1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import pytest
from matplotlib import gridspec
from matplotlib.collections import PolyCollection
from matplotlib.colors import same_color
from mpl_toolkits.axes_grid1.parasite_axes import HostAxes # spatial_colors
from numpy.testing import assert_allclose
import mne
from mne import (
Epochs,
compute_covariance,
compute_proj_evoked,
make_fixed_length_events,
read_cov,
read_events,
)
from mne._fiff.constants import FIFF
from mne.datasets import testing
from mne.io import read_raw_fif
from mne.stats.parametric import _parametric_ci
from mne.utils import _record_warnings, catch_logging
from mne.viz import plot_compare_evokeds, plot_evoked_white
from mne.viz.utils import _fake_click, _get_cmap
base_dir = Path(__file__).parents[2] / "io" / "tests" / "data"
evoked_fname = base_dir / "test-ave.fif"
raw_fname = base_dir / "test_raw.fif"
raw_sss_fname = base_dir / "test_chpi_raw_sss.fif"
cov_fname = base_dir / "test-cov.fif"
event_name = base_dir / "test-eve.fif"
event_id, tmin, tmax = 1, -0.1, 0.1
ctf_fname = testing.data_path(download=False) / "CTF" / "testdata_ctf.ds"
# Use a subset of channels for plotting speed
# make sure we have a magnetometer and a pair of grad pairs for topomap.
default_picks = (
0,
1,
2,
3,
4,
6,
7,
61,
122,
183,
244,
305,
315,
316,
317,
318,
) # EEG channels
sel = (0, 7)
def _get_epochs(picks=default_picks):
"""Get epochs."""
raw = read_raw_fif(raw_fname)
raw.add_proj([], remove_existing=True)
events = read_events(event_name)
epochs = Epochs(
raw, events[:5], event_id, tmin, tmax, picks=picks, decim=10, verbose="error"
)
epochs.info["bads"] = [epochs.ch_names[-5], epochs.ch_names[-1]] # MEG # EEG
epochs.info.normalize_proj()
return epochs
def _get_epochs_delayed_ssp():
"""Get epochs with delayed SSP."""
raw = read_raw_fif(raw_fname)
events = read_events(event_name)
reject = dict(mag=4e-12)
epochs_delayed_ssp = Epochs(
raw,
events[:10],
event_id,
tmin,
tmax,
picks=default_picks,
proj="delayed",
reject=reject,
verbose="error",
)
epochs_delayed_ssp.info.normalize_proj()
return epochs_delayed_ssp
def test_plot_evoked_cov():
"""Test plot_evoked with noise_cov."""
evoked = _get_epochs().average()
cov = read_cov(cov_fname)
cov["projs"] = [] # avoid warnings
with pytest.warns(RuntimeWarning, match="No average EEG reference"):
evoked.plot(noise_cov=cov, time_unit="s")
with pytest.raises(TypeError, match="Covariance"):
evoked.plot(noise_cov=1.0, time_unit="s")
with pytest.raises(FileNotFoundError, match="File does not exist"):
evoked.plot(noise_cov="nonexistent-cov.fif", time_unit="s")
raw = read_raw_fif(raw_sss_fname)
events = make_fixed_length_events(raw)
epochs = Epochs(raw, events, picks=default_picks)
cov = compute_covariance(epochs)
evoked_sss = epochs.average()
with _record_warnings(), pytest.warns(RuntimeWarning, match="relative scaling"):
evoked_sss.plot(noise_cov=cov, time_unit="s")
plt.close("all")
@pytest.mark.slowtest
def test_plot_evoked():
"""Test evoked.plot."""
