File: _pyvista.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (1358 lines) | stat: -rw-r--r-- 43,735 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
"""
Core visualization operations based on PyVista.

Actual implementation of _Renderer and _Projection classes.
"""

# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

import platform
import re
import warnings
from contextlib import contextmanager
from inspect import signature

import numpy as np
import pyvista
from pyvista import Line, Plotter, PolyData, UnstructuredGrid, close_all
from pyvistaqt import BackgroundPlotter

from ...fixes import _compare_version
from ...transforms import _cart_to_sph, _sph_to_cart, apply_trans
from ...utils import (
    _check_option,
    _require_version,
    _validate_type,
    warn,
)
from ._abstract import Figure3D, _AbstractRenderer
from ._utils import (
    ALLOWED_QUIVER_MODES,
    _alpha_blend_background,
    _get_colormap_from_array,
    _init_mne_qtapp,
)

try:
    from pyvista.plotting.plotter import _ALL_PLOTTERS
except Exception:  # PV < 0.40
    from pyvista.plotting.plotting import _ALL_PLOTTERS

from vtkmodules.util.numpy_support import numpy_to_vtk
from vtkmodules.vtkCommonCore import VTK_UNSIGNED_CHAR, vtkCommand, vtkLookupTable
from vtkmodules.vtkCommonDataModel import VTK_VERTEX, vtkPiecewiseFunction
from vtkmodules.vtkCommonTransforms import vtkTransform
from vtkmodules.vtkFiltersCore import vtkCellDataToPointData, vtkGlyph3D
from vtkmodules.vtkFiltersGeneral import (
    vtkMarchingContourFilter,
    vtkTransformPolyDataFilter,
)
from vtkmodules.vtkFiltersHybrid import vtkPolyDataSilhouette
from vtkmodules.vtkFiltersSources import (
    vtkArrowSource,
    vtkConeSource,
    vtkCylinderSource,
    vtkGlyphSource2D,
    vtkPlatonicSolidSource,
    vtkSphereSource,
)
from vtkmodules.vtkImagingCore import vtkImageReslice
from vtkmodules.vtkRenderingCore import (
    vtkActor,
    vtkCellPicker,
    vtkColorTransferFunction,
    vtkCoordinate,
    vtkDataSetMapper,
    vtkMapper,
    vtkPolyDataMapper,
    vtkVolume,
)
from vtkmodules.vtkRenderingVolumeOpenGL2 import vtkSmartVolumeMapper

_FIGURES = dict()


class PyVistaFigure(Figure3D):
    """PyVista-based 3D Figure.

    .. note:: This class should not be instantiated directly via
              ``mne.viz.PyVistaFigure(...)``. Instead, use
              :func:`mne.viz.create_3d_figure`.

    See Also
    --------
    mne.viz.create_3d_figure
    """

    def __init__(self):
        pass

    def _init(
        self,
        plotter=None,
        show=False,
        title="MNE-Python 3D Figure",
        size=(600, 600),
        shape=(1, 1),
        background_color="black",
        smooth_shading=True,
        off_screen=False,
        notebook=False,
        splash=False,
    ):
        self._plotter = plotter
        self.display = None
        self.background_color = background_color
        self.smooth_shading = smooth_shading
        self.notebook = notebook
        self.title = title
        self.splash = splash

        self.store = dict()
        self.store["window_size"] = size
        self.store["shape"] = shape
        self.store["off_screen"] = off_screen
        self.store["border"] = False
        self.store["line_smoothing"] = True
        self.store["polygon_smoothing"] = True
        self.store["point_smoothing"] = True

        if not self.notebook:
            self.store["show"] = show
            self.store["title"] = title
            self.store["auto_update"] = False
            self.store["menu_bar"] = False
            self.store["toolbar"] = False
            self.store["update_app_icon"] = False
            self._plotter_class = _SafeBackgroundPlotter
            if "app_window_class" in signature(BackgroundPlotter).parameters:
                from ._qt import _MNEMainWindow

                self.store["app_window_class"] = _MNEMainWindow
        else:
            self._plotter_class = Plotter

        self._nrows, self._ncols = self.store["shape"]

    def _build(self):
        if self.plotter is None:
            if not self.notebook:
                out = _init_mne_qtapp(enable_icon=True, splash=self.splash)
                # replace it with the Qt object
                if self.splash:
                    self.splash = out[1]
                    app = out[0]
                else:
                    app = out
                self.store["app"] = app
            plotter = self._plotter_class(**self.store)
            plotter.background_color = self.background_color
            self._plotter = plotter
        # TODO: This breaks trame "client" backend
        if self.plotter.iren is not None:
            self.plotter.iren.initialize()
        _process_events(self.plotter)
        _process_events(self.plotter)
        return self.plotter

    def _is_active(self):
        return hasattr(self.plotter, "ren_win")


class _Projection:
    """Class storing projection information.

    Attributes
    ----------
    xy : array
        Result of 2d projection of 3d data.
    pts : None
        Scene sensors handle.
    """

    def __init__(self, *, xy, pts, plotter):
        """Store input projection information into attributes."""
        self.xy = xy
        self.pts = pts
        self.plotter = plotter

    def visible(self, state):
        """Modify visibility attribute of the sensors."""
        self.pts.SetVisibility(state)
        self.plotter.render()


class _PyVistaRenderer(_AbstractRenderer):
    """Class managing rendering scene.

