1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import sys
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal, assert_equal
from mne import (
Annotations,
Epochs,
make_fixed_length_events,
pick_types,
read_cov,
read_events,
)
from mne.io import read_raw_fif
from mne.preprocessing import ICA, create_ecg_epochs, create_eog_epochs
from mne.utils import _record_warnings, catch_logging
from mne.viz.ica import _create_properties_layout, plot_ica_properties
from mne.viz.utils import _fake_click, _fake_keypress
base_dir = Path(__file__).parents[2] / "io" / "tests" / "data"
evoked_fname = base_dir / "test-ave.fif"
raw_fname = base_dir / "test_raw.fif"
cov_fname = base_dir / "test-cov.fif"
event_name = base_dir / "test-eve.fif"
event_id, tmin, tmax = 1, -0.1, 0.2
raw_ctf_fname = base_dir / "test_ctf_raw.fif"
pytest.importorskip("sklearn")
def _get_raw(preload=False):
"""Get raw data."""
return read_raw_fif(raw_fname, preload=preload)
def _get_events():
"""Get events."""
return read_events(event_name)
def _get_picks(raw):
"""Get picks."""
return [0, 1, 2, 6, 7, 8, 12, 13, 14] # take a only few channels
def _get_epochs():
"""Get epochs."""
raw = _get_raw()
events = _get_events()
picks = _get_picks(raw)
with pytest.warns(RuntimeWarning, match="projection"):
epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks)
return epochs
def test_plot_ica_components():
"""Test plotting of ICA solutions."""
res = 8
fast_test = {"res": res, "contours": 0, "sensors": False}
raw = _get_raw()
ica = ICA(noise_cov=read_cov(cov_fname), n_components=8)
ica_picks = _get_picks(raw)
with pytest.warns(RuntimeWarning, match="(projection)|(unstable mixing matrix)"):
ica.fit(raw, picks=ica_picks)
for components in [0, [0], [0, 1], [0, 1] * 2, None]:
ica.plot_components(
components, image_interp="cubic", colorbar=True, **fast_test
)
plt.close("all")
# test interactive mode (passing 'inst' arg)
with catch_logging() as log:
ica.plot_components(
[0, 1],
image_interp="cubic",
inst=raw,
res=16,
verbose="debug",
ch_type="grad",
)
log = log.getvalue()
assert "grad data" in log
assert "extrapolation mode local to mean" in log
fig = plt.gcf()
# test title click
# ----------------
lbl = fig.axes[1].get_label()
ica_idx = int(lbl[-3:])
titles = [ax.title for ax in fig.axes]
title_pos_midpoint = (
titles[1].get_window_extent().extents.reshape((2, 2)).mean(axis=0)
)
# first click adds to exclude
_fake_click(fig, fig.axes[1], title_pos_midpoint, xform="pix")
assert ica_idx in ica.exclude
# clicking again removes from exclude
_fake_click(fig, fig.axes[1], title_pos_midpoint, xform="pix")
assert ica_idx not in ica.exclude
# test topo click
# ---------------
_fake_click(fig, fig.axes[1], (0.0, 0.0), xform="data")
c_fig = plt.gcf()
labels = [ax.get_label() for ax in c_fig.axes]
for label in ["topomap", "image", "erp", "spectrum", "variance"]:
assert label in labels
topomap_ax = c_fig.axes[labels.index("topomap")]
title = topomap_ax.get_title()
assert lbl.split(" ")[0] == title.split(" ")[0]
# test provided axes
_, ax = plt.subplots(1, 1)
ica.plot_components(axes=ax, picks=0, **fast_test)
_, ax = plt.subplots(2, 1)
ica.plot_components(axes=ax, picks=[0, 1], **fast_test)
_, ax = plt.subplots(2, 2)
ica.plot_components(axes=ax, picks=[0, 1, 2, 3], **fast_test)
_, ax = plt.subplots(3, 2)
ica.plot_components(
axes=ax, picks=[0, 1, 2, 3, 4, 5], nrows=2, ncols=2, **fast_test
)
ica.info = None
with pytest.raises(RuntimeError, match="fit the ICA"):
ica.plot_components(1, ch_type="mag")
@pytest.mark.slowtest
def test_plot_ica_properties():
"""Test plotting of ICA properties."""