epochs = _get_epochs()
evoked = epochs.average()
assert evoked.proj is False
fig = evoked.plot(
proj=True, hline=[1], exclude=[], window_title="foo", time_unit="s"
)
amplitudes = _get_amplitudes(fig)
assert len(amplitudes) == len(default_picks)
assert evoked.proj is False
assert evoked.info["bads"] == ["MEG 2641", "EEG 004"]
eeg_lines = fig.axes[2].lines
n_eeg = sum(ch_type == "eeg" for ch_type in evoked.get_channel_types())
assert len(eeg_lines) == n_eeg == 4
n_bad = sum(same_color(line.get_color(), "0.5") for line in eeg_lines)
assert n_bad == 1
# Test a click
ax = fig.get_axes()[0]
line = ax.lines[0]
_fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], "data")
_fake_click(fig, ax, [ax.get_xlim()[0], ax.get_ylim()[1]], "data")
# plot with bad channels excluded & spatial_colors & zorder
evoked.plot(exclude="bads", time_unit="s")
# test selective updating of dict keys is working.
evoked.plot(hline=[1], units=dict(mag="femto foo"), time_unit="s")
evoked_delayed_ssp = _get_epochs_delayed_ssp().average()
evoked_delayed_ssp.plot(proj="interactive", time_unit="s")
evoked_delayed_ssp.apply_proj()
pytest.raises(
RuntimeError, evoked_delayed_ssp.plot, proj="interactive", time_unit="s"
)
with evoked_delayed_ssp.info._unlock():
evoked_delayed_ssp.info["projs"] = []
pytest.raises(
RuntimeError, evoked_delayed_ssp.plot, proj="interactive", time_unit="s"
)
pytest.raises(
RuntimeError,
evoked_delayed_ssp.plot,
proj="interactive",
axes="foo",
time_unit="s",
)
plt.close("all")
# test `gfp='only'`: GFP (EEG) and RMS (MEG)
fig, ax = plt.subplots(3)
evoked.plot(gfp="only", time_unit="s", axes=ax)
assert len(ax[0].lines) == len(ax[1].lines) == len(ax[2].lines) == 1
assert ax[0].get_title() == "EEG (3 channels)"
assert ax[0].texts[0].get_text() == "GFP"
assert ax[1].get_title() == "Gradiometers (9 channels)"
assert ax[1].texts[0].get_text() == "RMS"
assert ax[2].get_title() == "Magnetometers (2 channels)"
assert ax[1].texts[0].get_text() == "RMS"
plt.close("all")
# Test invalid `gfp`
with pytest.raises(ValueError):
evoked.plot(gfp="foo", time_unit="s")
# plot with bad channels excluded, spatial_colors, zorder & pos. layout
evoked.rename_channels({"MEG 0133": "MEG 0000"})
evoked.plot(
exclude=evoked.info["bads"],
spatial_colors=True,
gfp=True,
zorder="std",
time_unit="s",
)
evoked.plot(exclude=[], spatial_colors=True, zorder="unsorted", time_unit="s")
pytest.raises(TypeError, evoked.plot, zorder="asdf", time_unit="s")
plt.close("all")
evoked.plot_sensors() # Test plot_sensors
plt.close("all")
evoked.pick(evoked.ch_names[:4])
with catch_logging() as log_file:
evoked.plot(verbose=True, time_unit="s")
assert "Need more than one" in log_file.getvalue()
# Test highlight
for highlight in [(0, 0.1), [(0, 0.1), (0.1, 0.2)]]:
fig = evoked.plot(time_unit="s", highlight=highlight)
regular_axes = [ax for ax in fig.axes if not isinstance(ax, HostAxes)]
for ax in regular_axes:
highlighted_areas = [
child
for child in ax.get_children()
if isinstance(child, PolyCollection)
]
assert len(highlighted_areas) == len(np.atleast_2d(highlight))
with pytest.raises(ValueError, match="must be reshapable into a 2D array"):
fig = evoked.plot(time_unit="s", highlight=0.1)
# set one channel location to nan, confirm spatial_colors still works
evoked = _get_epochs().load_data().average("grad") # reload data
evoked.info["chs"][0]["loc"][:] = np.nan
fig = evoked.plot(time_unit="s", spatial_colors=True)
line_clr = [x.get_color() for x in fig.axes[0].get_lines()]
assert not np.all(np.isnan(line_clr) & (line_clr == 0))
def test_constrained_layout():
"""Test that we handle constrained layouts correctly."""
