, purpose, strict=True, *, min_version=None):
"""Import soft dependencies, providing informative errors on failure.
Parameters
----------
name : str
Name of the module to be imported. For example, 'pandas'.
purpose : str
A very brief statement (formulated as a noun phrase) explaining what
functionality the package provides to MNE-Python.
strict : bool
Whether to raise an error if module import fails.
"""
# Mapping import namespaces to their pypi package name
pip_name = dict(
sklearn="scikit-learn",
mne_bids="mne-bids",
mne_nirs="mne-nirs",
mne_features="mne-features",
mne_qt_browser="mne-qt-browser",
mne_connectivity="mne-connectivity",
mne_gui_addons="mne-gui-addons",
pyvista="pyvistaqt",
).get(name, name)
got_version = None
try:
mod = import_module(name)
except (ImportError, ModuleNotFoundError):
mod = False
else:
have, got_version = check_version(
name,
min_version=min_version,
return_version=True,
)
if not have:
mod = False
if mod is False and strict:
extra = "" if min_version is None else f">={min_version}"
if got_version is not None:
extra += f" (found version {got_version})"
raise RuntimeError(
f"For {purpose} to work, the module {name}{extra} is needed, "
"but it could not be imported. Use the following installation method "
"appropriate for your environment:\n\n"
f" pip install {pip_name}\n"
f" conda install -c conda-forge {pip_name}"
)
return mod
def _check_pandas_installed(strict=True):
"""Aux function."""
return _soft_import("pandas", "dataframe integration", strict=strict)
def _check_eeglabio_installed(strict=True):
"""Aux function."""
return _soft_import("eeglabio", "exporting to EEGLab", strict=strict)
def _check_edfio_installed(strict=True):
"""Aux function."""
return _soft_import("edfio", "exporting to EDF", strict=strict)
def _check_pybv_installed(strict=True):
"""Aux function."""
return _soft_import("pybv", "exporting to BrainVision", strict=strict)
def _check_pymatreader_installed(strict=True):
"""Aux function."""
return _soft_import("pymatreader", "loading v7.3 (HDF5) .MAT files", strict=strict)
def _check_pandas_index_arguments(index, valid):
"""Check pandas index arguments."""
if index is None:
return
if isinstance(index, str):
index = [index]
if not isinstance(index, list):
raise TypeError(
"index must be `None` or a string or list of strings, got type "
f"{type(index)}."
)
invalid = set(index) - set(valid)
if invalid:
plural = ("is not a valid option", "are not valid options")[
int(len(invalid) > 1)
]
raise ValueError(
'"{}" {}. Valid index options are `None`, "{}".'.format(
'", "'.join(invalid), plural, '", "'.join(valid)
)
)
return index
def _check_time_format(time_format, valid, meas_date=None):
"""Check time_format argument."""
if time_format not in valid and time_format is not None:
valid_str = '", "'.join(valid)
raise ValueError(
f'"{time_format}" is not a valid time format. Valid options are '
f'"{valid_str}" and None.'
)
# allow datetime only if meas_date available
if time_format == "datetime" and meas_date is None:
warn(
"Cannot convert to Datetime when raw.info['meas_date'] is "
"None. Falling back to Timedelta."
)
time_format = "timedelta"
return time_format
def _check_ch_locs(info, picks=None, ch_type=None):
"""Check if channel locations exist.
Parameters
----------
info : Info | None
`~mne.Info` instance.
picks : list of int
Channel indices to consider. If provided, ``ch_type`` must be ``None``.
ch_type : str | None
The channel type to restrict the check to. If ``None``, check all
channel types. If provided, ``picks`` must be ``None``.
"""
from .._fiff.pick import _picks_to_idx, pick_info
if picks is not None and ch_type is not None:
raise ValueError("Either picks or ch_type may be provided, not both")
if picks is not None:
info = pick_info(info=info, sel=picks)
elif ch_type is not None:
picks = _picks_to_idx(info=info, picks=ch_type, none=ch_type)
info = pick_info(info=info, sel=picks)
chs = info["chs"]
locs3d = np.array([ch["loc"][:3] for ch in chs])
return not (
(locs3d == 0).all() or (~np.isfinite(locs3d)).all() or np.allclose(locs3d, 0.0)
)
def _is_numeric(n):
return isinstance(n, numbers.Number)
class _IntLike:
@classmethod
def __instancecheck__(cls, other):
try:
_ensure_int(other)
except TypeError:
return False
else:
return True
int_like = _IntLike()
path_like = (str, Path, os.PathLike)
class _Callable:
@classmethod
def __instancecheck__(cls, other):
return callable(other)
class _Sparse:
@classmethod
def __instancecheck__(cls, other):
from scipy import sparse
return sparse.issparse(other)
_multi = {
"str": (str,),
"numeric": (np.floating, float, int_like),
"path-like": path_like,
"int-like": (int_like,),
"callable": (_Callable(),),
"array-like": (list, tuple, set, np.ndarray),
"sparse": (_Sparse(),),
}
def _validate_type(item, types=None, item_name=None, type_name=None, *, extra=""):
"""Validate that `item` is an instance of `types`.