raw = _get_raw(preload=True).crop(0, 5)
raw.add_proj([], remove_existing=True)
with raw.info._unlock():
raw.info["highpass"] = 1.0 # fake high-pass filtering
events = make_fixed_length_events(raw)
picks = _get_picks(raw)[:6]
pick_names = [raw.ch_names[k] for k in picks]
raw.pick(pick_names)
reject = dict(grad=4000e-13, mag=4e-12)
epochs = Epochs(
raw, events[:3], event_id, tmin, tmax, baseline=(None, 0), preload=True
)
ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_iter=1, random_state=0)
with _record_warnings(), pytest.warns(RuntimeWarning, match="projection"):
ica.fit(raw)
# test _create_properties_layout
fig, ax = _create_properties_layout()
assert_equal(len(ax), 5)
with pytest.raises(ValueError, match="specify both fig and figsize"):
_create_properties_layout(figsize=(2, 2), fig=fig)
topoargs = dict(topomap_args={"res": 4, "contours": 0, "sensors": False})
with catch_logging() as log:
ica.plot_properties(raw, picks=0, verbose="debug", **topoargs)
log = log.getvalue()
assert raw.ch_names[0] == "MEG 0113"
assert "extrapolation mode local to mean" in log, log
ica.plot_properties(epochs, picks=1, dB=False, plot_std=1.5, **topoargs)
fig = ica.plot_properties(
epochs,
picks=1,
image_args={"sigma": 1.5},
topomap_args=dict(res=4, colorbar=True),
psd_args={"fmax": 65.0},
plot_std=False,
log_scale=True,
figsize=[4.5, 4.5],
reject=reject,
)[0]
# test keypresses
ax_labels = [ax.get_label() for ax in fig.axes]
# test topomap change type
ax = fig.axes[ax_labels.index("topomap")]
assert ax.get_title() == "ICA001 (mag)"
_fake_keypress(fig, "t")
assert ax.get_title() == "ICA001 (grad)"
_fake_keypress(fig, "t")
assert ax.get_title() == "ICA001 (mag)"
# test log scale
ax = fig.axes[ax_labels.index("spectrum")]
assert ax.get_xscale() == "log"
_fake_keypress(fig, "l")
assert ax.get_xscale() == "linear"
_fake_keypress(fig, "l")
assert ax.get_xscale() == "log"
plt.close("all")
with pytest.raises(TypeError, match="must be an instance"):
ica.plot_properties(epochs, dB=list("abc"))
with pytest.raises(TypeError, match="must be an instance"):
ica.plot_properties(ica)
with pytest.raises(TypeError, match="must be an instance"):
ica.plot_properties([0.2])
with pytest.raises(TypeError, match="must be an instance"):
plot_ica_properties(epochs, epochs)
with pytest.raises(TypeError, match="must be an instance"):
ica.plot_properties(epochs, psd_args="not dict")
with pytest.raises(TypeError, match="must be an instance"):
ica.plot_properties(epochs, plot_std=[])
fig, ax = plt.subplots(2, 3)
ax = ax.ravel()[:-1]
ica.plot_properties(epochs, picks=1, axes=ax, **topoargs)
pytest.raises(TypeError, plot_ica_properties, epochs, ica, picks=[0, 1], axes=ax)
pytest.raises(ValueError, ica.plot_properties, epochs, axes="not axes")
plt.close("all")