fig, ax = plt.subplots(1, 1, layout="constrained")
assert fig.get_constrained_layout()
evoked = mne.read_evokeds(evoked_fname)[0]
evoked.pick(evoked.ch_names[:2])
# smoke test that it does not break things
evoked.plot(axes=ax)
assert fig.get_constrained_layout()
plt.close("all")
def _get_amplitudes(fig):
# ignore the spatial_colors parasite axes
regular_axes = [ax for ax in fig.axes if not isinstance(ax, HostAxes)]
amplitudes = [line.get_ydata() for ax in regular_axes for line in ax.get_lines()]
# this will exclude hlines, which are lists not arrays
amplitudes = np.array([line for line in amplitudes if isinstance(line, np.ndarray)])
return amplitudes
@pytest.mark.parametrize(
"picks, rlims, avg_proj",
[
(default_picks[:-4], (0.59, 0.61), False), # MEG
(np.arange(340, 360), (0.56, 0.57), True), # EEG
(np.arange(340, 360), (0.79, 0.81), False), # EEG
],
)
def test_plot_evoked_reconstruct(picks, rlims, avg_proj):
"""Test proj="reconstruct"."""
evoked = _get_epochs(picks=picks).average()
if avg_proj:
evoked.set_eeg_reference(projection=True).apply_proj()
assert len(evoked.info["projs"]) == 1
assert evoked.proj is True
else:
assert len(evoked.info["projs"]) == 0
assert evoked.proj is False
fig = evoked.plot(
proj=True, hline=[1], exclude=[], window_title="foo", time_unit="s"
)
amplitudes = _get_amplitudes(fig)
assert len(amplitudes) == len(picks)
assert evoked.proj is avg_proj
fig = evoked.plot(proj="reconstruct", exclude=[])
amplitudes_recon = _get_amplitudes(fig)
if avg_proj is False:
assert_allclose(amplitudes, amplitudes_recon)
proj = compute_proj_evoked(evoked.copy().crop(None, 0).apply_proj())
evoked.add_proj(proj)
assert len(evoked.info["projs"]) == 2 if len(picks) == 3 else 4
fig = evoked.plot(proj=True, exclude=[])
amplitudes_proj = _get_amplitudes(fig)
fig = evoked.plot(proj="reconstruct", exclude=[])
amplitudes_recon = _get_amplitudes(fig)
assert len(amplitudes_recon) == len(picks)
norm = np.linalg.norm(amplitudes)
norm_proj = np.linalg.norm(amplitudes_proj)
norm_recon = np.linalg.norm(amplitudes_recon)
r = np.dot(amplitudes_recon.ravel(), amplitudes.ravel()) / (norm_recon * norm)
assert rlims[0] < r < rlims[1]
assert 1.05 * norm_proj < norm_recon
if not avg_proj:
assert norm_proj < norm * 0.9
cov = read_cov(cov_fname)
with pytest.raises(ValueError, match='Cannot use proj="reconstruct"'):
evoked.plot(noise_cov=cov, proj="reconstruct")
plt.close("all")
def test_plot_evoked_image():
"""Test plot_evoked_image."""