    Attributes
    ----------
    plotter: Plotter
        Main PyVista access point.
    name: str
        Name of the window.
    """

    def __init__(
        self,
        fig=None,
        size=(600, 600),
        bgcolor="black",
        *,
        name=None,
        show=False,
        shape=(1, 1),
        notebook=None,
        smooth_shading=True,
        splash=False,
        multi_samples=None,
    ):
        from .._3d import _get_3d_option

        _require_version("pyvista", "use 3D rendering", "0.32")
        multi_samples = _get_3d_option("multi_samples")
        # multi_samples > 1 is broken on macOS + Intel Iris + volume rendering
        if platform.system() == "Darwin":
            multi_samples = 1
        figure = PyVistaFigure()
        figure._init(
            show=show,
            title=name,
            size=size,
            shape=shape,
            background_color=bgcolor,
            notebook=notebook,
            smooth_shading=smooth_shading,
            splash=splash,
        )
        self.font_family = "arial"
        self.tube_n_sides = 20
        self.antialias = _get_3d_option("antialias")
        self.depth_peeling = _get_3d_option("depth_peeling")
        self.multi_samples = multi_samples
        self.smooth_shading = smooth_shading
        if isinstance(fig, int):
            saved_fig = _FIGURES.get(fig)
            # Restore only active plotter
            if saved_fig is not None and saved_fig._is_active():
                self.figure = saved_fig
            else:
                self.figure = figure
                _FIGURES[fig] = self.figure
        elif fig is None:
            self.figure = figure
        else:
            self.figure = fig

        # Enable off_screen if sphinx-gallery or testing
        if pyvista.OFF_SCREEN:
            self.figure.store["off_screen"] = True

        # pyvista theme may enable depth peeling by default so
        # we disable it initially to better control the value afterwards
        with _disabled_depth_peeling():
            self.plotter = self.figure._build()
        self._hide_axes()
        self._toggle_antialias()
        self._enable_depth_peeling()

        # FIX: https://github.com/pyvista/pyvistaqt/pull/68
        if not hasattr(self.plotter, "iren"):
            self.plotter.iren = None

        self.update_lighting()

    @property
    def _all_plotters(self):
        if self.figure.plotter is not None:
            return [self.figure.plotter]
        else:
            return list()

    @property
    def _all_renderers(self):
        if self.figure.plotter is not None:
            return self.figure.plotter.renderers
        else:
            return list()

    def _hide_axes(self):
        for renderer in self._all_renderers:
            renderer.hide_axes()

    def _update(self):
        for plotter in self._all_plotters:
            plotter.update()

    def _index_to_loc(self, idx):
        _ncols = self.figure._ncols
        row = idx // _ncols
        col = idx % _ncols
        return (row, col)

    def _loc_to_index(self, loc):
        _ncols = self.figure._ncols
        return loc[0] * _ncols + loc[1]

    def subplot(self, x, y):
        x = np.max([0, np.min([x, self.figure._nrows - 1])])
        y = np.max([0, np.min([y, self.figure._ncols - 1])])
        self.plotter.subplot(x, y)

    def scene(self):
        return self.figure

    def update_lighting(self):
        # Inspired from Mayavi's version of Raymond Maple 3-lights illumination
        for renderer in self._all_renderers:
            lights = list(renderer.GetLights())
            headlight = lights.pop(0)
            headlight.SetSwitch(False)
            # below and centered, left and above, right and above
            az_el_in = ((0, -45, 0.7), (-60, 30, 0.7), (60, 30, 0.7))
            for li, light in enumerate(lights):
                if li < len(az_el_in):
                    light.SetSwitch(True)
                    light.SetPosition(_to_pos(*az_el_in[li][:2]))
                    light.SetIntensity(az_el_in[li][2])
                else:
                    light.SetSwitch(False)
                    light.SetPosition(_to_pos(0.0, 0.0))
                    light.SetIntensity(0.0)
                light.SetColor(1.0, 1.0, 1.0)

    def set_interaction(self, interaction):
        if not hasattr(self.plotter, "iren") or self.plotter.iren is None:
            return
        if interaction == "rubber_band_2d":
            for renderer in self._all_renderers:
                renderer.enable_parallel_projection()
            self.plotter.enable_rubber_band_2d_style()
        else:
            for renderer in self._all_renderers:
                renderer.disable_parallel_projection()
            kwargs = dict()
            if interaction == "terrain":
                kwargs["mouse_wheel_zooms"] = True
            getattr(self.plotter, f"enable_{interaction}_style")(**kwargs)

    def legend(self, labels, border=False, size=0.1, face="triangle", loc="upper left"):
        return self.plotter.add_legend(labels, size=(size, size), face=face, loc=loc)

    def polydata(
        self,
        mesh,
        color=None,
        opacity=1.0,
        normals=None,
        backface_culling=False,
        scalars=None,
        colormap=None,
        vmin=None,
        vmax=None,
        interpolate_before_map=True,
        representation="surface",
        line_width=1.0,
        polygon_offset=None,
        **kwargs,
    ):
        from matplotlib.colors import to_rgba_array