# Test merging grads.
pick_names = raw.ch_names[:15:2] + raw.ch_names[1:15:2]
raw = _get_raw(preload=True).pick(pick_names)
raw.crop(0, 5)
raw.info.normalize_proj()
ica = ICA(random_state=0, max_iter=1)
with pytest.warns(UserWarning, match="did not converge"):
ica.fit(raw)
ica.plot_properties(raw)
plt.close("all")
# Test handling of zeros
ica = ICA(random_state=0, max_iter=1)
epochs.pick(pick_names)
with _record_warnings(), pytest.warns(UserWarning, match="did not converge"):
ica.fit(epochs)
epochs._data[0] = 0
# Usually UserWarning: Infinite value .* for epo
with _record_warnings():
ica.plot_properties(epochs, **topoargs)
plt.close("all")
# Test Raw with annotations
annot = Annotations(onset=[1], duration=[1], description=["BAD"])
raw_annot = _get_raw(preload=True).set_annotations(annot).crop(0, 8)
raw_annot.pick(np.arange(10))
raw_annot.del_proj()
with _record_warnings(), pytest.warns(UserWarning, match="did not converge"):
ica.fit(raw_annot)
# drop bad data segments
fig = ica.plot_properties(raw_annot, picks=[0, 1], **topoargs)
assert_equal(len(fig), 2)
# don't drop
ica.plot_properties(raw_annot, reject_by_annotation=False, **topoargs)
def test_plot_ica_sources(raw_orig, browser_backend, monkeypatch):
"""Test plotting of ICA panel."""
raw = raw_orig.copy().crop(0, 1)
picks = _get_picks(raw)
epochs = _get_epochs()
raw.pick([raw.ch_names[k] for k in picks])
ica_picks = pick_types(
raw.info, meg=True, eeg=False, stim=False, ecg=False, eog=False, exclude="bads"
)
ica = ICA(n_components=2)
ica.fit(raw, picks=ica_picks)
ica.exclude = [1]
if sys.platform == "darwin": # unknown transformation bug
monkeypatch.setenv("MNE_BROWSE_RAW_SIZE", "20,20")
fig = ica.plot_sources(raw)
assert browser_backend._get_n_figs() == 1
# change which component is in ICA.exclude (click data trace to remove
# current one; click name to add other one)
fig._redraw()
assert_array_equal(ica.exclude, [1])
assert fig.mne.info["bads"] == [ica._ica_names[1]]
x = fig.mne.traces[1].get_xdata()[5]
y = fig.mne.traces[1].get_ydata()[5]
fig._fake_click((x, y), xform="data") # exclude = []
assert fig.mne.info["bads"] == []
assert_array_equal(ica.exclude, [1]) # unchanged
fig._click_ch_name(ch_index=0, button=1) # exclude = [0]
assert fig.mne.info["bads"] == [ica._ica_names[0]]
assert_array_equal(ica.exclude, [1])
fig._fake_keypress(fig.mne.close_key)
fig._close_event()
assert browser_backend._get_n_figs() == 0
assert_array_equal(ica.exclude, [0])
# test when picks does not include ica.exclude.
ica.plot_sources(raw, picks=[1])
assert browser_backend._get_n_figs() == 1
browser_backend._close_all()
# dtype can change int->np.int64 after load, test it explicitly
ica.n_components_ = np.int64(ica.n_components_)
# test clicks on y-label (need >2 secs for plot_properties() to work)
long_raw = raw_orig.crop(0, 5)
fig = ica.plot_sources(long_raw)
assert browser_backend._get_n_figs() == 1
fig._redraw()
fig._click_ch_name(ch_index=0, button=3)
assert len(fig.mne.child_figs) == 1
assert browser_backend._get_n_figs() == 2
# close child fig directly (workaround for mpl issue #18609)
fig._fake_keypress("escape", fig=fig.mne.child_figs[0])
assert browser_backend._get_n_figs() == 1
fig._fake_keypress(fig.mne.close_key)
assert browser_backend._get_n_figs() == 0
del long_raw
# test with annotations and a measurement date
orig_annot = raw.annotations
raw.set_annotations(Annotations([0.2], [0.1], "Test"))
fig = ica.plot_sources(raw)
if browser_backend.name == "matplotlib":
assert len(fig.mne.ax_main.collections) == 1
assert len(fig.mne.ax_hscroll.collections) == 1
else:
assert len(fig.mne.regions) == 1
assert_allclose(fig.mne.regions[0].getRegion(), (0.2, 0.3))