evoked = _get_epochs().average()
evoked.plot_image(proj=True, time_unit="ms")
# fail nicely on NaN
evoked_nan = evoked.copy()
evoked_nan.data[:, 0] = np.nan
pytest.raises(ValueError, evoked_nan.plot)
with np.errstate(invalid="ignore"):
pytest.raises(ValueError, evoked_nan.plot_image)
pytest.raises(ValueError, evoked_nan.plot_joint)
# test mask
evoked.plot_image(picks=[1, 2], mask=evoked.data > 0, time_unit="s")
evoked.plot_image(
picks=[1, 2],
mask_cmap=None,
colorbar=False,
mask=np.ones(evoked.data.shape).astype(bool),
time_unit="s",
)
with _record_warnings(), pytest.warns(RuntimeWarning, match="not adding contour"):
evoked.plot_image(picks=[1, 2], mask=None, mask_style="both", time_unit="s")
with pytest.raises(ValueError, match="must have the same shape"):
evoked.plot_image(mask=evoked.data[1:, 1:] > 0, time_unit="s")
# plot with bad channels excluded
evoked.plot_image(exclude="bads", cmap="interactive", time_unit="s")
plt.close("all")
with pytest.raises(ValueError, match="not unique"):
evoked.plot_image(picks=[0, 0], time_unit="s") # duplicates
ch_names = evoked.ch_names[3:5]
picks = [evoked.ch_names.index(ch) for ch in ch_names]
evoked.plot_image(show_names="all", time_unit="s", picks=picks)
yticklabels = plt.gca().get_yticklabels()
for tick_target, tick_observed in zip(ch_names, yticklabels):
assert tick_target in str(tick_observed)
evoked.plot_image(show_names=True, time_unit="s")
# test groupby
evoked.plot_image(group_by=dict(sel=sel), axes=dict(sel=plt.axes()))
plt.close("all")
for group_by, axes in (("something", dict()), (dict(), "something")):
pytest.raises(ValueError, evoked.plot_image, group_by=group_by, axes=axes)
with pytest.raises(ValueError, match="`clim` must be a dict."):
evoked.plot_image(clim=[-4, 4])
def test_plot_white():
"""Test plot_white."""
cov = read_cov(cov_fname)
cov["method"] = "empirical"
cov["projs"] = [] # avoid warnings
evoked = _get_epochs().average()
evoked.set_eeg_reference("average") # Avoid warnings
# test rank param.
with pytest.raises(ValueError, match="exceeds"):
evoked.plot_white(cov, rank={"mag": 10})
evoked.plot_white(cov, rank={"mag": 1, "grad": 8, "eeg": 2}, time_unit="s")
fig = evoked.plot_white(cov, rank={"mag": 1}, time_unit="s") # test rank
evoked.plot_white(cov, rank={"grad": 8}, time_unit="s", axes=fig.axes[:4])
with pytest.raises(ValueError, match=r"must have shape \(4,\), got \(2,"):
evoked.plot_white(cov, axes=fig.axes[:2])
with pytest.raises(ValueError, match="When not using SSS"):
evoked.plot_white(cov, rank={"meg": 306})
evoked.plot_white([cov, cov], time_unit="s")
plt.close("all")
fig = plot_evoked_white(evoked, [cov, cov])
assert len(fig.axes) == 3 * 3
axes = np.array(fig.axes[:6]).reshape(3, 2)
plot_evoked_white(evoked, [cov, cov], axes=axes)
with pytest.raises(ValueError, match=r"have shape \(3, 2\), got"):
plot_evoked_white(evoked, [cov, cov], axes=axes[:, :1])
# Hack to test plotting of maxfiltered data
evoked_sss = _get_epochs(picks=("meg", "eeg")).average()
evoked_sss.set_eeg_reference(projection=True).apply_proj()
sss = dict(sss_info=dict(in_order=80, components=np.arange(80)))
with evoked_sss.info._unlock():
evoked_sss.info["proc_history"] = [dict(max_info=sss)]
evoked_sss.plot_white([cov, cov], rank={"meg": 64})
with pytest.raises(ValueError, match="When using SSS"):
evoked_sss.plot_white(cov, rank={"grad": 201}, verbose="error")
evoked_sss.plot_white(cov, rank={"meg": 302}, time_unit="s")
@pytest.mark.parametrize(
"combine,vlines,title,picks",
(
pytest.param(None, [0.1, 0.2], "MEG 0113", "MEG 0113", id="singlepick"),
pytest.param("mean", [], "(mean)", "mag", id="mag-mean"),
pytest.param("gfp", "auto", "(GFP)", "eeg", id="eeg-gfp"),
pytest.param(None, "auto", "(RMS)", ["MEG 0113", "MEG 0112"], id="meg-rms"),
pytest.param(
"std", "auto", "(std. dev.)", ["MEG 0113", "MEG 0112"], id="meg-std"
),
pytest.param(
lambda x: np.min(x, axis=1), "auto", "MEG 0112", [0, 1], id="intpicks"
),
),
)
def test_plot_compare_evokeds_title(evoked, picks, vlines, combine, title):
"""Test title generation by plot_compare_evokeds()."""
