1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
|
"""Functions to plot ICA specific data (besides topographies)."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import warnings
from functools import partial
import numpy as np
from scipy.stats import gaussian_kde
from .._fiff.meas_info import create_info
from .._fiff.pick import _picks_to_idx, pick_types
from .._fiff.proj import _has_eeg_average_ref_proj
from ..defaults import DEFAULTS, _handle_default
from ..utils import (
_reject_data_segments,
_validate_type,
fill_doc,
verbose,
)
from .epochs import plot_epochs_image
from .evoked import _butterfly_on_button_press, _butterfly_onpick
from .topomap import _plot_ica_topomap
from .utils import (
_compute_scalings,
_convert_psds,
_get_cmap,
_get_plot_ch_type,
_handle_precompute,
_make_event_color_dict,
plt_show,
)
@fill_doc
def plot_ica_sources(
ica,
inst,
picks=None,
start=None,
stop=None,
title=None,
show=True,
block=False,
show_first_samp=False,
show_scrollbars=True,
time_format="float",
precompute=None,
use_opengl=None,
*,
psd_args=None,
theme=None,
overview_mode=None,
splash=True,
):
"""Plot estimated latent sources given the unmixing matrix.
Typical usecases:
1. plot evolution of latent sources over time based on (Raw input)
2. plot latent source around event related time windows (Epochs input)
3. plot time-locking in ICA space (Evoked input)
Parameters
----------
ica : instance of mne.preprocessing.ICA
The ICA solution.
inst : instance of Raw, Epochs or Evoked
The object to plot the sources from.
%(picks_ica)s
start, stop : float | int | None
If ``inst`` is a `~mne.io.Raw` or an `~mne.Evoked` object, the first and
last time point (in seconds) of the data to plot. If ``inst`` is a
`~mne.io.Raw` object, ``start=None`` and ``stop=None`` will be
translated into ``start=0.`` and ``stop=3.``, respectively. For
`~mne.Evoked`, ``None`` refers to the beginning and end of the evoked
signal. If ``inst`` is an `~mne.Epochs` object, specifies the index of
the first and last epoch to show.
title : str | None
The window title. If None a default is provided.
show : bool
Show figure if True.
block : bool
Whether to halt program execution until the figure is closed.
Useful for interactive selection of components in raw and epoch
plotter. For evoked, this parameter has no effect. Defaults to False.
show_first_samp : bool
If True, show time axis relative to the ``raw.first_samp``.
%(show_scrollbars)s
%(time_format)s
%(precompute)s
%(use_opengl)s
psd_args : dict | None
Dictionary of arguments to pass to :meth:`~mne.Epochs.compute_psd` in
interactive mode. Ignored if ``inst`` is not supplied. If ``None``,
nothing is passed. Defaults to ``None``.
.. versionadded:: 1.9
%(theme_pg)s
.. versionadded:: 1.0
%(overview_mode)s
.. versionadded:: 1.1
%(splash)s
.. versionadded:: 1.6
Returns
-------
%(browser)s
Notes
-----
For raw and epoch instances, it is possible to select components for
exclusion by clicking on the line. The selected components are added to
``ica.exclude`` on close.
%(notes_2d_backend)s
.. versionadded:: 0.10.0
"""
from ..epochs import BaseEpochs
from ..evoked import Evoked
from ..io import BaseRaw
exclude = ica.exclude
picks = _picks_to_idx(ica.n_components_, picks, picks_on="components")
if isinstance(inst, BaseRaw | BaseEpochs):
fig = _plot_sources(
ica,
inst,
picks,
exclude,
start=start,
stop=stop,
show=show,
title=title,
block=block,
psd_args=psd_args,
show_first_samp=show_first_samp,
show_scrollbars=show_scrollbars,
time_format=time_format,
precompute=precompute,
use_opengl=use_opengl,
theme=theme,
overview_mode=overview_mode,
splash=splash,
)
elif isinstance(inst, Evoked):
if start is not None or stop is not None:
inst = inst.copy().crop(start, stop)
sources = ica.get_sources(inst)
fig = _plot_ica_sources_evoked(
evoked=sources,
picks=picks,
exclude=exclude,
title=title,
labels=getattr(ica, "labels_", None),
show=show,
ica=ica,
)
else:
raise ValueError("Data input must be of Raw or Epochs type")
return fig
def _create_properties_layout(figsize=None, fig=None):
"""Create main figure and axes layout used by plot_ica_properties."""
import matplotlib.pyplot as plt
if fig is not None and figsize is not None:
raise ValueError("Cannot specify both fig and figsize.")
if figsize is None:
figsize = [7.0, 6.0]
if fig is None:
fig = plt.figure(figsize=figsize, facecolor=[0.95] * 3)
axes_params = (
("topomap", [0.08, 0.5, 0.3, 0.45]),
("image", [0.5, 0.6, 0.45, 0.35]),
("erp", [0.5, 0.5, 0.45, 0.1]),
("spectrum", [0.08, 0.1, 0.32, 0.3]),
("variance", [0.5, 0.1, 0.45, 0.25]),
)
axes = [fig.add_axes(loc, label=name) for name, loc in axes_params]
return fig, axes
def _plot_ica_properties(
pick,
ica,
inst,
psds_mean,
freqs,
n_trials,
epoch_var,
plot_lowpass_edge,
epochs_src,
set_title_and_labels,
plot_std,
psd_ylabel,
spectrum_std,
log_scale,
topomap_args,
image_args,
fig,
axes,
kind,
dropped_indices,
):
"""Plot ICA properties (helper)."""