Parameters
----------
item : object
The thing to be checked.
types : type | str | tuple of types | tuple of str
The types to be checked against.
If str, must be one of {'int', 'int-like', 'str', 'numeric', 'info',
'path-like', 'callable', 'array-like'}.
If a tuple of str is passed, use 'int-like' and not 'int' for integers.
item_name : str | None
Name of the item to show inside the error message.
type_name : str | None
Possible types to show inside the error message that the checked item
can be.
extra : str
Extra text to append to the warning.
"""
if types == "int":
_ensure_int(item, name=item_name, extra=extra)
return # terminate prematurely
elif types == "info":
from .._fiff.meas_info import Info as types
if not isinstance(types, list | tuple):
types = [types]
check_types = sum(
(
(type(None),)
if type_ is None
else (type_,)
if not isinstance(type_, str)
else _multi[type_]
for type_ in types
),
(),
)
extra = f" {extra}" if extra else extra
if not isinstance(item, check_types):
if type_name is None:
type_name = [
"None"
if cls_ is None
else cls_.__name__
if not isinstance(cls_, str)
else cls_
for cls_ in types
]
if len(type_name) == 1:
type_name = type_name[0]
elif len(type_name) == 2:
type_name = " or ".join(type_name)
else:
type_name[-1] = "or " + type_name[-1]
type_name = ", ".join(type_name)
_item_name = "Item" if item_name is None else item_name
raise TypeError(
f"{_item_name} must be an instance of {type_name}{extra}, "
f"got {type(item)} instead."
)
def _check_range(val, min_val, max_val, name, min_inclusive=True, max_inclusive=True):
"""Check that item is within range.
Parameters
----------
val : int | float
The value to be checked.
min_val : int | float
The minimum value allowed.
max_val : int | float
The maximum value allowed.
name : str
The name of the value.
min_inclusive : bool
Whether ``val`` is allowed to be ``min_val``.
max_inclusive : bool
Whether ``val`` is allowed to be ``max_val``.
"""
below_min = val < min_val if min_inclusive else val <= min_val
above_max = val > max_val if max_inclusive else val >= max_val
if below_min or above_max:
error_str = f"The value of {name} must be between {min_val} "
if min_inclusive:
error_str += "inclusive "
error_str += f"and {max_val}"
if max_inclusive:
error_str += "inclusive "
raise ValueError(error_str)
def _path_like(item):
"""Validate that `item` is `path-like`.
Parameters
----------
item : object
The thing to be checked.
Returns
-------
bool
``True`` if `item` is a `path-like` object; ``False`` otherwise.
"""
try:
_validate_type(item, types="path-like")
return True
except TypeError:
return False
def _check_if_nan(data, msg=" to be plotted"):
"""Raise if any of the values are NaN."""
if not np.isfinite(data).all():
raise ValueError(f"Some of the values {msg} are NaN.")
@verbose
def _check_info_inv(info, forward, data_cov=None, noise_cov=None, verbose=None):
"""Return good channels common to forward model and covariance matrices."""
from .._fiff.pick import pick_types
# get a list of all channel names:
fwd_ch_names = forward["info"]["ch_names"]
# handle channels from forward model and info:
ch_names = _compare_ch_names(info["ch_names"], fwd_ch_names, info["bads"])
# make sure that no reference channels are left:
ref_chs = pick_types(info, meg=False, ref_meg=True)
ref_chs = [info["ch_names"][ch] for ch in ref_chs]
ch_names = [ch for ch in ch_names if ch not in ref_chs]
# inform about excluding channels:
if (
data_cov is not None
and set(info["bads"]) != set(data_cov["bads"])
and (len(set(ch_names).intersection(data_cov["bads"])) > 0)
):
logger.info(
'info["bads"] and data_cov["bads"] do not match, '
"excluding bad channels from both."