# test with annotations and no measurement date
orig_meas_date = raw.info["meas_date"]
raw.set_meas_date(None)
assert raw.first_samp != 0
raw.set_annotations(Annotations([0.2], [0.1], "Test"))
fig = ica.plot_sources(raw)
if browser_backend.name == "matplotlib":
assert len(fig.mne.ax_main.collections) == 1
assert len(fig.mne.ax_hscroll.collections) == 1
else:
assert len(fig.mne.regions) == 1
assert_allclose(fig.mne.regions[0].getRegion(), (0.2, 0.3))
raw.set_meas_date(orig_meas_date)
raw.set_annotations(orig_annot)
# test error handling
raw_ = raw.copy().load_data()
raw_.drop_channels("MEG 0113")
with pytest.raises(ValueError, match="could not be picked"):
ica.plot_sources(inst=raw_)
epochs_ = epochs.copy().load_data()
epochs_.drop_channels("MEG 0113")
with pytest.raises(ValueError, match="could not be picked"):
ica.plot_sources(inst=epochs_)
del raw_
del epochs_
# test w/ epochs and evokeds
ica.plot_sources(epochs)
ica.plot_sources(epochs.average())
evoked = epochs.average()
ica.exclude = [0]
fig = ica.plot_sources(evoked)
# Test a click
ax = fig.get_axes()[0]
line = ax.lines[0]
_fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], "data")
_fake_click(fig, ax, [ax.get_xlim()[0], ax.get_ylim()[1]], "data")
leg = ax.get_legend()
assert len(leg.get_texts()) == len(ica.exclude) == 1
# test passing psd_args argument
ica.plot_sources(epochs, psd_args=dict(fmax=50))
# plot with bad channels excluded
ica.exclude = [0]
ica.plot_sources(evoked)
# regression test for `IndexError` when passing non-consecutive picks or consecutive
# picks not including `0` (https://github.com/mne-tools/mne-python/pull/11808)
ica.plot_sources(evoked, picks=1)
# pretend find_bads_eog() yielded some results
ica.labels_ = {"eog": [0], "eog/0/crazy-channel": [0]}
ica.plot_sources(evoked) # now with labels
# pass an invalid inst
with pytest.raises(ValueError, match="must be of Raw or Epochs type"):
ica.plot_sources("meeow")
@pytest.mark.slowtest
def test_plot_ica_overlay():
"""Test plotting of ICA cleaning."""
raw = _get_raw(preload=True)
with raw.info._unlock():
raw.info["highpass"] = 1.0 # fake high-pass filtering
picks = _get_picks(raw)
ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, random_state=0)
# overlay plotting requires a fitted ICA
with pytest.raises(RuntimeError, match="need to fit"):
ica.plot_overlay(inst=raw)
# can't use info.normalize_proj here because of how and when ICA and Epochs
# objects do picking of Raw data
with pytest.warns(RuntimeWarning, match="projection"):
ica.fit(raw, picks=picks)
# don't test raw, needs preload ...
with pytest.warns(RuntimeWarning, match="projection"):
ecg_epochs = create_ecg_epochs(raw, picks=picks)
ica.plot_overlay(ecg_epochs.average())
with pytest.warns(RuntimeWarning, match="projection"):
eog_epochs = create_eog_epochs(raw, picks=picks)
ica.plot_overlay(eog_epochs.average(), n_pca_components=2)
pytest.raises(TypeError, ica.plot_overlay, raw[:2, :3][0])
pytest.raises(TypeError, ica.plot_overlay, raw, exclude=2)
ica.plot_overlay(raw)
plt.close("all")
# smoke test for CTF
raw = read_raw_fif(raw_ctf_fname)
raw.apply_gradient_compensation(3)
with raw.info._unlock():
raw.info["highpass"] = 1.0 # fake high-pass filtering
picks = pick_types(raw.info, meg=True, ref_meg=False)
ica = ICA(
n_components=2,
)
ica.fit(raw, picks=picks)
with pytest.warns(RuntimeWarning, match="longer than"):
ecg_epochs = create_ecg_epochs(raw)
ica.plot_overlay(ecg_epochs.average())
def _get_geometry(fig):
try:
return fig.axes[0].get_subplotspec().get_geometry() # pragma: no cover
except AttributeError: # MPL < 3.4 (probably)
return fig.axes[0].get_geometry() # pragma: no cover
def test_plot_ica_scores():
"""Test plotting of ICA scores."""