from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable
topo_ax, image_ax, erp_ax, spec_ax, var_ax = axes
# plotting
# --------
# component topomap
_plot_ica_topomap(ica, pick, show=False, axes=topo_ax, **topomap_args)
topo_ax._ch_type = _get_plot_ch_type(
ica,
ch_type=None,
allow_ref_meg=ica.allow_ref_meg,
)
# image and erp
# we create a new epoch with dropped rows
epoch_data = epochs_src.get_data(copy=False)
epoch_data = np.insert(
arr=epoch_data,
obj=(dropped_indices - np.arange(len(dropped_indices))).astype(int),
values=0.0,
axis=0,
)
from ..epochs import EpochsArray
epochs_src = EpochsArray(
epoch_data, epochs_src.info, tmin=epochs_src.tmin, verbose=0
)
plot_epochs_image(
epochs_src,
picks=pick,
axes=[image_ax, erp_ax],
combine=None,
colorbar=False,
show=False,
**image_args,
)
# spectrum
spec_ax.plot(freqs, psds_mean, color="k")
if plot_std:
spec_ax.fill_between(
freqs,
psds_mean - spectrum_std[0],
psds_mean + spectrum_std[1],
color="k",
alpha=0.2,
)
if plot_lowpass_edge:
spec_ax.axvline(
inst.info["lowpass"], lw=2, linestyle="--", color="k", alpha=0.2
)
# epoch variance
var_ax_divider = make_axes_locatable(var_ax)
hist_ax = var_ax_divider.append_axes("right", size="33%", pad="2.5%")
var_ax.scatter(
range(len(epoch_var)), epoch_var, alpha=0.5, facecolor=[0, 0, 0], lw=0
)
# rejected epochs in red
var_ax.scatter(
dropped_indices,
epoch_var[dropped_indices],
alpha=1.0,
facecolor=[1, 0, 0],
lw=0,
)
# compute percentage of dropped epochs
var_percent = float(len(dropped_indices)) / float(len(epoch_var)) * 100.0
# histogram & histogram
_, counts, _ = hist_ax.hist(
epoch_var, orientation="horizontal", color="k", alpha=0.5
)
# kde
ymin, ymax = hist_ax.get_ylim()
try:
kde = gaussian_kde(epoch_var)
except np.linalg.LinAlgError:
pass # singular: happens when there is nothing plotted
else:
x = np.linspace(ymin, ymax, 50)
kde_ = kde(x)
kde_ /= kde_.max() or 1.0
kde_ *= hist_ax.get_xlim()[-1] * 0.9
hist_ax.plot(kde_, x, color="k")
hist_ax.set_ylim(ymin, ymax)
# aesthetics
# ----------
set_title_and_labels(image_ax, kind + " image and ERP/ERF", [], kind)
# erp
set_title_and_labels(erp_ax, [], "Time (s)", "AU")
erp_ax.spines["right"].set_color("k")
erp_ax.set_xlim(epochs_src.times[[0, -1]])
# remove half of yticks if more than 5
yt = erp_ax.get_yticks()
if len(yt) > 5:
erp_ax.yaxis.set_ticks(yt[::2])
# remove xticks - erp plot shows xticks for both image and erp plot
image_ax.xaxis.set_ticks([])
yt = image_ax.get_yticks()
image_ax.yaxis.set_ticks(yt[1:])
image_ax.set_ylim([-0.5, n_trials + 0.5])
def _set_scale(ax, scale):
"""Set the scale of a matplotlib axis."""
ax.set_xscale(scale)
ax.set_yscale(scale)
ax.relim()
ax.autoscale()
# spectrum
set_title_and_labels(spec_ax, "Spectrum", "Frequency (Hz)", psd_ylabel)
spec_ax.yaxis.labelpad = 0
spec_ax.set_xlim(freqs[[0, -1]])
ylim = spec_ax.get_ylim()
air = np.diff(ylim)[0] * 0.1
spec_ax.set_ylim(ylim[0] - air, ylim[1] + air)
image_ax.axhline(0, color="k", linewidth=0.5)
if log_scale:
_set_scale(spec_ax, "log")
# epoch variance
var_ax_title = f"Dropped segments: {var_percent:.2f} %"
set_title_and_labels(var_ax, var_ax_title, kind, "Variance (AU)")
hist_ax.set_ylabel("")
hist_ax.set_yticks([])
set_title_and_labels(hist_ax, None, None, None)
def _plot_ica_properties_on_press(event, ica, pick, topomap_args):
"""Handle keypress events for ica properties plot."""
import matplotlib.pyplot as plt
fig = event.canvas.figure
if event.key == "escape":
plt.close(fig)
if event.key in ("t", "l"):
ax_labels = [ax.get_label() for ax in fig.axes]
if event.key == "t":
ax = fig.axes[ax_labels.index("topomap")]
ax.clear()
ch_types = list(set(ica.get_channel_types()))
ch_type = ch_types[(ch_types.index(ax._ch_type) + 1) % len(ch_types)]
_plot_ica_topomap(
ica, pick, ch_type=ch_type, show=False, axes=ax, **topomap_args
)
ax._ch_type = ch_type
elif event.key == "l":
ax = fig.axes[ax_labels.index("spectrum")]
_set_scale(ax, "linear" if ax.get_xscale() == "log" else "log")
del ax
fig.canvas.draw()
# add keypress event handler
fig.canvas.mpl_connect(
"key_press_event",
lambda event: _plot_ica_properties_on_press(event, ica, pick, topomap_args),
)
return fig
def _get_psd_label_and_std(this_psd, dB, ica, num_std, *, estimate):
"""Handle setting up PSD for one component, for plot_ica_properties."""