        rgba = False
        if color is not None:
            # See if we need to convert or not
            check_color = to_rgba_array(color)
            if len(check_color) == mesh.n_points:
                scalars = (check_color * 255).astype("ubyte")
                color = None
                rgba = True
        if isinstance(colormap, np.ndarray):
            if colormap.dtype == np.uint8:
                colormap = colormap.astype(np.float64) / 255.0
            from matplotlib.colors import ListedColormap

            colormap = ListedColormap(colormap)
        if normals is not None:
            mesh.point_data["Normals"] = normals
            mesh.GetPointData().SetActiveNormals("Normals")
        else:
            _compute_normals(mesh)
        smooth_shading = self.smooth_shading
        if representation == "wireframe":
            smooth_shading = False  # never use smooth shading for wf
        rgba = kwargs.pop("rgba", rgba)
        actor = _add_mesh(
            plotter=self.plotter,
            mesh=mesh,
            color=color,
            scalars=scalars,
            edge_color=color,
            opacity=opacity,
            cmap=colormap,
            backface_culling=backface_culling,
            rng=[vmin, vmax],
            show_scalar_bar=False,
            rgba=rgba,
            smooth_shading=smooth_shading,
            interpolate_before_map=interpolate_before_map,
            style=representation,
            line_width=line_width,
            **kwargs,
        )

        if polygon_offset is not None:
            mapper = actor.GetMapper()
            mapper.SetResolveCoincidentTopologyToPolygonOffset()
            mapper.SetRelativeCoincidentTopologyPolygonOffsetParameters(
                polygon_offset, polygon_offset
            )

        return actor, mesh

    def mesh(
        self,
        x,
        y,
        z,
        triangles,
        color,
        opacity=1.0,
        *,
        backface_culling=False,
        scalars=None,
        colormap=None,
        vmin=None,
        vmax=None,
        interpolate_before_map=True,
        representation="surface",
        line_width=1.0,
        normals=None,
        polygon_offset=None,
        **kwargs,
    ):
        vertices = np.c_[x, y, z].astype(float)
        triangles = np.c_[np.full(len(triangles), 3), triangles]
        mesh = PolyData(vertices, triangles)
        return self.polydata(
            mesh=mesh,
            color=color,
            opacity=opacity,
            normals=normals,
            backface_culling=backface_culling,
            scalars=scalars,
            colormap=colormap,
            vmin=vmin,
            vmax=vmax,
            interpolate_before_map=interpolate_before_map,
            representation=representation,
            line_width=line_width,
            polygon_offset=polygon_offset,
            **kwargs,
        )

    def contour(
        self,
        surface,
        scalars,
        contours,
        width=1.0,
        opacity=1.0,
        vmin=None,
        vmax=None,
        colormap=None,
        normalized_colormap=False,
        kind="line",
        color=None,
    ):
        if colormap is not None:
            colormap = _get_colormap_from_array(colormap, normalized_colormap)
        vertices = np.array(surface["rr"])
        triangles = np.array(surface["tris"])
        n_triangles = len(triangles)
        triangles = np.c_[np.full(n_triangles, 3), triangles]
        mesh = PolyData(vertices, triangles)
        mesh.point_data["scalars"] = scalars
        contour = mesh.contour(isosurfaces=contours)
        line_width = width
        if kind == "tube":
            contour = contour.tube(radius=width, n_sides=self.tube_n_sides)
            line_width = 1.0
        actor = _add_mesh(
            plotter=self.plotter,
            mesh=contour,
            show_scalar_bar=False,
            line_width=line_width,
            color=color,
            rng=[vmin, vmax],
            cmap=colormap,
            opacity=opacity,
            smooth_shading=self.smooth_shading,
        )
        return actor, contour

    def surface(
        self,
        surface,
        color=None,
        opacity=1.0,
        vmin=None,
        vmax=None,
        colormap=None,
        normalized_colormap=False,
        scalars=None,
        backface_culling=False,
        polygon_offset=None,
    ):
        normals = surface.get("nn", None)
        vertices = np.array(surface["rr"])
        triangles = np.array(surface["tris"])
        triangles = np.c_[np.full(len(triangles), 3), triangles]
        mesh = PolyData(vertices, triangles)
        colormap = _get_colormap_from_array(colormap, normalized_colormap)
        if scalars is not None:
            mesh.point_data["scalars"] = scalars
        return self.polydata(
            mesh=mesh,
            color=color,
            opacity=opacity,
            normals=normals,
            backface_culling=backface_culling,
            scalars=scalars,
            colormap=colormap,
            vmin=vmin,
            vmax=vmax,
            polygon_offset=polygon_offset,
        )

    def sphere(
        self,
        center,
        color,
        scale,
        opacity=1.0,
        resolution=8,
        backface_culling=False,
        radius=None,
    ):
        from vtkmodules.vtkFiltersSources import vtkSphereSource

        factor = 1.0 if radius is not None else scale
        center = np.array(center, dtype=float)
        if len(center) == 0:
            return None, None
        _check_option("center.ndim", center.ndim, (1, 2))
        _check_option("center.shape[-1]", center.shape[-1], (3,))
        sphere = vtkSphereSource()
        sphere.SetThetaResolution(resolution)
        sphere.SetPhiResolution(resolution)
        if radius is not None:
            sphere.SetRadius(radius)
        sphere.Update()
        geom = sphere.GetOutput()
        mesh = PolyData(center)
        glyph = mesh.glyph(orient=False, scale=False, factor=factor, geom=geom)
        actor = _add_mesh(
            self.plotter,
            mesh=glyph,
            color=color,
            opacity=opacity,
            backface_culling=backface_culling,
            smooth_shading=self.smooth_shading,
        )
        return actor, glyph