)
if (
noise_cov is not None
and set(info["bads"]) != set(noise_cov["bads"])
and (len(set(ch_names).intersection(noise_cov["bads"])) > 0)
):
logger.info(
'info["bads"] and noise_cov["bads"] do not match, '
"excluding bad channels from both."
)
# handle channels from data cov if data cov is not None
# Note: data cov is supposed to be None in tf_lcmv
if data_cov is not None:
ch_names = _compare_ch_names(ch_names, data_cov.ch_names, data_cov["bads"])
# handle channels from noise cov if noise cov available:
if noise_cov is not None:
ch_names = _compare_ch_names(ch_names, noise_cov.ch_names, noise_cov["bads"])
# inform about excluding any channels apart from bads and reference
all_bads = info["bads"] + ref_chs
if data_cov is not None:
all_bads += data_cov["bads"]
if noise_cov is not None:
all_bads += noise_cov["bads"]
dropped_nonbads = set(info["ch_names"]) - set(ch_names) - set(all_bads)
if dropped_nonbads:
logger.info(
f"Excluding {len(dropped_nonbads)} channel(s) missing from the "
"provided forward operator and/or covariance matrices"
)
picks = [info["ch_names"].index(k) for k in ch_names if k in info["ch_names"]]
return picks
def _compare_ch_names(names1, names2, bads):
"""Return channel names of common and good channels."""
ch_names = [ch for ch in names1 if ch not in bads and ch in names2]
return ch_names
def _check_channels_spatial_filter(ch_names, filters):
"""Return data channel indices to be used with spatial filter.
Unlike ``pick_channels``, this respects the order of ch_names.
"""
sel = []
# first check for channel discrepancies between filter and data:
for ch_name in filters["ch_names"]:
if ch_name not in ch_names:
raise ValueError(
f"The spatial filter was computed with channel {ch_name} "
"which is not present in the data. You should "
"compute a new spatial filter restricted to the "
"good data channels."
)
# then compare list of channels and get selection based on data:
sel = [ii for ii, ch_name in enumerate(ch_names) if ch_name in filters["ch_names"]]
return sel
def _check_rank(rank):
"""Check rank parameter."""
_validate_type(rank, (None, dict, str), "rank")
if isinstance(rank, str):
if rank not in ["full", "info"]:
raise ValueError(f'rank, if str, must be "full" or "info", got {rank}')
return rank
def _check_one_ch_type(method, info, forward, data_cov=None, noise_cov=None):
"""Check number of sensor types and presence of noise covariance matrix."""
from .._fiff.pick import _contains_ch_type, pick_info
from ..cov import Covariance, make_ad_hoc_cov
from ..time_frequency.csd import CrossSpectralDensity
if isinstance(data_cov, CrossSpectralDensity):
_validate_type(noise_cov, [None, CrossSpectralDensity], "noise_cov")
# FIXME
picks = list(range(len(data_cov.ch_names)))
info_pick = info
else:
_validate_type(noise_cov, [None, Covariance], "noise_cov")
picks = _check_info_inv(
info,
forward,
data_cov=data_cov,
noise_cov=noise_cov,
verbose=_verbose_safe_false(),
)
info_pick = pick_info(info, picks)
ch_types = [_contains_ch_type(info_pick, tt) for tt in ("mag", "grad", "eeg")]
if sum(ch_types) > 1:
if noise_cov is None:
raise ValueError(
"Source reconstruction with several sensor types"
" requires a noise covariance matrix to be "
"able to apply whitening."
)
if noise_cov is None:
noise_cov = make_ad_hoc_cov(info_pick, std=1.0)
allow_mismatch = True
else:
noise_cov = noise_cov.copy()
if isinstance(noise_cov, Covariance) and "estimator" in noise_cov:
del noise_cov["estimator"]
allow_mismatch = False
_validate_type(noise_cov, (Covariance, CrossSpectralDensity), "noise_cov")
return noise_cov, picks, allow_mismatch
def _check_depth(depth, kind="depth_mne"):
"""Check depth options."""
if not isinstance(depth, dict):
depth = dict(exp=None if depth is None else float(depth))
return _handle_default(kind, depth)
def _check_dict_keys(mapping, valid_keys, key_description, valid_key_source):
"""Check that the keys in dictionary are valid against a set list.