psd_ylabel = _convert_psds(
this_psd, dB, estimate=estimate, scaling=1.0, unit="AU", first_dim="epoch"
)
psds_mean = this_psd.mean(axis=0)
diffs = this_psd - psds_mean
# the distribution of power for each frequency bin is highly
# skewed so we calculate std for values below and above average
# separately - this is used for fill_between shade
with warnings.catch_warnings(): # mean of empty slice
warnings.simplefilter("ignore")
spectrum_std = [
[np.sqrt((d[d < 0] ** 2).mean(axis=0)) for d in diffs.T],
[np.sqrt((d[d > 0] ** 2).mean(axis=0)) for d in diffs.T],
]
spectrum_std = np.array(spectrum_std) * num_std
return psd_ylabel, psds_mean, spectrum_std
@verbose
def plot_ica_properties(
ica,
inst,
picks=None,
axes=None,
dB=True,
plot_std=True,
log_scale=False,
topomap_args=None,
image_args=None,
psd_args=None,
figsize=None,
show=True,
reject="auto",
reject_by_annotation=True,
*,
estimate="power",
verbose=None,
):
"""Display component properties.
Properties include the topography, epochs image, ERP/ERF, power
spectrum, and epoch variance.
Parameters
----------
ica : instance of mne.preprocessing.ICA
The ICA solution.
inst : instance of Epochs or Raw
The data to use in plotting properties.
.. note::
You can interactively cycle through topographic maps for different
channel types by pressing :kbd:`T`.
picks : int | list of int | slice | None
Indices of the independent components (ICs) to visualize.
If an integer, represents the index of the IC to pick.
Multiple ICs can be selected using a list of int or a slice.
The indices are 0-indexed, so ``picks=1`` will pick the second
IC: ``ICA001``. ``None`` will pick the first 5 components.
axes : list of Axes | None
List of five matplotlib axes to use in plotting: [topomap_axis,
image_axis, erp_axis, spectrum_axis, variance_axis]. If None a new
figure with relevant axes is created. Defaults to None.
dB : bool
Whether to plot spectrum in dB. Defaults to True.
plot_std : bool | float
Whether to plot standard deviation/confidence intervals in ERP/ERF and
spectrum plots.
Defaults to True, which plots one standard deviation above/below for
the spectrum. If set to float allows to control how many standard
deviations are plotted for the spectrum. For example 2.5 will plot 2.5
standard deviation above/below.
For the ERP/ERF, by default, plot the 95 percent parametric confidence
interval is calculated. To change this, use ``ci`` in ``ts_args`` in
``image_args`` (see below).
log_scale : bool
Whether to use a logarithmic frequency axis to plot the spectrum.
Defaults to ``False``.
.. note::
You can interactively toggle this setting by pressing :kbd:`L`.
.. versionadded:: 1.1
topomap_args : dict | None
Dictionary of arguments to ``plot_topomap``. If None, doesn't pass any
additional arguments. Defaults to None.
image_args : dict | None
Dictionary of arguments to ``plot_epochs_image``. If None, doesn't pass
any additional arguments. Defaults to None.
psd_args : dict | None
Dictionary of arguments to :meth:`~mne.Epochs.compute_psd`. If
``None``, doesn't pass any additional arguments. Defaults to ``None``.
figsize : array-like, shape (2,) | None
Allows to control size of the figure. If None, the figure size
defaults to [7., 6.].
show : bool
Show figure if True.
reject : 'auto' | dict | None
Allows to specify rejection parameters used to drop epochs
(or segments if continuous signal is passed as inst).
If None, no rejection is applied. The default is 'auto',
which applies the rejection parameters used when fitting
the ICA object.
%(reject_by_annotation_raw)s
.. versionadded:: 0.21.0
%(estimate_plot_psd)s
.. versionadded:: 1.8.0
%(verbose)s
Returns
-------
fig : list
List of matplotlib figures.
Notes
-----
.. versionadded:: 0.13
"""
return _fast_plot_ica_properties(
ica,
inst,
picks=picks,
axes=axes,
dB=dB,
plot_std=plot_std,
log_scale=log_scale,
topomap_args=topomap_args,
image_args=image_args,
psd_args=psd_args,
figsize=figsize,
show=show,
reject=reject,
reject_by_annotation=reject_by_annotation,
verbose=verbose,
estimate=estimate,
precomputed_data=None,
)
def _fast_plot_ica_properties(
ica,
inst,
picks=None,
axes=None,
dB=True,
plot_std=True,
log_scale=False,
topomap_args=None,
image_args=None,
psd_args=None,
figsize=None,
show=True,
reject="auto",
precomputed_data=None,
reject_by_annotation=True,
*,
estimate="power",
verbose=None,
):
"""Display component properties."""