# test picks, combine, and vlines (1-channel pick also shows sensor inset)
fig = plot_compare_evokeds(evoked, picks=picks, vlines=vlines, combine=combine)
assert fig[0].axes[0].get_title().endswith(title)
@pytest.mark.slowtest # slow on Azure
def test_plot_compare_evokeds(evoked):
"""Test plot_compare_evokeds."""
# test defaults
figs = plot_compare_evokeds(evoked)
assert len(figs) == 3
# test passing more than one evoked
red, blue = evoked.copy(), evoked.copy()
red.comment = red.comment + "*" * 100
red.data *= 1.5
blue.data /= 1.5
evoked_dict = {"aud/l": blue, "aud/r": red, "vis": evoked}
huge_dict = {f"cond{i}": ev for i, ev in enumerate([evoked] * 11)}
plot_compare_evokeds(evoked_dict) # dict
plot_compare_evokeds([[red, evoked], [blue, evoked]]) # list of lists
figs = plot_compare_evokeds({"cond": [blue, red, evoked]}) # dict of list
# test that confidence bands are plausible
for fig in figs:
extents = fig.axes[0].collections[0].get_paths()[0].get_extents()
xlim, ylim = extents.get_points().T
assert np.allclose(xlim, evoked.times[[0, -1]])
line = fig.axes[0].lines[0]
xvals = line.get_xdata()
assert np.allclose(xvals, evoked.times)
yvals = line.get_ydata()
assert (yvals < ylim[1]).all()
assert (yvals > ylim[0]).all()
# test plotting eyetracking data
plt.close("all") # close the previous figures as to avoid a too many figs warning
info_tmp = mne.create_info(["pupil_left"], evoked.info["sfreq"], ["pupil"])
evoked_et = mne.EvokedArray(np.ones_like(evoked.times).reshape(1, -1), info_tmp)
figs = plot_compare_evokeds(evoked_et, show_sensors=False)
assert len(figs) == 1
# test plotting only invalid channel types
info_tmp = mne.create_info(["ias"], evoked.info["sfreq"], ["ias"])
ev_invalid = mne.EvokedArray(np.ones_like(evoked.times).reshape(1, -1), info_tmp)
with pytest.raises(RuntimeError, match="No valid"):
plot_compare_evokeds(ev_invalid, picks="all")
plt.close("all")
# test other CI args
def ci_func(array):
return array.mean(axis=0, keepdims=True) * np.array([[0.5], [1.5]])
ci_types = (None, False, 0.5, ci_func)
for _ci in ci_types:
fig = plot_compare_evokeds({"cond": [blue, red, evoked]}, ci=_ci)[0]
if _ci in ci_types[2:]:
assert np.any(
[isinstance(coll, PolyCollection) for coll in fig.axes[0].collections]
)
# make sure we can get a CI even for single conditions
fig = plot_compare_evokeds(evoked, picks="eeg", ci=ci_func)[0]
assert np.any(
[isinstance(coll, PolyCollection) for coll in fig.axes[0].collections]
)
with pytest.raises(TypeError, match='"ci" must be None, bool, float or'):
plot_compare_evokeds(evoked, ci="foo")
# test sensor inset, legend location, and axis inversion & truncation
plot_compare_evokeds(
evoked_dict,
invert_y=True,
legend="upper left",
show_sensors="center",
truncate_xaxis=False,
truncate_yaxis=False,
)
plot_compare_evokeds(evoked, ylim=dict(mag=(-50, 50)), truncate_yaxis=True)
plt.close("all")
# test styles
plot_compare_evokeds(
evoked_dict,
colors=["b", "r", "g"],
linestyles=[":", "-", "--"],
split_legend=True,
)
