1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
"""Functions for plotting projectors."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from copy import deepcopy
import numpy as np
from .._fiff.pick import _picks_to_idx
from ..defaults import DEFAULTS
from ..utils import _pl, _validate_type, verbose, warn
from .evoked import _plot_evoked
from .topomap import _plot_projs_topomap
from .utils import _check_type_projs, plt_show
@verbose
def plot_projs_joint(
projs, evoked, picks_trace=None, *, topomap_kwargs=None, show=True, verbose=None
):
"""Plot projectors and evoked jointly.
Parameters
----------
projs : list of Projection
The projectors to plot.
evoked : instance of Evoked
The data to plot. Typically this is the evoked instance created from
averaging the epochs used to create the projection.
%(picks_plot_projs_joint_trace)s
topomap_kwargs : dict | None
Keyword arguments to pass to :func:`mne.viz.plot_projs_topomap`.
%(show)s
%(verbose)s
Returns
-------
fig : instance of matplotlib Figure
The figure.
Notes
-----
This function creates a figure with three columns:
1. The left shows the evoked data traces before (black) and after (green)
projection.
2. The center shows the topomaps associated with each of the projectors.
3. The right again shows the data traces (black), but this time with:
1. The data projected onto each projector with a single normalization
factor (solid lines). This is useful for seeing the relative power
in each projection vector.
2. The data projected onto each projector with individual normalization
factors (dashed lines). This is useful for visualizing each time
course regardless of its power.
3. Additional data traces from ``picks_trace`` (solid yellow lines).
This is useful for visualizing the "ground truth" of the time
course, e.g. the measured EOG or ECG channel time courses.
.. versionadded:: 1.1
"""
import matplotlib.pyplot as plt
from ..evoked import Evoked
_validate_type(evoked, Evoked, "evoked")
_validate_type(topomap_kwargs, (None, dict), "topomap_kwargs")
projs = _check_type_projs(projs)
topomap_kwargs = dict() if topomap_kwargs is None else topomap_kwargs
if picks_trace is not None:
picks_trace = _picks_to_idx(evoked.info, picks_trace, allow_empty=False)
info = evoked.info
ch_types = evoked.get_channel_types(unique=True, only_data_chs=True)
proj_by_type = dict() # will be set up like an enumerate key->[pi, proj]
ch_names_by_type = dict()
used = np.zeros(len(projs), int)
for ch_type in ch_types:
these_picks = _picks_to_idx(info, ch_type, allow_empty=True)
these_chs = [evoked.ch_names[pick] for pick in these_picks]
ch_names_by_type[ch_type] = these_chs
for pi, proj in enumerate(projs):
if not set(these_chs).intersection(proj["data"]["col_names"]):
continue
if ch_type not in proj_by_type:
proj_by_type[ch_type] = list()
proj_by_type[ch_type].append([pi, deepcopy(proj)])
used[pi] += 1
missing = (~used.astype(bool)).sum()
if missing:
warn(
f"{missing} projector{_pl(missing)} had no channel names "
"present in epochs"
)
del projs
ch_types = list(proj_by_type) # reduce to number we actually need
# room for legend
max_proj_per_type = max(len(x) for x in proj_by_type.values())
cs_trace = 3
cs_topo = 2
n_col = max_proj_per_type * cs_topo + 2 * cs_trace
n_row = len(ch_types)
shape = (n_row, n_col)
fig = plt.figure(
figsize=(n_col * 1.1 + 0.5, n_row * 1.8 + 0.5), layout="constrained"
)