from ..preprocessing import ICA
# input checks and defaults
# -------------------------
_validate_type(ica, ICA, "ica", "ICA")
_validate_type(plot_std, (bool, "numeric"), "plot_std")
if isinstance(plot_std, bool):
num_std = 1.0 if plot_std else 0.0
else:
plot_std = True
num_std = float(plot_std)
limit = min(5, ica.n_components_) if picks is None else ica.n_components_
picks = _picks_to_idx(ica.n_components_, picks, picks_on="components")[:limit]
if axes is None:
fig, axes = _create_properties_layout(figsize=figsize)
else:
if len(picks) > 1:
raise ValueError("Only a single pick can be drawn to a set of axes.")
from .utils import _validate_if_list_of_axes
_validate_if_list_of_axes(axes, obligatory_len=5)
fig = axes[0].get_figure()
psd_args = dict() if psd_args is None else psd_args
topomap_args = dict() if topomap_args is None else topomap_args
image_args = dict() if image_args is None else image_args
image_args["ts_args"] = dict(truncate_xaxis=False, show_sensors=False)
if plot_std:
from ..stats.parametric import _parametric_ci
image_args["ts_args"]["ci"] = _parametric_ci
elif "ts_args" not in image_args or "ci" not in image_args["ts_args"]:
image_args["ts_args"]["ci"] = False
for item_name, item in (
("psd_args", psd_args),
("topomap_args", topomap_args),
("image_args", image_args),
):
_validate_type(item, dict, item_name, "dictionary")
_validate_type(dB, (bool, None), "dB")
_validate_type(log_scale, (bool, None), "log_scale")
# calculations
# ------------
if isinstance(precomputed_data, tuple):
kind, dropped_indices, epochs_src, data = precomputed_data
else:
kind, dropped_indices, epochs_src, data = _prepare_data_ica_properties(
inst, ica, reject_by_annotation, reject
)
del reject
ica_data = np.swapaxes(data[:, picks, :], 0, 1)
dropped_src = ica_data
# spectrum
Nyquist = inst.info["sfreq"] / 2.0
lp = inst.info["lowpass"]
if "fmax" not in psd_args:
psd_args["fmax"] = min(lp * 1.25, Nyquist)
plot_lowpass_edge = lp < Nyquist and (psd_args["fmax"] > lp)
spectrum = epochs_src.compute_psd(picks=picks, **psd_args)
# we've already restricted picks ↑↑↑↑↑↑↑↑↑↑↑
# in the spectrum object, so here we do picks=all ↓↓↓↓↓↓↓↓↓↓↓
psds, freqs = spectrum.get_data(return_freqs=True, picks="all", exclude=[])
# we also pass exclude=[] so that when this is called by right-clicking in
# a plot_sources() window on an ICA component name that has been marked as
# bad, we can still get a plot of it.
def set_title_and_labels(ax, title, xlab, ylab):
if title:
ax.set_title(title)
if xlab:
ax.set_xlabel(xlab)
if ylab:
ax.set_ylabel(ylab)
ax.axis("auto")
ax.tick_params("both", labelsize=8)
ax.axis("tight")
# plot
# ----
all_fig = list()
for idx, pick in enumerate(picks):
# calculate component-specific spectrum stuff
psd_ylabel, psds_mean, spectrum_std = _get_psd_label_and_std(
psds[:, idx, :].copy(),
dB,
ica,
num_std,
estimate=estimate,
)
# if more than one component, spawn additional figures and axes
if idx > 0:
fig, axes = _create_properties_layout(figsize=figsize)
# we reconstruct an epoch_variance with 0 where indexes where dropped
epoch_var = np.var(ica_data[idx], axis=1)
drop_var = np.var(dropped_src[idx], axis=1)
drop_indices_corrected = (
dropped_indices - np.arange(len(dropped_indices))
).astype(int)
epoch_var = np.insert(
arr=epoch_var,
obj=drop_indices_corrected,
values=drop_var[dropped_indices],
axis=0,
)
# the actual plot
fig = _plot_ica_properties(
pick,
ica,
inst,
psds_mean,
freqs,
ica_data.shape[1],
epoch_var,
plot_lowpass_edge,
epochs_src,
set_title_and_labels,
plot_std,
psd_ylabel,
spectrum_std,
log_scale,
topomap_args,
image_args,
fig,
axes,
kind,
dropped_indices,
)
all_fig.append(fig)
plt_show(show)
return all_fig
def _prepare_data_ica_properties(inst, ica, reject_by_annotation=True, reject="auto"):
"""Prepare Epochs sources to plot ICA properties.
Parameters
----------
ica : instance of mne.preprocessing.ICA
The ICA solution.
inst : instance of Epochs or Raw
The data to use in plotting properties.
reject_by_annotation : bool, optional
[description], by default True
reject : str, optional
[description], by default 'auto'
Returns
-------
kind : str
"Segment" for BaseRaw and "Epochs" for BaseEpochs
dropped_indices : list
Dropped epochs indexes.
epochs_src : instance of Epochs
Segmented data of ICA sources.
data : array of shape (n_epochs, n_ica_sources, n_times)
A view on epochs ICA sources data.