style_dict = dict(aud=dict(alpha=0.3), vis=dict(linewidth=3, c="k"))
plot_compare_evokeds(
evoked_dict,
styles=style_dict,
colors={"aud/r": "r"},
linestyles=dict(vis="dotted"),
ci=False,
)
plot_compare_evokeds(evoked_dict, colors=list(range(3)))
plt.close("all")
# test colormap
cmap = _get_cmap("viridis")
plot_compare_evokeds(evoked_dict, cmap=cmap, colors=dict(aud=0.4, vis=0.9))
plot_compare_evokeds(evoked_dict, cmap=cmap, colors=dict(aud=1, vis=2))
plot_compare_evokeds(
evoked_dict, cmap=("cmap title", "inferno"), linestyles=["-", ":", "--"]
)
plt.close("all")
# test combine
match = "combine must be an instance of None, callable, or str"
with pytest.raises(TypeError, match=match):
plot_compare_evokeds(evoked, combine=["mean", "gfp"])
plt.close("all")
# test warnings
with pytest.warns(RuntimeWarning, match='in "picks"; cannot combine'):
plot_compare_evokeds(evoked, picks=[0], combine="median")
plt.close("all")
# test errors
with pytest.raises(TypeError, match='"evokeds" must be a dict, list'):
plot_compare_evokeds("foo")
with pytest.raises(ValueError, match=r'keys in "styles" \(.*\) must '):
plot_compare_evokeds(evoked_dict, styles=dict(foo="foo", bar="bar"))
with pytest.raises(ValueError, match="colors in the default color cycle"):
plot_compare_evokeds(huge_dict, colors=None)
with pytest.raises(TypeError, match='"cmap" is specified, then "colors"'):
plot_compare_evokeds(
evoked_dict,
cmap="Reds",
colors={"aud/l": "foo", "aud/r": "bar", "vis": "baz"},
)
plt.close("all")
for kwargs in [dict(colors=[0, 1]), dict(linestyles=["-", ":"])]:
match = r"but there are only \d* (colors|linestyles). Please specify"
with pytest.raises(ValueError, match=match):
plot_compare_evokeds(evoked_dict, **kwargs)
for kwargs in [dict(colors="foo"), dict(linestyles="foo")]:
match = r'"(colors|linestyles)" must be a dict, list, or None; got '
with pytest.raises(TypeError, match=match):
plot_compare_evokeds(evoked_dict, **kwargs)
for kwargs in [dict(colors=dict(foo="f")), dict(linestyles=dict(foo="f"))]:
match = r'If "(colors|linestyles)" is a dict its keys \(.*\) must '
with pytest.raises(ValueError, match=match):
plot_compare_evokeds(evoked_dict, **kwargs)
for kwargs in [dict(legend="foo"), dict(show_sensors="foo")]:
with pytest.raises(ValueError, match="not a legal MPL loc, please"):
plot_compare_evokeds(evoked_dict, **kwargs)
with pytest.raises(TypeError, match="an instance of list or tuple"):
plot_compare_evokeds(evoked_dict, vlines="foo")
with pytest.raises(ValueError, match='"truncate_yaxis" must be bool or '):
plot_compare_evokeds(evoked_dict, truncate_yaxis="foo")
plt.close("all")
# test axes='topo'
figs = plot_compare_evokeds(evoked_dict, axes="topo", legend=True)
for fig in figs:
assert len(fig.axes[0].lines) == len(evoked_dict)
# test with (fake) CSD data
csd = _get_epochs(picks=np.arange(315, 320)).average() # 5 EEG chs
for entry in csd.info["chs"]:
entry["coil_type"] = FIFF.FIFFV_COIL_EEG_CSD
entry["unit"] = FIFF.FIFF_UNIT_V_M2
plot_compare_evokeds(csd, picks="csd", axes="topo")