    def tube(
        self,
        origin,
        destination,
        radius=0.001,
        color="white",
        scalars=None,
        vmin=None,
        vmax=None,
        colormap="RdBu",
        normalized_colormap=False,
        reverse_lut=False,
        opacity=None,
    ):
        cmap = _get_colormap_from_array(colormap, normalized_colormap)
        for pointa, pointb in zip(origin, destination):
            line = Line(pointa, pointb)
            if scalars is not None:
                line.point_data["scalars"] = scalars[0, :]
                scalars = "scalars"
                color = None
            else:
                scalars = None
            tube = line.tube(radius, n_sides=self.tube_n_sides)
            actor = _add_mesh(
                plotter=self.plotter,
                mesh=tube,
                scalars=scalars,
                flip_scalars=reverse_lut,
                rng=[vmin, vmax],
                color=color,
                show_scalar_bar=False,
                cmap=cmap,
                smooth_shading=self.smooth_shading,
                opacity=opacity,
            )
        return actor, tube

    def quiver3d(
        self,
        x,
        y,
        z,
        u,
        v,
        w,
        color,
        scale,
        mode,
        resolution=8,
        *,
        glyph_height=None,
        glyph_center=None,
        glyph_resolution=None,
        opacity=1.0,
        scale_mode="none",
        scalars=None,
        colormap=None,
        backface_culling=False,
        glyph_radius=0.15,
        solid_transform=None,
        clim=None,
    ):
        _check_option("mode", mode, ALLOWED_QUIVER_MODES)
        _validate_type(scale_mode, str, "scale_mode")
        scale_map = dict(none=False, scalar="scalars", vector="vec")
        _check_option("scale_mode", scale_mode, list(scale_map))
        factor = scale
        vectors = np.c_[u, v, w]
        points = np.vstack(np.c_[x, y, z])
        n_points = len(points)
        cell_type = np.full(n_points, VTK_VERTEX)
        cells = np.c_[np.full(n_points, 1), range(n_points)]
        args = (cells, cell_type, points)
        grid = UnstructuredGrid(*args)
        if scalars is None:
            scalars = np.ones((n_points,))
            mesh_scalars = None
        else:
            mesh_scalars = "scalars"
        grid.point_data["scalars"] = np.array(scalars, float)
        grid.point_data["vec"] = vectors
        if mode == "2darrow":
            return _arrow_glyph(grid, factor), grid
        elif mode == "arrow":
            alg = _glyph(grid, orient="vec", scalars="scalars", factor=factor)
            mesh = pyvista.wrap(alg.GetOutput())
        else:
            tr = None
            if mode == "cone":
                glyph = vtkConeSource()
                glyph.SetCenter(0.5, 0, 0)
                if glyph_radius is not None:
                    glyph.SetRadius(glyph_radius)
            elif mode == "cylinder":
                glyph = vtkCylinderSource()
                if glyph_radius is not None:
                    glyph.SetRadius(glyph_radius)
            elif mode == "oct":
                glyph = vtkPlatonicSolidSource()
                glyph.SetSolidTypeToOctahedron()
            else:
                assert mode == "sphere", mode  # guaranteed above
                glyph = vtkSphereSource()
            if mode == "cylinder":
                if glyph_height is not None:
                    glyph.SetHeight(glyph_height)
                if glyph_center is not None:
                    glyph.SetCenter(glyph_center)
                if glyph_resolution is not None:
                    glyph.SetResolution(glyph_resolution)
                tr = vtkTransform()
                tr.RotateWXYZ(90, 0, 0, 1)
            elif mode == "oct":
                if solid_transform is not None:
                    assert solid_transform.shape == (4, 4)
                    tr = vtkTransform()
                    tr.SetMatrix(solid_transform.astype(np.float64).ravel())
            if tr is not None:
                # fix orientation
                glyph.Update()
                trp = vtkTransformPolyDataFilter()
                trp.SetInputData(glyph.GetOutput())
                trp.SetTransform(tr)
                glyph = trp
            glyph.Update()
            geom = glyph.GetOutput()
            mesh = grid.glyph(
                orient="vec",
                scale=scale_map[scale_mode],
                factor=factor,
                geom=geom,
            )
        actor = _add_mesh(
            self.plotter,
            mesh=mesh,
            color=color,
            opacity=opacity,
            scalars=mesh_scalars if colormap is not None else None,
            colormap=colormap,
            show_scalar_bar=False,
            backface_culling=backface_culling,
            clim=clim,
        )
        return actor, mesh

    def text2d(
        self, x_window, y_window, text, size=14, color="white", justification=None
    ):
        size = 14 if size is None else size
        position = (x_window, y_window)
        actor = self.plotter.add_text(
            text, position=position, font_size=size, color=color, viewport=True
        )
        if isinstance(justification, str):
            if justification == "left":
                actor.GetTextProperty().SetJustificationToLeft()
            elif justification == "center":
                actor.GetTextProperty().SetJustificationToCentered()
            elif justification == "right":
                actor.GetTextProperty().SetJustificationToRight()
            else:
                raise ValueError(
                    "Expected values for `justification` are `left`, `center` or "
                    f"`right` but got {justification} instead."
                )
        _hide_testing_actor(actor)
        return actor