"""
from ..epochs import BaseEpochs
from ..io import BaseRaw, RawArray
_validate_type(inst, (BaseRaw, BaseEpochs), "inst", "Raw or Epochs")
if isinstance(inst, BaseRaw):
# when auto, delegate reject to the ica
from ..epochs import make_fixed_length_epochs
if reject == "auto":
reject = ica.reject_
if reject is None:
drop_inds = None
dropped_indices = []
# break up continuous signal into segments
epochs_src = make_fixed_length_epochs(
ica.get_sources(inst),
duration=2,
preload=True,
reject_by_annotation=reject_by_annotation,
proj=False,
verbose=False,
)
else:
data = inst.get_data()
data, drop_inds = _reject_data_segments(
data, reject, flat=None, decim=None, info=inst.info, tstep=2.0
)
inst_rejected = RawArray(data, inst.info)
# break up continuous signal into segments
epochs_src = make_fixed_length_epochs(
ica.get_sources(inst_rejected),
duration=2,
preload=True,
reject_by_annotation=reject_by_annotation,
proj=False,
verbose=False,
)
# getting dropped epochs indexes
dropped_indices = [(d[0] // len(epochs_src.times)) + 1 for d in drop_inds]
kind = "Segment"
else:
drop_inds = None
epochs_src = ica.get_sources(inst)
dropped_indices = []
kind = "Epochs"
return kind, dropped_indices, epochs_src, epochs_src.get_data(copy=False)
def _plot_ica_sources_evoked(evoked, picks, exclude, title, show, ica, labels=None):
"""Plot average over epochs in ICA space.
Parameters
----------
evoked : instance of mne.Evoked
The Evoked to be used.
%(picks_base)s all sources in the order as fitted.
exclude : array-like of int
The components marked for exclusion. If None (default), ICA.exclude
will be used.
title : str
The figure title.
show : bool
Show figure if True.
labels : None | dict
The ICA labels attribute.
"""
import matplotlib.pyplot as plt
from matplotlib import patheffects
if title is None:
title = "Reconstructed latent sources, time-locked"
fig, axes = plt.subplots(1, layout="constrained")
ax = axes
axes = [axes]
times = evoked.times * 1e3
# plot unclassified sources and label excluded ones
lines = list()
texts = list()
picks = np.sort(picks)
idxs = [picks]
if labels is not None:
labels_used = [k for k in labels if "/" not in k]
exclude_labels = list()
for ii in picks:
if ii in exclude:
line_label = ica._ica_names[ii]
if labels is not None:
annot = list()
for this_label in labels_used:
indices = labels[this_label]
if ii in indices:
annot.append(this_label)
if annot:
line_label += " – " + ", ".join(annot) # Unicode en-dash
exclude_labels.append(line_label)
else:
exclude_labels.append(None)
label_props = [("k", "-") if lb is None else ("r", "-") for lb in exclude_labels]
styles = ["-", "--", ":", "-."]
if labels is not None:
# differentiate categories by linestyle and components by color
col_lbs = [it for it in exclude_labels if it is not None]
cmap = _get_cmap("tab10", len(col_lbs))
unique_labels = set()
for label in exclude_labels:
if label is None:
continue
elif " – " in label:
unique_labels.add(label.split(" – ")[1])
else:
unique_labels.add("")
# Determine up to 4 different styles for n categories
cat_styles = dict(
zip(
unique_labels,
map(
lambda ux: styles[int(ux % len(styles))], range(len(unique_labels))
),
)
)
for label_idx, label in enumerate(exclude_labels):
if label is not None:
color = cmap(col_lbs.index(label))
if " – " in label:
label_name = label.split(" – ")[1]
else:
label_name = ""
style = cat_styles[label_name]
label_props[label_idx] = (color, style)
for pick_idx, (exc_label, pick) in enumerate(zip(exclude_labels, picks)):
color, style = label_props[pick_idx]
# ensure traces of excluded components are plotted on top
zorder = 2 if exc_label is None else 10
lines.extend(
ax.plot(
times,
evoked.data[pick].T,
picker=True,
zorder=zorder,
color=color,
linestyle=style,
label=exc_label,
)
)
lines[-1].set_pickradius(3.0)
ax.set(title=title, xlim=times[[0, -1]], xlabel="Time (ms)", ylabel="(NA)")
leg_lines_labels = list(
zip(
*[
(line, label)
for line, label in zip(lines, exclude_labels)
if label is not None
]
)
)
if len(leg_lines_labels):
leg_lines, leg_labels = leg_lines_labels
ax.legend(leg_lines, leg_labels, loc="best")
texts.append(
ax.text(
0,
0,
"",
zorder=3,
verticalalignment="baseline",
horizontalalignment="left",
fontweight="bold",
alpha=0,
)
)
# this is done to give the structure of a list of lists of a group of lines
# in each subplot
lines = [lines]
ch_names = evoked.ch_names
path_effects = [patheffects.withStroke(linewidth=2, foreground="w", alpha=0.75)]
params = dict(
axes=axes,
texts=texts,
lines=lines,
idxs=idxs,
ch_names=ch_names,
need_draw=False,
path_effects=path_effects,
)
fig.canvas.mpl_connect("pick_event", partial(_butterfly_onpick, params=params))
fig.canvas.mpl_connect(
"button_press_event", partial(_butterfly_on_button_press, params=params)
)
plt_show(show)
return fig
def plot_ica_scores(
ica,
scores,
exclude=None,
labels=None,
axhline=None,
title="ICA component scores",
figsize=None,
n_cols=None,
show=True,
):
"""Plot scores related to detected components.
Use this function to asses how well your score describes outlier
sources and how well you were detecting them.
Parameters
----------
ica : instance of mne.preprocessing.ICA
The ICA object.
scores : array-like of float, shape (n_ica_components,) | list of array
Scores based on arbitrary metric to characterize ICA components.
exclude : array-like of int
The components marked for exclusion. If None (default), ICA.exclude
will be used.
labels : str | list | 'ecg' | 'eog' | None
The labels to consider for the axes tests. Defaults to None.