# old tests
red.info["chs"][0]["loc"][:2] = 0 # test plotting channel at zero
(fig,) = plot_compare_evokeds(
[red, blue], picks=[0], ci=lambda x: [x.std(axis=0), -x.std(axis=0)]
)
# reasonable legend lengths
leg_texts = [t.get_text() for t in fig.axes[0].get_legend().get_texts()]
assert all(len(lt) < 50 for lt in leg_texts)
plot_compare_evokeds([list(evoked_dict.values())], picks=[0], ci=_parametric_ci)
# smoke test for tmin >= 0 (from mailing list)
red.crop(0.01, None)
assert len(red.times) > 2
plot_compare_evokeds(red)
# plot a flat channel
red.data = np.zeros_like(red.data)
plot_compare_evokeds(red)
# smoke test for one time point (not useful but should not fail)
red.crop(0.02, 0.02)
assert len(red.times) == 1
plot_compare_evokeds(red)
# now that we've cropped `red`:
with pytest.raises(ValueError, match="not contain the same time instants"):
plot_compare_evokeds(evoked_dict)
plt.close("all")
def test_plot_compare_evokeds_neuromag122():
"""Test topomap plotting."""
evoked = mne.read_evokeds(evoked_fname, "Left Auditory", baseline=(None, 0))
evoked.pick(picks="grad")
evoked.pick(evoked.ch_names[:122])
ch_names = [f"MEG {k:03}" for k in range(1, 123)]
for c in evoked.info["chs"]:
c["coil_type"] = FIFF.FIFFV_COIL_NM_122
evoked.rename_channels(
{c_old: c_new for (c_old, c_new) in zip(evoked.ch_names, ch_names)}
)
mne.viz.plot_compare_evokeds([evoked, evoked])
@testing.requires_testing_data
def test_plot_ctf():
"""Test plotting of CTF evoked."""
raw = mne.io.read_raw_ctf(ctf_fname, preload=True)
events = np.array([[200, 0, 1]])
event_id = 1
tmin, tmax = -0.1, 0.5 # start and end of an epoch in s.
picks = mne.pick_types(
raw.info, meg=True, stim=True, eog=True, ref_meg=True, exclude="bads"
)[::20]
epochs = mne.Epochs(
raw,
events,
event_id,
tmin,
tmax,
proj=True,
picks=picks,
preload=True,
decim=10,
verbose="error",
)
evoked = epochs.average()
evoked.plot_joint(times=[0.1])
# test plotting with invalid ylim argument
with pytest.raises(TypeError, match="ylim must be an instance of dict or None"):
evoked.plot_joint(times=[0.1], ts_args=dict(ylim=(-10, 10)))
mne.viz.plot_compare_evokeds([evoked, evoked])
# make sure axes position is "almost" unchanged
# when axes were passed to plot_joint by the user
times = [0.1, 0.2, 0.3]
fig = plt.figure()
# create custom axes for topomaps, colorbar and the timeseries
gs = gridspec.GridSpec(3, 7, hspace=0.5, top=0.8, figure=fig)
topo_axes = [
fig.add_subplot(gs[0, idx * 2 : (idx + 1) * 2]) for idx in range(len(times))
]
topo_axes.append(fig.add_subplot(gs[0, -1]))
ts_axis = fig.add_subplot(gs[1:, 1:-1])
def get_axes_midpoints(axes):
midpoints = list()
for ax in axes[:-1]:
pos = ax.get_position()
midpoints.append([pos.x0 + (pos.width * 0.5), pos.y0 + (pos.height * 0.5)])
return np.array(midpoints)
midpoints_before = get_axes_midpoints(topo_axes)
evoked.plot_joint(
times=times,
ts_args={"axes": ts_axis},
topomap_args={"axes": topo_axes},
title=None,
)
midpoints_after = get_axes_midpoints(topo_axes)
assert (np.linalg.norm(midpoints_before - midpoints_after) < 0.1).all()
|