    def text3d(self, x, y, z, text, scale, color="white"):
        kwargs = dict(
            points=np.array([x, y, z]).astype(float),
            labels=[text],
            point_size=scale,
            text_color=color,
            font_family=self.font_family,
            name=text,
            shape_opacity=0,
        )
        if "always_visible" in signature(self.plotter.add_point_labels).parameters:
            kwargs["always_visible"] = True
        actor = self.plotter.add_point_labels(**kwargs)
        _hide_testing_actor(actor)
        return actor

    def scalarbar(
        self,
        source,
        color="white",
        title=None,
        n_labels=4,
        bgcolor=None,
        **extra_kwargs,
    ):
        if isinstance(source, vtkMapper):
            mapper = source
        elif isinstance(source, vtkActor):
            mapper = source.GetMapper()
        else:
            mapper = None
        kwargs = dict(
            color=color,
            title=title,
            n_labels=n_labels,
            use_opacity=False,
            n_colors=256,
            position_x=0.15,
            position_y=0.05,
            width=0.7,
            shadow=False,
            bold=True,
            label_font_size=22,
            font_family=self.font_family,
            background_color=bgcolor,
            mapper=mapper,
        )
        kwargs.update(extra_kwargs)
        actor = self.plotter.add_scalar_bar(**kwargs)
        _hide_testing_actor(actor)
        return actor

    def show(self):
        self.plotter.show()

    def close(self):
        _close_3d_figure(figure=self.figure)

    def get_camera(self, *, rigid=None):
        return _get_3d_view(self.figure, rigid=rigid)

    def set_camera(
        self,
        azimuth=None,
        elevation=None,
        distance=None,
        focalpoint=None,
        roll=None,
        *,
        rigid=None,
        update=True,
    ):
        _set_3d_view(
            self.figure,
            azimuth=azimuth,
            elevation=elevation,
            distance=distance,
            focalpoint=focalpoint,
            roll=roll,
            rigid=rigid,
            update=update,
        )

    def screenshot(self, mode="rgb", filename=None):
        return _take_3d_screenshot(figure=self.figure, mode=mode, filename=filename)

    def project(self, xyz, ch_names):
        xy = _3d_to_2d(self.plotter, xyz)
        xy = dict(zip(ch_names, xy))
        # pts = self.fig.children[-1]
        pts = self.plotter.renderer.GetActors().GetLastItem()

        return _Projection(xy=xy, pts=pts, plotter=self.plotter)

    def _enable_depth_peeling(self):
        for plotter in self._all_plotters:
            if self.depth_peeling:
                plotter.enable_depth_peeling()
            else:
                plotter.disable_depth_peeling()

    def _toggle_antialias(self):
        """Enable it everywhere except on systems with problematic OpenGL."""
        # MESA can't seem to handle MSAA and depth peeling simultaneously, see
        # https://github.com/pyvista/pyvista/issues/4867
        bad_system = _is_osmesa(self.plotter)
        for plotter in self._all_plotters:
            if bad_system or not self.antialias:
                plotter.disable_anti_aliasing()
            else:
                if not bad_system:
                    plotter.enable_anti_aliasing(
                        aa_type="msaa",
                        multi_samples=self.multi_samples,
                    )

    def remove_mesh(self, mesh_data):
        actor, _ = mesh_data
        self.plotter.remove_actor(actor)

    @contextmanager
    def _disabled_interaction(self):
        if not self.plotter.renderer.GetInteractive():
            yield
        else:
            self.plotter.disable()
            try:
                yield
            finally:
                self.plotter.enable()

    def _actor(self, mapper=None):
        actor = vtkActor()
        if mapper is not None:
            actor.SetMapper(mapper)
        _hide_testing_actor(actor)
        return actor

    def _process_events(self):
        for plotter in self._all_plotters:
            _process_events(plotter)

    def _update_picking_callback(
        self, on_mouse_move, on_button_press, on_button_release, on_pick
    ):
        add_obs = self.plotter.iren.add_observer
        add_obs(vtkCommand.RenderEvent, on_mouse_move)
        add_obs(vtkCommand.LeftButtonPressEvent, on_button_press)
        add_obs(vtkCommand.EndInteractionEvent, on_button_release)
        self.plotter.picker = vtkCellPicker()
        self.plotter.picker.AddObserver(vtkCommand.EndPickEvent, on_pick)
        self.plotter.picker.SetVolumeOpacityIsovalue(0.0)

    def _set_colormap_range(
        self, actor, ctable, scalar_bar, rng=None, background_color=None
    ):
        if rng is not None:
            mapper = actor.GetMapper()
            mapper.SetScalarRange(*rng)
            lut = mapper.GetLookupTable()
            lut.SetTable(numpy_to_vtk(ctable))
        if scalar_bar is not None:
            lut = scalar_bar.GetLookupTable()
            if background_color is not None:
                background_color = np.array(background_color) * 255
                ctable = _alpha_blend_background(ctable, background_color)
            lut.SetTable(numpy_to_vtk(ctable, array_type=VTK_UNSIGNED_CHAR))
            lut.SetRange(*rng)