If list, should match the outer shape of ``scores``.
If 'ecg' or 'eog', the ``labels_`` attributes will be looked up.
Note that '/' is used internally for sublabels specifying ECG and
EOG channels.
axhline : float
Draw horizontal line to e.g. visualize rejection threshold.
title : str
The figure title.
figsize : tuple of int | None
The figure size. If None it gets set automatically.
n_cols : int | None
Scores are plotted in a grid. This parameter controls how
many to plot side by side before starting a new row. By
default, a number will be chosen to make the grid as square as
possible.
show : bool
Show figure if True.
Returns
-------
fig : instance of Figure
The figure object.
"""
import matplotlib.pyplot as plt
my_range = np.arange(ica.n_components_)
if exclude is None:
exclude = ica.exclude
exclude = np.unique(exclude)
if not isinstance(scores[0], list | np.ndarray):
scores = [scores]
n_scores = len(scores)
if n_cols is None:
# prefer more rows.
n_rows = int(np.ceil(np.sqrt(n_scores)))
n_cols = (n_scores - 1) // n_rows + 1
else:
n_cols = min(n_scores, n_cols)
n_rows = (n_scores - 1) // n_cols + 1
if figsize is None:
figsize = (6.4 * n_cols, 2.7 * n_rows)
fig, axes = plt.subplots(
n_rows, n_cols, figsize=figsize, sharex=True, sharey=True, layout="constrained"
)
if isinstance(axes, np.ndarray):
axes = axes.flatten()
else:
axes = [axes]
fig.suptitle(title)
if labels == "ecg":
labels = [label for label in ica.labels_ if label.startswith("ecg/")]
labels.sort(key=lambda label: label.split("/")[1]) # sort by index
if len(labels) == 0:
labels = [label for label in ica.labels_ if label.startswith("ecg")]
elif labels == "eog":
labels = [label for label in ica.labels_ if label.startswith("eog/")]
labels.sort(key=lambda label: label.split("/")[1]) # sort by index
if len(labels) == 0:
labels = [label for label in ica.labels_ if label.startswith("eog")]
elif isinstance(labels, str):
labels = [labels]
elif labels is None:
labels = (None,) * n_scores
if len(labels) != n_scores:
raise ValueError(f"Need as many labels ({len(labels)}) as scores ({n_scores})")
for label, this_scores, ax in zip(labels, scores, axes):
if len(my_range) != len(this_scores):
raise ValueError(
"The length of `scores` must equal the number of ICA components."
)
ax.bar(my_range, this_scores, color="gray", edgecolor="k")
for excl in exclude:
ax.bar(my_range[excl], this_scores[excl], color="r", edgecolor="k")
if axhline is not None:
if np.isscalar(axhline):
axhline = [axhline]
for axl in axhline:
ax.axhline(axl, color="r", linestyle="--")
ax.set_ylabel("score")
if label is not None:
if "eog/" in label:
split = label.split("/")
label = ", ".join([split[0], split[2]])
elif "/" in label:
label = ", ".join(label.split("/"))
ax.set_title(f"({label})")
ax.set_xlabel("ICA components")
ax.set_xlim(-0.6, len(this_scores) - 0.4)
fig.canvas.draw()
plt_show(show)
return fig
@verbose
def plot_ica_overlay(
ica,
inst,
exclude=None,
picks=None,
start=None,
stop=None,
title=None,
show=True,
n_pca_components=None,
*,
on_baseline="warn",
verbose=None,
):
"""Overlay of raw and cleaned signals given the unmixing matrix.
This method helps visualizing signal quality and artifact rejection.
Parameters
----------
ica : instance of mne.preprocessing.ICA
The ICA object.
inst : instance of Raw or Evoked
The signal to plot. If `~mne.io.Raw`, the raw data per channel type is displayed
before and after cleaning. A second panel with the RMS for MEG sensors and the
:term:`GFP` for EEG sensors is displayed. If `~mne.Evoked`, butterfly traces for
signals before and after cleaning will be superimposed.
exclude : array-like of int | None (default)
The components marked for exclusion. If ``None`` (default), the components
listed in ``ICA.exclude`` will be used.
%(picks_base)s all channels that were included during fitting.
start, stop : float | None
The first and last time point (in seconds) of the data to plot. If
``inst`` is a `~mne.io.Raw` object, ``start=None`` and ``stop=None``
will be translated into ``start=0.`` and ``stop=3.``, respectively. For
`~mne.Evoked`, ``None`` refers to the beginning and end of the evoked
signal.
%(title_none)s
%(show)s
%(n_pca_components_apply)s
.. versionadded:: 0.22
%(on_baseline_ica)s
%(verbose)s
Returns
-------
fig : instance of Figure
The figure.