Return the input dictionary if it is valid,
otherwise raise a ValueError with a readable error message.
Parameters
----------
mapping : dict
The user-provided dict whose keys we want to check.
valid_keys : iterable
The valid keys.
key_description : str
Description of the keys in ``mapping``, e.g., "channel name(s)" or
"annotation(s)".
valid_key_source : str
Description of the ``valid_keys`` source, e.g., "info dict" or
"annotations in the data".
Returns
-------
mapping
If all keys are valid the input dict is returned unmodified.
"""
missing = set(mapping) - set(valid_keys)
if len(missing):
_is = "are" if len(missing) > 1 else "is"
msg = (
f"Invalid {key_description} {missing} {_is} not present in "
f"{valid_key_source}"
)
raise ValueError(msg)
return mapping
def _check_option(parameter, value, allowed_values, extra=""):
"""Check the value of a parameter against a list of valid options.
Return the value if it is valid, otherwise raise a ValueError with a
readable error message.
Parameters
----------
parameter : str
The name of the parameter to check. This is used in the error message.
value : any type
The value of the parameter to check.
allowed_values : list
The list of allowed values for the parameter.
extra : str
Extra string to append to the invalid value sentence, e.g.
"when using ico mode".
Raises
------
ValueError
When the value of the parameter is not one of the valid options.
Returns
-------
value : any type
The value if it is valid.
"""
if value in allowed_values:
return value
# Prepare a nice error message for the user
extra = f" {extra}" if extra else extra
msg = (
"Invalid value for the '{parameter}' parameter{extra}. "
"{options}, but got {value!r} instead."
)
allowed_values = list(allowed_values) # e.g., if a dict was given
if len(allowed_values) == 1:
options = f"The only allowed value is {repr(allowed_values[0])}"
else:
options = "Allowed values are "
if len(allowed_values) == 2:
options += " and ".join(repr(v) for v in allowed_values)
else:
options += ", ".join(repr(v) for v in allowed_values[:-1])
options += f", and {repr(allowed_values[-1])}"
raise ValueError(
msg.format(parameter=parameter, options=options, value=value, extra=extra)
)
def _check_all_same_channel_names(instances):
"""Check if a collection of instances all have the same channels."""
ch_names = instances[0].info["ch_names"]
for inst in instances:
if ch_names != inst.info["ch_names"]:
return False
return True
def _check_combine(mode, valid=("mean", "median", "std"), axis=0):
# XXX TODO Possibly de-duplicate with _make_combine_callable of mne/viz/utils.py
if mode == "mean":
def fun(data):
return np.mean(data, axis=axis)
elif mode == "std":
def fun(data):
return np.std(data, axis=axis)
elif mode == "median" or mode == np.median:
def fun(data):
return _median_complex(data, axis=axis)
elif callable(mode):
fun = mode
else:
raise ValueError(
"Combine option must be "
+ ", ".join(valid)
+ f" or callable, got {mode} (type {type(mode)})."
)
return fun
def _check_src_normal(pick_ori, src):
from ..source_space import SourceSpaces
_validate_type(src, SourceSpaces, "src")
if pick_ori == "normal" and src.kind not in ("surface", "discrete"):
raise RuntimeError(
"Normal source orientation is supported only for "
"surface or discrete SourceSpaces, got type "
f"{src.kind}"
)
def _check_stc_units(stc, threshold=1e-7): # 100 nAm threshold for warning
max_cur = np.max(np.abs(stc.data))
if max_cur > threshold:
warn(
f"The maximum current magnitude is {1e9 * max_cur:.1f} nAm, which is very "
"large. Are you trying to apply the forward model to noise-normalized "
"(dSPM, sLORETA, or eLORETA) values? The result will only be "
"correct if currents (in units of Am) are used."