raw = _get_raw()
picks = _get_picks(raw)
ica = ICA(noise_cov=read_cov(cov_fname), n_components=2)
with pytest.warns(RuntimeWarning, match="projection"):
ica.fit(raw, picks=picks)
ica.plot_scores([0.3, 0.2], axhline=[0.1, -0.1], figsize=(6.4, 2.7))
ica.plot_scores([[0.3, 0.2], [0.3, 0.2]], axhline=[0.1, -0.1])
# check labels
ica.labels_ = dict()
ica.labels_["eog"] = 0
ica.labels_["ecg"] = 1
ica.plot_scores([0.3, 0.2], axhline=[0.1, -0.1], labels="eog")
ica.plot_scores([0.3, 0.2], axhline=[0.1, -0.1], labels="ecg")
ica.labels_["eog/0/foo"] = 0
ica.labels_["ecg/1/bar"] = 0
ica.plot_scores([0.3, 0.2], axhline=[0.1, -0.1], labels="foo")
ica.plot_scores([0.3, 0.2], axhline=[0.1, -0.1], labels="eog")
ica.plot_scores([0.3, 0.2], axhline=[0.1, -0.1], labels="ecg")
# check setting number of columns
fig = ica.plot_scores([[0.3, 0.2], [0.3, 0.2], [0.3, 0.2]], axhline=[0.1, -0.1])
assert 2 == _get_geometry(fig)[1]
fig = ica.plot_scores([[0.3, 0.2], [0.3, 0.2]], axhline=[0.1, -0.1], n_cols=1)
assert 1 == _get_geometry(fig)[1]
# only use 1 column (even though 2 were requested)
fig = ica.plot_scores([0.3, 0.2], axhline=[0.1, -0.1], n_cols=2)
assert 1 == _get_geometry(fig)[1]
with pytest.raises(ValueError, match="Need as many"):
ica.plot_scores([0.3, 0.2], axhline=[0.1, -0.1], labels=["one", "one-too-many"])
with pytest.raises(ValueError, match="The length of"):
ica.plot_scores([0.2])
def test_plot_instance_components(browser_backend):
"""Test plotting of components as instances of raw and epochs."""
raw = _get_raw()
picks = _get_picks(raw)
ica = ICA(noise_cov=read_cov(cov_fname), n_components=2)
with pytest.warns(RuntimeWarning, match="projection"):
ica.fit(raw, picks=picks)
ica.exclude = [0]
fig = ica.plot_sources(raw, title="Components")
keys = (
"home",
"home",
"end",
"down",
"up",
"right",
"left",
"-",
"+",
"=",
"d",
"d",
"pageup",
"pagedown",
"z",
"z",
"s",
"s",
"b",
)
for key in keys:
fig._fake_keypress(key)
x = fig.mne.traces[0].get_xdata()[0]
y = fig.mne.traces[0].get_ydata()[0]
fig._fake_click((x, y), xform="data")
fig._click_ch_name(ch_index=0, button=1)
fig._fake_keypress("escape")
browser_backend._close_all()
epochs = _get_epochs()
fig = ica.plot_sources(epochs, title="Components")
for key in keys:
fig._fake_keypress(key)
# Test a click
x = fig.mne.traces[0].get_xdata()[0]
y = fig.mne.traces[0].get_ydata()[0]
fig._fake_click((x, y), xform="data")
fig._click_ch_name(ch_index=0, button=1)
fig._fake_keypress("escape")
|