"""
# avoid circular imports
from ..evoked import Evoked
from ..io import BaseRaw
from ..preprocessing.ica import _check_start_stop
if ica.current_fit == "unfitted":
raise RuntimeError("You need to fit the ICA first")
_validate_type(inst, (BaseRaw, Evoked), "inst", "Raw or Evoked")
if title is None:
title = "Signals before (red) and after (black) cleaning"
picks = ica.ch_names if picks is None else picks
picks = _picks_to_idx(inst.info, picks, exclude=())
if exclude is None:
exclude = ica.exclude
if not isinstance(exclude, np.ndarray | list):
raise TypeError(f"exclude must be of type list. Got {type(exclude)}")
if isinstance(inst, BaseRaw):
start = 0.0 if start is None else start
stop = 3.0 if stop is None else stop
start, stop = _check_start_stop(inst, start, stop)
raw_cln = ica.apply(
inst.copy(),
exclude=exclude,
start=start,
stop=stop,
n_pca_components=n_pca_components,
)
fig = _plot_ica_overlay_raw(
raw=inst,
raw_cln=raw_cln,
picks=picks,
start=start,
stop=stop,
title=title,
show=show,
)
else:
assert isinstance(inst, Evoked)
inst = inst.copy().crop(start, stop)
if picks is not None:
with inst.info._unlock():
inst.info["comps"] = [] # can be safely disabled
inst.pick([inst.ch_names[p] for p in picks])
evoked_cln = ica.apply(
inst.copy(),
exclude=exclude,
n_pca_components=n_pca_components,
on_baseline=on_baseline,
)
fig = _plot_ica_overlay_evoked(
evoked=inst, evoked_cln=evoked_cln, title=title, show=show
)
return fig
def _plot_ica_overlay_raw(*, raw, raw_cln, picks, start, stop, title, show):
"""Plot evoked after and before ICA cleaning.
Parameters
----------
raw : Raw
Raw data before exclusion of ICs.
raw_cln : Raw
Data after exclusion of ICs.
picks : array of shape (n_channels_selected,)
Array of selected channel indices.
start : int
Start time to plot in samples.
stop : int
Stop time to plot in samples.
title : str
Title of the figure(s).
show : bool
Show figure if True.
Returns
-------
fig : instance of Figure
"""
import matplotlib.pyplot as plt
ch_types = raw.get_channel_types(picks=picks, unique=True)
for ch_type in ch_types:
if ch_type in ("mag", "grad"):
fig, ax = plt.subplots(3, 1, sharex=True, layout="constrained")
elif ch_type == "eeg" and not _has_eeg_average_ref_proj(
raw.info, check_active=True
):
fig, ax = plt.subplots(3, 1, sharex=True, layout="constrained")
else:
fig, ax = plt.subplots(2, 1, sharex=True, layout="constrained")
fig.suptitle(title)
# select sensors and retrieve data array
picks_by_type = _picks_to_idx(raw.info, ch_type, exclude=())
picks_ = np.intersect1d(picks, picks_by_type)
data, times = raw[picks_, start:stop]
data_cln, _ = raw_cln[picks_, start:stop]
# plot all sensors of the same type together
ax[0].plot(times, data.T, color="r")
ax[0].plot(times, data_cln.T, color="k")
_ch_type = DEFAULTS["titles"].get(ch_type, ch_type)
ax[0].set(xlabel="Time (s)", xlim=times[[0, -1]], title=f"Raw {_ch_type} data")
# second plot for M/EEG using GFP or RMS
if ch_type == "eeg": # Global Field Power
ax[1].plot(times, np.std(data, axis=0), color="r")
ax[1].plot(times, np.std(data_cln, axis=0), color="k")
ax[1].set(
xlabel="Time (s)",
xlim=times[[0, -1]],
title=f"{_ch_type} Global Field Power",
)
elif ch_type in ("mag", "grad"): # RMS
ax[1].plot(times, np.sqrt((data**2).mean(axis=0)), color="r")
ax[1].plot(times, np.sqrt((data_cln**2).mean(axis=0)), color="k")
ax[1].set(xlabel="Time (s)", xlim=times[[0, -1]], title=f"{_ch_type} RMS")
# last plot with the average across all channels of the same type
if ch_type != "eeg" or not _has_eeg_average_ref_proj(
raw.info, check_active=True
):
ax[-1].plot(times, data.mean(axis=0), color="r")
ax[-1].plot(times, data_cln.mean(axis=0), color="k")
ax[-1].set(
xlabel="Time (s)",
xlim=times[[0, -1]],
title=f"Average across {_ch_type} channels",
)
plt_show(show)
return fig
def _plot_ica_overlay_evoked(evoked, evoked_cln, title, show):
"""Plot evoked after and before ICA cleaning.
Parameters
----------
evoked : instance of mne.Evoked
The Evoked before IC rejection.
evoked_cln : instance of mne.Evoked
The Evoked after IC rejection.
title : str | None
The title of the figure.
show : bool
If True, all open plots will be shown.
Returns
-------
fig : instance of Figure
"""
import matplotlib.pyplot as plt
ch_types_used = [c for c in ["mag", "grad", "eeg"] if c in evoked]
n_rows = len(ch_types_used)
ch_types_used_cln = [c for c in ["mag", "grad", "eeg"] if c in evoked_cln]
if len(ch_types_used) != len(ch_types_used_cln):
raise ValueError("Raw and clean evokeds must match. Found different channels.")
fig, axes = plt.subplots(n_rows, 1, layout="constrained")
if title is None:
title = "Average signal before (red) and after (black) ICA"
fig.suptitle(title)
axes = axes.flatten() if isinstance(axes, np.ndarray) else axes
evoked.plot(axes=axes, show=False, time_unit="s", spatial_colors=False)
for ax in fig.axes:
for line in ax.get_lines():
line.set_color("r")
fig.canvas.draw()
evoked_cln.plot(axes=axes, show=False, time_unit="s", spatial_colors=False)
fig.canvas.draw()
plt_show(show)
return fig
def _plot_sources(
ica,
inst,
picks,
exclude,
start,
stop,
show,
title,
block,
show_scrollbars,
show_first_samp,
time_format,
precompute,
use_opengl,
*,
psd_args,
theme=None,
overview_mode=None,
splash=True,
):
"""Plot the ICA components as a RawArray or EpochsArray."""