)
def _check_qt_version(*, return_api=False, check_usable_display=True):
"""Check if Qt is installed."""
from ..viz.backends._utils import _init_mne_qtapp
try:
from qtpy import API_NAME as api
from qtpy import QtCore
except Exception:
api = version = None
else:
try: # pyside
version = QtCore.__version__
except AttributeError:
version = QtCore.QT_VERSION_STR
# Having Qt installed is not enough -- sometimes the app is unusable
# for example because there is no usable display (e.g., on a server),
# so we have to try instantiating one to actually know.
if check_usable_display:
try:
_init_mne_qtapp()
except Exception:
api = version = None
if return_api:
return version, api
else:
return version
def _check_sphere(sphere, info=None, sphere_units="m"):
from ..bem import ConductorModel, fit_sphere_to_headshape, get_fitting_dig
if sphere is None:
sphere = HEAD_SIZE_DEFAULT
if info is not None:
# Decide if we have enough dig points to do the auto fit
try:
get_fitting_dig(info, "extra", verbose="error")
except (RuntimeError, ValueError):
pass
else:
sphere = "auto"
if isinstance(sphere, str):
if sphere not in ("auto", "eeglab"):
raise ValueError(
f'sphere, if str, must be "auto" or "eeglab", got {sphere}'
)
assert info is not None
if sphere == "auto":
R, r0, _ = fit_sphere_to_headshape(
info, verbose=_verbose_safe_false(), units="m"
)
sphere = tuple(r0) + (R,)
sphere_units = "m"
elif sphere == "eeglab":
# We need coordinates for the 2D plane formed by
# Fpz<->Oz and T7<->T8, as this plane will be the horizon (i.e. it
# will determine the location of the head circle).
#
# We implement some special-handling in case Fpz is missing, as
# this seems to be a quite common situation in numerous EEG labs.
montage = info.get_montage()
if montage is None:
raise ValueError(
'No montage was set on your data, but sphere="eeglab" '
"can only work if digitization points for the EEG "
"channels are available. Consider calling set_montage() "
"to apply a montage."
)
ch_pos = montage.get_positions()["ch_pos"]
horizon_ch_names = ("Fpz", "Oz", "T7", "T8")
if "FPz" in ch_pos: # "fix" naming
ch_pos["Fpz"] = ch_pos["FPz"]
del ch_pos["FPz"]
elif "Fpz" not in ch_pos and "Oz" in ch_pos:
logger.info(
"Approximating Fpz location by mirroring Oz along "
"the X and Y axes."
)
# This assumes Fpz and Oz have the same Z coordinate
ch_pos["Fpz"] = ch_pos["Oz"] * [-1, -1, 1]
for ch_name in horizon_ch_names:
if ch_name not in ch_pos:
msg = (
f'sphere="eeglab" requires digitization points of '
f"the following electrode locations in the data: "
f'{", ".join(horizon_ch_names)}, but could not find: '
f"{ch_name}"
)
if ch_name == "Fpz":
msg += ", and was unable to approximate its location from Oz"
raise ValueError(msg)
# Calculate the radius from: T7<->T8, Fpz<->Oz
radius = np.abs(
[
ch_pos["T7"][0], # X axis
ch_pos["T8"][0], # X axis
ch_pos["Fpz"][1], # Y axis
ch_pos["Oz"][1], # Y axis
]
).mean()
# Calculate the center of the head sphere
# Use 4 digpoints for each of the 3 axes to hopefully get a better
# approximation than when using just 2 digpoints.
sphere_locs = dict()
for idx, axis in enumerate(("X", "Y", "Z")):
sphere_locs[axis] = np.mean(
[
ch_pos["T7"][idx],
ch_pos["T8"][idx],
ch_pos["Fpz"][idx],
ch_pos["Oz"][idx],
]
)
sphere = (sphere_locs["X"], sphere_locs["Y"], sphere_locs["Z"], radius)
sphere_units = "m"
del sphere_locs, radius, montage, ch_pos
elif isinstance(sphere, ConductorModel):
if not sphere["is_sphere"] or len(sphere["layers"]) == 0:
raise ValueError(
"sphere, if a ConductorModel, must be spherical "
"with multiple layers, not a BEM or single-layer "
f"sphere (got {sphere})"
)
sphere = tuple(sphere["r0"]) + (sphere["layers"][0]["rad"],)
sphere_units = "m"
sphere = np.array(sphere, dtype=float)
if sphere.shape == ():
sphere = np.concatenate([[0.0] * 3, [sphere]])
if sphere.shape != (4,):
raise ValueError(
"sphere must be float or 1D array of shape (4,), got "
f"array-like of shape {sphere.shape}"
)
_check_option("sphere_units", sphere_units, ("m", "mm"))
if sphere_units == "mm":
sphere /= 1000.0
sphere = np.array(sphere, float)
return sphere
def _check_head_radius(radius, add_info=""):
"""Check that head radius is within a reasonable range (5. - 10.85 cm).
Parameters
----------
radius : float
Head radius in meters.
add_info : str
Additional info to add to the warning message.