ri = 0
# pick some sufficiently distinct colors (6 per proj type, e.g., ECG,
# should be enough hopefully!)
# https://personal.sron.nl/~pault/data/colourschemes.pdf
# "Vibrant" color scheme
proj_colors = [
"#CC3311", # red
"#009988", # teal
"#0077BB", # blue
"#EE3377", # magenta
"#EE7733", # orange
"#33BBEE", # cyan
]
trace_color = "#CCBB44" # yellow
after_color, after_name = "#228833", "green"
type_titles = DEFAULTS["titles"]
last_ax = [None] * 2
first_ax = dict()
pe_kwargs = dict(show=False, draw=False)
for ch_type, these_projs in proj_by_type.items():
these_idxs, these_projs = zip(*these_projs)
ch_names = ch_names_by_type[ch_type]
idx = np.where(
[np.isin(ch_names, proj["data"]["col_names"]).all() for proj in these_projs]
)[0]
used[idx] += 1
count = len(these_projs)
for proj in these_projs:
sub_idx = [proj["data"]["col_names"].index(name) for name in ch_names]
proj["data"]["data"] = proj["data"]["data"][:, sub_idx]
proj["data"]["col_names"] = ch_names
ba_ax = plt.subplot2grid(shape, (ri, 0), colspan=cs_trace, fig=fig)
topo_axes = [
plt.subplot2grid(
shape, (ri, ci * cs_topo + cs_trace), colspan=cs_topo, fig=fig
)
for ci in range(count)
]
tr_ax = plt.subplot2grid(
shape, (ri, n_col - cs_trace), colspan=cs_trace, fig=fig
)
# topomaps
_plot_projs_topomap(these_projs, info=info, axes=topo_axes, **topomap_kwargs)
for idx, proj, ax_ in zip(these_idxs, these_projs, topo_axes):
ax_.set_title("") # could use proj['desc'] but it's long
ax_.set_xlabel(f"projs[{idx}]", fontsize="small")
unit = DEFAULTS["units"][ch_type]
# traces
this_evoked = evoked.copy().pick(ch_names)
p = np.concatenate([p["data"]["data"] for p in these_projs])
assert p.shape == (len(these_projs), len(this_evoked.data))
traces = np.dot(p, this_evoked.data)
traces *= np.sign(np.mean(np.dot(this_evoked.data, traces.T), 0))[:, np.newaxis]
if picks_trace is not None:
ch_traces = evoked.data[picks_trace]
ch_traces -= np.mean(ch_traces, axis=1, keepdims=True)
ch_traces /= np.abs(ch_traces).max()
_plot_evoked(
this_evoked, picks="all", axes=[tr_ax], **pe_kwargs, spatial_colors=False
)
for line in tr_ax.lines:
line.set(lw=0.5, zorder=3)
for t in list(tr_ax.texts):
t.remove()
scale = 0.8 * np.abs(tr_ax.get_ylim()).max()
hs, labels = list(), list()
traces /= np.abs(traces).max() # uniformly scaled
for ti, trace in enumerate(traces):
hs.append(
tr_ax.plot(
this_evoked.times,
trace * scale,
color=proj_colors[ti % len(proj_colors)],
zorder=5,
)[0]
)
labels.append(f"projs[{these_idxs[ti]}]")
traces /= np.abs(traces).max(1, keepdims=True) # independently
for ti, trace in enumerate(traces):
tr_ax.plot(
this_evoked.times,
trace * scale,
color=proj_colors[ti % len(proj_colors)],
zorder=3.5,
ls="--",
lw=1.0,
alpha=0.75,
)
if picks_trace is not None:
trace_ch = [evoked.ch_names[pick] for pick in picks_trace]
if len(picks_trace) == 1:
trace_ch = trace_ch[0]
hs.append(
tr_ax.plot(
this_evoked.times,
ch_traces.T * scale,
color=trace_color,
lw=3,
zorder=4,
alpha=0.75,
)[0]
)
labels.append(str(trace_ch))
tr_ax.set(title="", xlabel="", ylabel="")
# This will steal space from the subplots in a constrained layout
# https://matplotlib.org/3.5.0/tutorials/intermediate/constrainedlayout_guide.html#legends # noqa: E501
tr_ax.legend(
hs,
labels,
loc="center left",
borderaxespad=0.05,
bbox_to_anchor=[1.05, 0.5],
)
last_ax[1] = tr_ax
key = "Projected time course"
if key not in first_ax:
first_ax[key] = tr_ax
# Before and after traces
_plot_evoked(this_evoked, picks="all", axes=[ba_ax], **pe_kwargs)
for line in ba_ax.lines:
line.set(lw=0.5, zorder=3)
loff = len(ba_ax.lines)
this_proj_evoked = this_evoked.copy().add_proj(these_projs)
# with meg='combined' any existing mag projectors (those already part
# of evoked before we add_proj above) will have greatly
# reduced power, so we ignore the warning about this issue
this_proj_evoked.apply_proj(verbose="error")
_plot_evoked(this_proj_evoked, picks="all", axes=[ba_ax], **pe_kwargs)
for line in ba_ax.lines[loff:]:
line.set(lw=0.5, zorder=4, color=after_color)
for t in list(ba_ax.texts):
t.remove()
ba_ax.set(title="", xlabel="")
ba_ax.set(ylabel=f"{type_titles[ch_type]}\n{unit}")
last_ax[0] = ba_ax
key = f"Before (black) and after ({after_name})"
if key not in first_ax:
first_ax[key] = ba_ax
ri += 1
for ax in last_ax:
ax.set(xlabel="Time (s)")
for title, ax in first_ax.items():
ax.set_title(title, fontsize="medium")
plt_show(show)
return fig
|