File: _proj.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (252 lines) | stat: -rw-r--r-- 9,736 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
"""Functions for plotting projectors."""

# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

from copy import deepcopy

import numpy as np

from .._fiff.pick import _picks_to_idx
from ..defaults import DEFAULTS
from ..utils import _pl, _validate_type, verbose, warn
from .evoked import _plot_evoked
from .topomap import _plot_projs_topomap
from .utils import _check_type_projs, plt_show


@verbose
def plot_projs_joint(
    projs, evoked, picks_trace=None, *, topomap_kwargs=None, show=True, verbose=None
):
    """Plot projectors and evoked jointly.

    Parameters
    ----------
    projs : list of Projection
        The projectors to plot.
    evoked : instance of Evoked
        The data to plot. Typically this is the evoked instance created from
        averaging the epochs used to create the projection.
    %(picks_plot_projs_joint_trace)s
    topomap_kwargs : dict | None
        Keyword arguments to pass to :func:`mne.viz.plot_projs_topomap`.
    %(show)s
    %(verbose)s

    Returns
    -------
    fig : instance of matplotlib Figure
        The figure.

    Notes
    -----
    This function creates a figure with three columns:

    1. The left shows the evoked data traces before (black) and after (green)
       projection.
    2. The center shows the topomaps associated with each of the projectors.
    3. The right again shows the data traces (black), but this time with:

       1. The data projected onto each projector with a single normalization
          factor (solid lines). This is useful for seeing the relative power
          in each projection vector.
       2. The data projected onto each projector with individual normalization
          factors (dashed lines). This is useful for visualizing each time
          course regardless of its power.
       3. Additional data traces from ``picks_trace`` (solid yellow lines).
          This is useful for visualizing the "ground truth" of the time
          course, e.g. the measured EOG or ECG channel time courses.