Notes
-----
The maximum value was taken from the head size percentiles given in the
following Wikipedia infographic:
https://upload.wikimedia.org/wikipedia/commons/0/06/AvgHeadSizes.png
the maximum radius is taken from the 99th percentile for men Glabella
to back of the head measurements (Glabella is a point just above the
Nasion):
21.7cm / 2 = 10.85 cm = 0.1085 m
The minimum value was taken from The National Center for Health Statistics
(USA) infant head circumference percentiles:
https://www.cdc.gov/growthcharts/html_charts/hcageinf.htm
we take the minimum to be the radius corresponding to the 3rd percentile
head circumference of female 0-month infant, rounded down:
31.9302 cm circumference / (2 * pi) = 5.08 cm radius -> 0.05 m
"""
min_radius = 0.05
max_radius = 0.1085
if radius > max_radius:
msg = (
f"Estimated head radius ({1e2 * radius:0.1f} cm) is "
"above the 99th percentile for adult head size."
)
warn(msg + add_info)
elif radius < min_radius:
msg = (
f"Estimated head radius ({1e2 * radius:0.1f} cm) is "
"below the 3rd percentile for infant head size."
)
warn(msg + add_info)
def _check_freesurfer_home():
from .config import get_config
fs_home = get_config("FREESURFER_HOME")
if fs_home is None:
raise RuntimeError("The FREESURFER_HOME environment variable is not set.")
return fs_home
def _suggest(val, options, cutoff=0.66):
options = get_close_matches(val, options, cutoff=cutoff)
if len(options) == 0:
return ""
elif len(options) == 1:
return f" Did you mean {repr(options[0])}?"
else:
return f" Did you mean one of {repr(options)}?"
def _check_on_missing(on_missing, name="on_missing", *, extras=()):
_validate_type(on_missing, str, name)
_check_option(name, on_missing, ["raise", "warn", "ignore"] + list(extras))
def _on_missing(on_missing, msg, name="on_missing", error_klass=None):
_check_on_missing(on_missing, name)
error_klass = ValueError if error_klass is None else error_klass
on_missing = "raise" if on_missing == "error" else on_missing
on_missing = "warn" if on_missing == "warning" else on_missing
if on_missing == "raise":
raise error_klass(msg)
elif on_missing == "warn":
warn(msg)
else: # Ignore
assert on_missing == "ignore"
def _safe_input(msg, *, alt=None, use=None):
try:
return input(msg)
except EOFError: # MATLAB or other non-stdin
if use is not None:
return use
raise RuntimeError(
f"Could not use input() to get a response to:\n{msg}\n"
f"You can {alt} to avoid this error."
)
def _ensure_events(events):
err_msg = f"events should be a NumPy array of integers, got {type(events)}"
with _record_warnings():
try:
events = np.asarray(events)
except ValueError as np_err:
if str(np_err).startswith(
"setting an array element with a sequence. The requested "
"array has an inhomogeneous shape"
):
raise TypeError(err_msg) from None
else:
raise
if not np.issubdtype(events.dtype, np.integer):
raise TypeError(err_msg)
if events.ndim != 2 or events.shape[1] != 3:
raise ValueError(f"events must be of shape (N, 3), got {events.shape}")
return events
def _to_rgb(*args, name="color", alpha=False):
from matplotlib.colors import colorConverter
func = colorConverter.to_rgba if alpha else colorConverter.to_rgb
try:
return func(*args)
except ValueError:
args = args[0] if len(args) == 1 else args
raise ValueError(
f'Invalid RGB{"A" if alpha else ""} argument(s) for {name}: '
f"{repr(args)}"
) from None
def _import_nibabel(why="use MRI files"):
try:
import nibabel as nib
except ImportError as exp:
raise exp.__class__(f"nibabel is required to {why}, got:\n{exp}") from None
return nib
def _check_method_kwargs(func, kwargs, msg=None):
"""Ensure **kwargs are compatible with the function they're passed to."""
from .misc import _pl
valid = list(signature(func).parameters)
is_invalid = np.isin(list(kwargs), valid, invert=True)
if is_invalid.any():
invalid_kw = np.array(list(kwargs))[is_invalid].tolist()
s = _pl(invalid_kw)
if msg is None:
msg = f'function "{func}"'
raise TypeError(
f'Got unexpected keyword argument{s} {", ".join(invalid_kw)} for {msg}.'
)
|