    def _set_volume_range(self, volume, ctable, alpha, scalar_bar, rng):
        color_tf = vtkColorTransferFunction()
        opacity_tf = vtkPiecewiseFunction()
        for loc, color in zip(np.linspace(*rng, num=len(ctable)), ctable):
            color_tf.AddRGBPoint(loc, *(color[:-1] / 255.0))
            opacity_tf.AddPoint(loc, color[-1] * alpha / 255.0)
        color_tf.ClampingOn()
        opacity_tf.ClampingOn()
        prop = volume.GetProperty()
        prop.SetColor(color_tf)
        prop.SetScalarOpacity(opacity_tf)
        prop.ShadeOn()
        prop.SetInterpolationTypeToLinear()
        if scalar_bar is not None:
            lut = vtkLookupTable()
            lut.SetRange(*rng)
            lut.SetTable(numpy_to_vtk(ctable))
            scalar_bar.SetLookupTable(lut)

    def _sphere(self, center, color, radius):
        from vtkmodules.vtkFiltersSources import vtkSphereSource

        sphere = vtkSphereSource()
        sphere.SetThetaResolution(8)
        sphere.SetPhiResolution(8)
        sphere.SetRadius(radius)
        sphere.SetCenter(center)
        sphere.Update()
        mesh = pyvista.wrap(sphere.GetOutput())
        actor = _add_mesh(self.plotter, mesh=mesh, color=color)
        return actor, mesh

    def _volume(
        self,
        dimensions,
        origin,
        spacing,
        scalars,
        surface_alpha,
        resolution,
        blending,
        center,
    ):
        # Now we can actually construct the visualization
        try:
            grid = pyvista.ImageData()
        except AttributeError:  # PV < 0.40
            grid = pyvista.UniformGrid()
        grid.dimensions = dimensions + 1  # inject data on the cells
        grid.origin = origin
        grid.spacing = spacing
        grid.cell_data["values"] = scalars

        # Add contour of enclosed volume (use GetOutput instead of
        # GetOutputPort below to avoid updating)
        if surface_alpha > 0 or resolution is not None:
            grid_alg = vtkCellDataToPointData()
            grid_alg.SetInputDataObject(grid)
            grid_alg.SetPassCellData(False)
            grid_alg.Update()
        else:
            grid_alg = None

        if surface_alpha > 0:
            grid_surface = vtkMarchingContourFilter()
            grid_surface.ComputeNormalsOn()
            grid_surface.ComputeScalarsOff()
            grid_surface.SetInputData(grid_alg.GetOutput())
            grid_surface.SetValue(0, 0.1)
            grid_surface.Update()
            grid_mesh = vtkPolyDataMapper()
            grid_mesh.SetInputData(grid_surface.GetOutput())
        else:
            grid_mesh = None

        mapper = vtkSmartVolumeMapper()
        if resolution is None:  # native
            mapper.SetScalarModeToUseCellData()
            mapper.SetInputDataObject(grid)
        else:
            upsampler = vtkImageReslice()
            upsampler.SetInterpolationModeToLinear()  # default anyway
            upsampler.SetOutputSpacing(*([resolution] * 3))
            upsampler.SetInputConnection(grid_alg.GetOutputPort())
            mapper.SetInputConnection(upsampler.GetOutputPort())
        # Additive, AverageIntensity, and Composite might also be reasonable
        remap = dict(composite="Composite", mip="MaximumIntensity")
        getattr(mapper, f"SetBlendModeTo{remap[blending]}")()
        volume_pos = vtkVolume()
        volume_pos.SetMapper(mapper)
        dist = grid.length / (np.mean(grid.dimensions) - 1)
        volume_pos.GetProperty().SetScalarOpacityUnitDistance(dist)
        if center is not None and blending == "mip":
            # We need to create a minimum intensity projection for the neg half
            mapper_neg = vtkSmartVolumeMapper()
            if resolution is None:  # native
                mapper_neg.SetScalarModeToUseCellData()
                mapper_neg.SetInputDataObject(grid)
            else:
                mapper_neg.SetInputConnection(upsampler.GetOutputPort())
            mapper_neg.SetBlendModeToMinimumIntensity()
            volume_neg = vtkVolume()
            volume_neg.SetMapper(mapper_neg)
            volume_neg.GetProperty().SetScalarOpacityUnitDistance(dist)
        else:
            volume_neg = None
        return grid, grid_mesh, volume_pos, volume_neg

    def _silhouette(self, mesh, color=None, line_width=None, alpha=None, decimate=None):
        mesh = mesh.decimate(decimate) if decimate is not None else mesh
        silhouette_filter = vtkPolyDataSilhouette()
        silhouette_filter.SetInputData(mesh)
        silhouette_filter.SetCamera(self.plotter.renderer.GetActiveCamera())
        silhouette_filter.SetEnableFeatureAngle(0)
        silhouette_mapper = vtkPolyDataMapper()
        silhouette_mapper.SetInputConnection(silhouette_filter.GetOutputPort())
        actor, prop = self.plotter.add_actor(
            silhouette_mapper,
            name=None,
            culling=False,
            pickable=False,
            reset_camera=False,
            render=False,
        )
        if color is not None:
            prop.SetColor(*color)
        if alpha is not None:
            prop.SetOpacity(alpha)
        if line_width is not None:
            prop.SetLineWidth(line_width)
        _hide_testing_actor(actor)
        return actor