from ..epochs import BaseEpochs, EpochsArray
from ..io import BaseRaw, RawArray
from ._figure import _get_browser
# handle defaults / check arg validity
is_raw = isinstance(inst, BaseRaw)
is_epo = isinstance(inst, BaseEpochs)
sfreq = inst.info["sfreq"]
color = _handle_default("color", (0.0, 0.0, 0.0))
units = _handle_default("units", None)
scalings = (
_compute_scalings(None, inst)
if is_raw
else _handle_default("scalings_plot_raw")
)
scalings["misc"] = 5.0
scalings["whitened"] = 1.0
unit_scalings = _handle_default("scalings", None)
# data
if is_raw:
data = ica._transform_raw(inst, 0, len(inst.times))[picks]
else:
data = ica._transform_epochs(inst, concatenate=True)[picks]
# events
if is_epo:
event_id_rev = {v: k for k, v in inst.event_id.items()}
event_nums = inst.events[:, 2]
event_color_dict = _make_event_color_dict(None, inst.events, inst.event_id)
# channel properties / trace order / picks
ch_names = list(ica._ica_names) # copy
ch_types = ["misc" for _ in picks]
# add EOG/ECG channels if present
eog_chs = pick_types(inst.info, meg=False, eog=True, ref_meg=False)
ecg_chs = pick_types(inst.info, meg=False, ecg=True, ref_meg=False)
for eog_idx in eog_chs:
ch_names.append(inst.ch_names[eog_idx])
ch_types.append("eog")
for ecg_idx in ecg_chs:
ch_names.append(inst.ch_names[ecg_idx])
ch_types.append("ecg")
extra_picks = np.concatenate((eog_chs, ecg_chs)).astype(int)
if len(extra_picks):
if is_raw:
eog_ecg_data, _ = inst[extra_picks, :]
else:
eog_ecg_data = np.concatenate(inst.get_data(extra_picks), axis=1)
data = np.append(data, eog_ecg_data, axis=0)
picks = np.concatenate((picks, ica.n_components_ + np.arange(len(extra_picks))))
ch_order = np.arange(len(picks))
n_channels = min([20, len(picks)])
ch_names_picked = [ch_names[x] for x in picks]
# create info
info = create_info(ch_names_picked, sfreq, ch_types=ch_types)
with info._unlock():
info["meas_date"] = inst.info["meas_date"]
info["bads"] = [ch_names[x] for x in exclude if x in picks]
if is_raw:
inst_array = RawArray(data, info, inst.first_samp)
inst_array._annotations = inst.annotations
else:
data = data.reshape(-1, len(inst), len(inst.times)).swapaxes(0, 1)
inst_array = EpochsArray(data, info)
# handle time dimension
start = 0 if start is None else start
_last = inst.times[-1] if is_raw else len(inst.events)
stop = min(start + 20, _last) if stop is None else stop
first_time = inst._first_time if show_first_samp else 0
if is_raw:
duration = stop - start
start += first_time
else:
n_epochs = stop - start
total_epochs = len(inst)
epoch_n_times = len(inst.times)
n_epochs = min(n_epochs, total_epochs)
n_times = total_epochs * epoch_n_times
duration = n_epochs * epoch_n_times / sfreq
event_times = (
np.arange(total_epochs) * epoch_n_times + inst.time_as_index(0)
) / sfreq
# NB: this includes start and end of data:
boundary_times = np.arange(total_epochs + 1) * epoch_n_times / sfreq
if duration <= 0:
raise RuntimeError("Stop must be larger than start.")
# misc
bad_color = "lightgray"
title = "ICA components" if title is None else title
precompute = _handle_precompute(precompute)
params = dict(
inst=inst_array,
ica=ica,
ica_inst=inst,
info=info,
# channels and channel order
ch_names=np.array(ch_names_picked),
ch_types=np.array(ch_types),
ch_order=ch_order,
picks=picks,
n_channels=n_channels,
picks_data=list(),
# time
t_start=start if is_raw else boundary_times[start],
duration=duration,
n_times=inst.n_times if is_raw else n_times,
first_time=first_time,
time_format=time_format,
decim=1,
# events
event_times=None if is_raw else event_times,
# preprocessing
projs=list(),
projs_on=np.array([], dtype=bool),
apply_proj=False,
remove_dc=True, # for EOG/ECG
filter_coefs=None,
filter_bounds=None,
noise_cov=None,
# scalings
scalings=scalings,
units=units,
unit_scalings=unit_scalings,
# colors
ch_color_bad=bad_color,
ch_color_dict=color,
# display
butterfly=False,
clipping=None,
scrollbars_visible=show_scrollbars,
scalebars_visible=False,
window_title=title,
precompute=precompute,
use_opengl=use_opengl,
theme=theme,
overview_mode=overview_mode,
psd_args=psd_args,
splash=splash,
)
if is_epo:
params.update(
n_epochs=n_epochs,
boundary_times=boundary_times,
event_id_rev=event_id_rev,
event_color_dict=event_color_dict,
event_nums=event_nums,
epoch_color_bad=(1, 0, 0),
epoch_colors=None,
xlabel="Epoch number",
)
fig = _get_browser(show=show, block=block, **params)
return fig
|