    .. versionadded:: 1.1
    """
    import matplotlib.pyplot as plt

    from ..evoked import Evoked

    _validate_type(evoked, Evoked, "evoked")
    _validate_type(topomap_kwargs, (None, dict), "topomap_kwargs")
    projs = _check_type_projs(projs)
    topomap_kwargs = dict() if topomap_kwargs is None else topomap_kwargs
    if picks_trace is not None:
        picks_trace = _picks_to_idx(evoked.info, picks_trace, allow_empty=False)
    info = evoked.info
    ch_types = evoked.get_channel_types(unique=True, only_data_chs=True)
    proj_by_type = dict()  # will be set up like an enumerate key->[pi, proj]
    ch_names_by_type = dict()
    used = np.zeros(len(projs), int)
    for ch_type in ch_types:
        these_picks = _picks_to_idx(info, ch_type, allow_empty=True)
        these_chs = [evoked.ch_names[pick] for pick in these_picks]
        ch_names_by_type[ch_type] = these_chs
        for pi, proj in enumerate(projs):
            if not set(these_chs).intersection(proj["data"]["col_names"]):
                continue
            if ch_type not in proj_by_type:
                proj_by_type[ch_type] = list()
            proj_by_type[ch_type].append([pi, deepcopy(proj)])
            used[pi] += 1
    missing = (~used.astype(bool)).sum()
    if missing:
        warn(
            f"{missing} projector{_pl(missing)} had no channel names "
            "present in epochs"
        )
    del projs
    ch_types = list(proj_by_type)  # reduce to number we actually need
    # room for legend
    max_proj_per_type = max(len(x) for x in proj_by_type.values())
    cs_trace = 3
    cs_topo = 2
    n_col = max_proj_per_type * cs_topo + 2 * cs_trace
    n_row = len(ch_types)
    shape = (n_row, n_col)
    fig = plt.figure(
        figsize=(n_col * 1.1 + 0.5, n_row * 1.8 + 0.5), layout="constrained"
    )
    ri = 0
    # pick some sufficiently distinct colors (6 per proj type, e.g., ECG,
    # should be enough hopefully!)
    # https://personal.sron.nl/~pault/data/colourschemes.pdf
    # "Vibrant" color scheme
    proj_colors = [
        "#CC3311",  # red
        "#009988",  # teal
        "#0077BB",  # blue
        "#EE3377",  # magenta
        "#EE7733",  # orange
        "#33BBEE",  # cyan
    ]
    trace_color = "#CCBB44"  # yellow
    after_color, after_name = "#228833", "green"
    type_titles = DEFAULTS["titles"]
    last_ax = [None] * 2
    first_ax = dict()
    pe_kwargs = dict(show=False, draw=False)
    for ch_type, these_projs in proj_by_type.items():
        these_idxs, these_projs = zip(*these_projs)
        ch_names = ch_names_by_type[ch_type]
        idx = np.where(
            [np.isin(ch_names, proj["data"]["col_names"]).all() for proj in these_projs]
        )[0]
        used[idx] += 1
        count = len(these_projs)
        for proj in these_projs:
            sub_idx = [proj["data"]["col_names"].index(name) for name in ch_names]
            proj["data"]["data"] = proj["data"]["data"][:, sub_idx]
            proj["data"]["col_names"] = ch_names
        ba_ax = plt.subplot2grid(shape, (ri, 0), colspan=cs_trace, fig=fig)
        topo_axes = [
            plt.subplot2grid(
                shape, (ri, ci * cs_topo + cs_trace), colspan=cs_topo, fig=fig
            )
            for ci in range(count)
        ]
        tr_ax = plt.subplot2grid(
            shape, (ri, n_col - cs_trace), colspan=cs_trace, fig=fig
        )
        # topomaps
        _plot_projs_topomap(these_projs, info=info, axes=topo_axes, **topomap_kwargs)
        for idx, proj, ax_ in zip(these_idxs, these_projs, topo_axes):
            ax_.set_title("")  # could use proj['desc'] but it's long
            ax_.set_xlabel(f"projs[{idx}]", fontsize="small")
        unit = DEFAULTS["units"][ch_type]
        # traces
        this_evoked = evoked.copy().pick(ch_names)
        p = np.concatenate([p["data"]["data"] for p in these_projs])
        assert p.shape == (len(these_projs), len(this_evoked.data))
        traces = np.dot(p, this_evoked.data)
        traces *= np.sign(np.mean(np.dot(this_evoked.data, traces.T), 0))[:, np.newaxis]
        if picks_trace is not None:
            ch_traces = evoked.data[picks_trace]
            ch_traces -= np.mean(ch_traces, axis=1, keepdims=True)
            ch_traces /= np.abs(ch_traces).max()
        _plot_evoked(
            this_evoked, picks="all", axes=[tr_ax], **pe_kwargs, spatial_colors=False
        )
        for line in tr_ax.lines:
            line.set(lw=0.5, zorder=3)
        for t in list(tr_ax.texts):
            t.remove()
        scale = 0.8 * np.abs(tr_ax.get_ylim()).max()
        hs, labels = list(), list()
        traces /= np.abs(traces).max()  # uniformly scaled
        for ti, trace in enumerate(traces):
            hs.append(
                tr_ax.plot(
                    this_evoked.times,
                    trace * scale,
                    color=proj_colors[ti % len(proj_colors)],
                    zorder=5,
                )[0]
            )
            labels.append(f"projs[{these_idxs[ti]}]")
        traces /= np.abs(traces).max(1, keepdims=True)  # independently
        for ti, trace in enumerate(traces):
            tr_ax.plot(
                this_evoked.times,
                trace * scale,
                color=proj_colors[ti % len(proj_colors)],
                zorder=3.5,
                ls="--",
                lw=1.0,
                alpha=0.75,
            )
        if picks_trace is not None:
            trace_ch = [evoked.ch_names[pick] for pick in picks_trace]
            if len(picks_trace) == 1:
                trace_ch = trace_ch[0]
            hs.append(
                tr_ax.plot(
                    this_evoked.times,
                    ch_traces.T * scale,
                    color=trace_color,
                    lw=3,
                    zorder=4,
                    alpha=0.75,
                )[0]
            )
            labels.append(str(trace_ch))
        tr_ax.set(title="", xlabel="", ylabel="")
        # This will steal space from the subplots in a constrained layout
        # https://matplotlib.org/3.5.0/tutorials/intermediate/constrainedlayout_guide.html#legends  # noqa: E501
        tr_ax.legend(
            hs,
            labels,
            loc="center left",
            borderaxespad=0.05,
            bbox_to_anchor=[1.05, 0.5],
        )
        last_ax[1] = tr_ax
        key = "Projected time course"
        if key not in first_ax:
            first_ax[key] = tr_ax
        # Before and after traces
        _plot_evoked(this_evoked, picks="all", axes=[ba_ax], **pe_kwargs)
        for line in ba_ax.lines:
            line.set(lw=0.5, zorder=3)
        loff = len(ba_ax.lines)
        this_proj_evoked = this_evoked.copy().add_proj(these_projs)
        # with meg='combined' any existing mag projectors (those already part
        # of evoked before we add_proj above) will have greatly
        # reduced power, so we ignore the warning about this issue
        this_proj_evoked.apply_proj(verbose="error")
        _plot_evoked(this_proj_evoked, picks="all", axes=[ba_ax], **pe_kwargs)
        for line in ba_ax.lines[loff:]:
            line.set(lw=0.5, zorder=4, color=after_color)
        for t in list(ba_ax.texts):
            t.remove()
        ba_ax.set(title="", xlabel="")
        ba_ax.set(ylabel=f"{type_titles[ch_type]}\n{unit}")
        last_ax[0] = ba_ax
        key = f"Before (black) and after ({after_name})"
        if key not in first_ax:
            first_ax[key] = ba_ax
        ri += 1
    for ax in last_ax:
        ax.set(xlabel="Time (s)")
    for title, ax in first_ax.items():
        ax.set_title(title, fontsize="medium")
    plt_show(show)
    return fig