def _compute_normals(mesh):
    """Patch PyVista compute_normals."""
    if "Normals" not in mesh.point_data:
        mesh.compute_normals(
            cell_normals=False,
            consistent_normals=False,
            non_manifold_traversal=False,
            inplace=True,
        )


def _add_mesh(plotter, *args, **kwargs):
    """Patch PyVista add_mesh."""
    mesh = kwargs.get("mesh")
    if "smooth_shading" in kwargs:
        smooth_shading = kwargs.pop("smooth_shading")
    else:
        smooth_shading = True
    # disable rendering pass for add_mesh, render()
    # is called in show()
    if "render" not in kwargs:
        kwargs["render"] = False
    if "reset_camera" not in kwargs:
        kwargs["reset_camera"] = False
    actor = plotter.add_mesh(*args, **kwargs)
    if smooth_shading and "Normals" in mesh.point_data:
        prop = actor.GetProperty()
        prop.SetInterpolationToPhong()
    _hide_testing_actor(actor)
    return actor


def _hide_testing_actor(actor):
    from . import renderer

    if renderer.MNE_3D_BACKEND_TESTING:
        actor.SetVisibility(False)


def _to_pos(azimuth, elevation):
    theta = azimuth * np.pi / 180.0
    phi = (90.0 - elevation) * np.pi / 180.0
    x = np.sin(theta) * np.sin(phi)
    y = np.cos(phi)
    z = np.cos(theta) * np.sin(phi)
    return x, y, z


def _3d_to_2d(plotter, xyz):
    # https://vtk.org/Wiki/VTK/Examples/Cxx/Utilities/Coordinate
    coordinate = vtkCoordinate()
    coordinate.SetCoordinateSystemToWorld()
    xy = list()
    for coord in xyz:
        coordinate.SetValue(*coord)
        xy.append(coordinate.GetComputedLocalDisplayValue(plotter.renderer))
    xy = np.array(xy, float).reshape(-1, 2)  # in case it's empty
    return xy


def _close_all():
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=DeprecationWarning)
        close_all()
    _FIGURES.clear()


def _get_user_camera_direction(plotter, rigid):
    position, focalpoint = np.array(plotter.camera_position[:2], float)
    if rigid is not None:
        position = apply_trans(rigid, position, move=False)
        focalpoint = apply_trans(rigid, focalpoint, move=False)
    return tuple(_cart_to_sph(position - focalpoint)[0])


def _get_3d_view(figure, *, rigid=None):
    focalpoint = np.array(figure.plotter.camera_position[1], float)
    _, phi, theta = _get_user_camera_direction(figure.plotter, rigid)
    azimuth, elevation = np.rad2deg(phi) % 360, np.rad2deg(theta) % 180
    return (
        figure.plotter.camera.roll,
        figure.plotter.camera.distance,
        azimuth,
        elevation,
        focalpoint,
    )


def _set_3d_view(
    figure,
    azimuth=None,
    elevation=None,
    focalpoint=None,
    distance=None,
    roll=None,
    rigid=None,
    update=True,
):
    # Only compute bounds if we need to
    bounds = None
    if isinstance(focalpoint, str) or isinstance(distance, str):
        bounds = np.array(figure.plotter.renderer.ComputeVisiblePropBounds(), float)

    # camera slides along the vector defined from camera position to focal point until
    # all of the actors can be seen (quoting PyVista's docs)
    # Figure out our current parameters in the transformed space
    _, phi, theta = _get_user_camera_direction(figure.plotter, rigid)

    # focalpoint: if 'auto', we use the center of mass of the visible
    # bounds, if None, we use the existing camera focal point otherwise
    # we use the values given by the user
    if isinstance(focalpoint, str):
        _check_option("focalpoint", focalpoint, ("auto",), extra="when a string")
        focalpoint = (bounds[1::2] + bounds[::2]) * 0.5
    elif focalpoint is None:
        focalpoint = figure.plotter.camera_position[1]
    focalpoint = np.array(focalpoint, float)  # in real-world coords
    if distance is None:
        distance = figure.plotter.camera.distance
    elif isinstance(distance, str):
        _check_option("distance", distance, ("auto",), extra="when a string")
        distance = max(bounds[1::2] - bounds[::2]) * 2.0
    distance = float(distance)

    if azimuth is not None:
        phi = np.deg2rad(azimuth)
    if elevation is not None:
        theta = np.deg2rad(elevation)

    # Now calculate the view_up vector of the camera.  If the view up is
    # close to the 'z' axis, the view plane normal is parallel to the
    # camera which is unacceptable, so we use a different view up.
    if elevation is None or 5.0 <= abs(elevation) <= 175.0:
        view_up = [0, 0, 1]
    else:
        view_up = [0, 1, 0]

    position = _sph_to_cart([distance, phi, theta])[0]

