1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import re
import numpy as np
import pytest
from mne import (
SourceEstimate,
VolSourceEstimate,
VolVectorSourceEstimate,
compute_covariance,
compute_source_morph,
make_fixed_length_epochs,
make_forward_solution,
read_bem_solution,
read_forward_solution,
read_trans,
setup_volume_source_space,
)
from mne.datasets import testing
from mne.io import read_raw_fif
from mne.minimum_norm import apply_inverse, make_inverse_operator
from mne.utils import _record_warnings, catch_logging
from mne.viz import plot_volume_source_estimates
from mne.viz.utils import _fake_click, _fake_keypress
data_dir = testing.data_path(download=False)
subjects_dir = data_dir / "subjects"
fwd_fname = data_dir / "MEG" / "sample" / "sample_audvis_trunc-meg-vol-7-fwd.fif"
@pytest.mark.slowtest # can be slow on OSX
@testing.requires_testing_data
@pytest.mark.parametrize(
"mode, stype, init_t, want_t, init_p, want_p, bg_img",
[
("glass_brain", "s", None, 2, None, (-30.9, 18.4, 56.7), None),
("stat_map", "vec", 1, 1, None, (15.7, 16.0, -6.3), None),
("glass_brain", "vec", None, 1, (10, -10, 20), (6.6, -9.0, 19.9), None),
("stat_map", "s", 1, 1, (-10, 5, 10), (-12.3, 2.0, 7.7), "brain.mgz"),
],
)
def test_plot_volume_source_estimates_basic(
mode, stype, init_t, want_t, init_p, want_p, bg_img
):
"""Test interactive plotting of volume source estimates."""
pytest.importorskip("nibabel")
pytest.importorskip("dipy")
pytest.importorskip("nilearn")
forward = read_forward_solution(fwd_fname)
sample_src = forward["src"]
if init_p is not None:
init_p = np.array(init_p) / 1000.0
vertices = [s["vertno"] for s in sample_src]
n_verts = sum(len(v) for v in vertices)
n_time = 2
data = np.random.RandomState(0).rand(n_verts, n_time)
if stype == "vec":
stc = VolVectorSourceEstimate(
np.tile(data[:, np.newaxis], (1, 3, 1)), vertices, 1, 1
)
else:
assert stype == "s"
stc = VolSourceEstimate(data, vertices, 1, 1)
# sometimes get scalars/index warning
with _record_warnings():
with catch_logging(verbose="debug") as log:
fig = stc.plot(
sample_src,
subject="sample",
subjects_dir=subjects_dir,
mode=mode,
initial_time=init_t,
initial_pos=init_p,
bg_img=bg_img,
verbose=True,
)
log = log.getvalue()
want_str = f"t = {want_t:0.3f} s"
assert want_str in log, (want_str, init_t)
want_str = f"({want_p[0]:0.1f}, {want_p[1]:0.1f}, {want_p[2]:0.1f}) mm"
assert want_str in log, (want_str, init_p)
for ax_idx in [0, 2, 3, 4]:
_fake_click(fig, fig.axes[ax_idx], (0.3, 0.5))
_fake_keypress(fig, "left")
_fake_keypress(fig, "shift+right")
if bg_img is not None:
with pytest.raises(FileNotFoundError, match="MRI file .* not found"):
stc.plot(
sample_src,
subject="sample",
subjects_dir=subjects_dir,
mode="stat_map",
bg_img="junk.mgz",
)
use_ax = None
for ax in fig.axes:
if ax.get_xlabel().startswith("Time"):
use_ax = ax
break
assert use_ax is not None
label = use_ax.get_legend().get_texts()[0].get_text()
assert re.match("[0-9]*", label) is not None, label
@pytest.mark.slowtest # can be slow on OSX
@testing.requires_testing_data
def test_plot_volume_source_estimates_morph():
"""Test interactive plotting of volume source estimates with morph."""
pytest.importorskip("nibabel")
pytest.importorskip("dipy")
pytest.importorskip("nilearn")
forward = read_forward_solution(fwd_fname)
sample_src = forward["src"]
vertices = [s["vertno"] for s in sample_src]
n_verts = sum(len(v) for v in vertices)
n_time = 2
data = np.random.RandomState(0).rand(n_verts, n_time)
stc = VolSourceEstimate(data, vertices, 1, 1)
sample_src[0]["subject_his_id"] = "sample" # old src
morph = compute_source_morph(
sample_src, "sample", "fsaverage", zooms=5, subjects_dir=subjects_dir
)
initial_pos = (-0.05, -0.01, -0.006)
# sometimes get scalars/index warning
with _record_warnings():
with catch_logging() as log:
stc.plot(
morph,
subjects_dir=subjects_dir,
mode="glass_brain",
initial_pos=initial_pos,
verbose=True,
)
log = log.getvalue()
assert "t = 1.000 s" in log
assert "(-52.0, -8.0, -7.0) mm" in log
with pytest.raises(ValueError, match="Allowed values are"):
stc.plot(sample_src, "sample", subjects_dir, mode="abcd")
vertices.append([])
surface_stc = SourceEstimate(data, vertices, 1, 1)
with pytest.raises(TypeError, match="an instance of VolSourceEstimate"):
plot_volume_source_estimates(surface_stc, sample_src, "sample", subjects_dir)
with pytest.raises(ValueError, match="Negative colormap limits"):
stc.plot(
sample_src, "sample", subjects_dir, clim=dict(lims=[-1, 2, 3], kind="value")
)
@testing.requires_testing_data
def test_plot_volume_source_estimates_on_vol_labels():
"""Test plot of source estimate on srcs setup on 2 labels."""
pytest.importorskip("nibabel")
pytest.importorskip("dipy")
pytest.importorskip("nilearn")
raw = read_raw_fif(
data_dir / "MEG" / "sample" / "sample_audvis_trunc_raw.fif", preload=False
)
raw.pick("meg").crop(0, 10)
raw.pick(raw.ch_names[::2]).del_proj().load_data()
epochs = make_fixed_length_epochs(raw, preload=True).apply_baseline((None, None))
evoked = epochs.average()
subject = "sample"
bem = read_bem_solution(
subjects_dir / f"{subject}" / "bem" / "sample-320-bem-sol.fif"
)
pos = 25.0 # spacing in mm
volume_label = [
"Right-Cerebral-Cortex",
"Left-Cerebral-Cortex",
]
src = setup_volume_source_space(
subject,
subjects_dir=subjects_dir,
pos=pos,
mri=subjects_dir / subject / "mri" / "aseg.mgz",
bem=bem,
volume_label=volume_label,
add_interpolator=False,
)
trans = read_trans(data_dir / "MEG" / "sample" / "sample_audvis_trunc-trans.fif")
fwd = make_forward_solution(
evoked.info,
trans,
src,
bem,
meg=True,
eeg=False,
mindist=0,
n_jobs=1,
)
cov = compute_covariance(
epochs,
tmin=None,
tmax=None,
method="empirical",
)
inverse_operator = make_inverse_operator(evoked.info, fwd, cov, loose=1, depth=0.8)
stc = apply_inverse(
evoked, inverse_operator, 1.0 / 3**2, method="sLORETA", pick_ori=None
)
stc.plot(src, subject, subjects_dir, initial_time=0.03)
|