    # restore to the original frame
    if rigid is not None:
        rigid_inv = np.linalg.inv(rigid)
        position = apply_trans(rigid_inv, position, move=False)
        view_up = apply_trans(rigid_inv, view_up, move=False)
    figure.plotter.camera_position = [position, focalpoint, view_up]
    if roll is not None:
        figure.plotter.camera.roll = roll

    if update:
        figure.plotter.update()
        _process_events(figure.plotter)


def _set_3d_title(figure, title, size=16, *, color="white", position="upper_left"):
    handle = figure.plotter.add_text(
        title,
        font_size=size,
        color=color,
        position=position,
        name="title",
    )
    figure.plotter.update()
    _process_events(figure.plotter)
    return handle


def _check_3d_figure(figure):
    _validate_type(figure, PyVistaFigure, "figure")


def _close_3d_figure(figure):
    # copy the plotter locally because figure.plotter is modified
    plotter = figure.plotter
    # close the window
    plotter.close()  # additional cleaning following signal_close
    _process_events(plotter)
    # free memory and deregister from the scraper
    plotter.deep_clean()  # remove internal references
    _ALL_PLOTTERS.pop(plotter._id_name, None)
    _process_events(plotter)


def _take_3d_screenshot(figure, mode="rgb", filename=None):
    _process_events(figure.plotter)
    return figure.plotter.screenshot(
        transparent_background=(mode == "rgba"), filename=filename
    )


def _process_events(plotter):
    if hasattr(plotter, "app"):
        with warnings.catch_warnings(record=True):
            warnings.filterwarnings("ignore", "constrained_layout")
            plotter.app.processEvents()


def _add_camera_callback(camera, callback):
    camera.AddObserver(vtkCommand.ModifiedEvent, callback)


def _arrow_glyph(grid, factor):
    glyph = vtkGlyphSource2D()
    glyph.SetGlyphTypeToArrow()
    glyph.FilledOff()
    glyph.Update()

    # fix position
    tr = vtkTransform()
    tr.Translate(0.5, 0.0, 0.0)
    trp = vtkTransformPolyDataFilter()
    trp.SetInputConnection(glyph.GetOutputPort())
    trp.SetTransform(tr)
    trp.Update()

    alg = _glyph(
        grid,
        scale_mode="vector",
        scalars=False,
        orient="vec",
        factor=factor,
        geom=trp.GetOutputPort(),
    )
    mapper = vtkDataSetMapper()
    mapper.SetInputConnection(alg.GetOutputPort())
    return mapper


def _glyph(
    dataset,
    *,
    scale_mode="scalar",
    orient=True,
    scalars=True,
    factor=1.0,
    geom=None,
    absolute=False,
    clamping=False,
    rng=None,
):
    if geom is None:
        arrow = vtkArrowSource()
        arrow.Update()
        geom = arrow.GetOutputPort()
    alg = vtkGlyph3D()
    alg.SetSourceConnection(geom)
    if isinstance(scalars, str):
        dataset.active_scalars_name = scalars
    if isinstance(orient, str):
        dataset.active_vectors_name = orient
        orient = True
    if scale_mode == "scalar":
        alg.SetScaleModeToScaleByScalar()
    elif scale_mode == "vector":
        alg.SetScaleModeToScaleByVector()
    else:
        alg.SetScaleModeToDataScalingOff()
    if rng is not None:
        alg.SetRange(rng)
    alg.SetOrient(orient)
    alg.SetInputData(dataset)
    alg.SetScaleFactor(factor)
    alg.SetClamping(clamping)
    alg.Update()
    return alg


@contextmanager
def _disabled_depth_peeling():
    try:
        from pyvista import global_theme
    except Exception:  # workaround for older PyVista
        from pyvista import rcParams

        depth_peeling = rcParams["depth_peeling"]
    else:
        depth_peeling = global_theme.depth_peeling
    depth_peeling_enabled = depth_peeling["enabled"]
    depth_peeling["enabled"] = False
    try:
        yield
    finally:
        depth_peeling["enabled"] = depth_peeling_enabled


def _is_osmesa(plotter):
    # MESA (could use GPUInfo / _get_gpu_info here, but it takes
    # > 700 ms to make a new window + report capabilities!)
    # CircleCI's is: "Mesa 20.0.8 via llvmpipe (LLVM 10.0.0, 256 bits)"
    # and a working Nouveau is: "Mesa 24.2.3-1ubuntu1 via NVE6"
    if platform.system() == "Darwin":  # segfaults on macOS sometimes
        return False
    gpu_info_full = plotter.ren_win.ReportCapabilities()
    gpu_info = re.findall(
        "OpenGL (?:version|renderer) string:(.+)\n",
        gpu_info_full,
    )
    gpu_info = " ".join(gpu_info).lower()
    is_osmesa = "mesa" in gpu_info.split()
    print(is_osmesa)
    if is_osmesa:
        # Try to warn if it's ancient
        version = re.findall("mesa ([0-9.]+)[ -].*", gpu_info) or re.findall(
            "OpenGL version string: .* Mesa ([0-9.]+)\n", gpu_info_full
        )
        if version:
            version = version[0]
            if _compare_version(version, "<", "18.3.6"):
                warn(
                    f"Mesa version {version} is too old for translucent 3D "
                    "surface rendering, consider upgrading to 18.3.6 or "
                    "later."
                )
        is_osmesa = "via llvmpipe" in gpu_info
    return is_osmesa


class _SafeBackgroundPlotter(BackgroundPlotter):
    # https://github.com/pyvista/pyvistaqt/pull/258
    def __del__(self) -> None:  # pragma: no cover
        """Delete the qt plotter."""
        self.close()