File: topo.py

package info (click to toggle)
python-mne 1.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 131,492 kB
  • sloc: python: 213,302; javascript: 12,910; sh: 447; makefile: 144
file content (1309 lines) | stat: -rw-r--r-- 40,324 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
"""Functions to plot M/EEG data on topo (one axes per channel)."""

# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

from copy import deepcopy
from functools import partial

import numpy as np
from scipy import ndimage

from .._fiff.pick import _picks_to_idx, channel_type, pick_types
from ..defaults import _handle_default
from ..utils import Bunch, _check_option, _clean_names, _is_numeric, _to_rgb, fill_doc
from .utils import (
    DraggableColorbar,
    _check_cov,
    _check_delayed_ssp,
    _draw_proj_checkbox,
    _plot_masked_image,
    _setup_ax_spines,
    _setup_vmin_vmax,
    add_background_image,
    plt_show,
)


@fill_doc
def iter_topography(
    info,
    layout=None,
    on_pick=None,
    fig=None,
    fig_facecolor="k",
    axis_facecolor="k",
    axis_spinecolor="k",
    layout_scale=None,
    legend=False,
):
    """Create iterator over channel positions.

    This function returns a generator that unpacks into
    a series of matplotlib axis objects and data / channel
    indices, both corresponding to the sensor positions
    of the related layout passed or inferred from the channel info.
    Hence, this enables convenient topography plot customization.

    Parameters
    ----------
    %(info_not_none)s
    layout : instance of mne.channels.Layout | None
        The layout to use. If None, layout will be guessed.
    on_pick : callable | None
        The callback function to be invoked on clicking one
        of the axes. Is supposed to instantiate the following
        API: ``function(axis, channel_index)``.
    fig : matplotlib.figure.Figure | None
        The figure object to be considered. If None, a new
        figure will be created.
    fig_facecolor : color
        The figure face color. Defaults to black.
    axis_facecolor : color
        The axis face color. Defaults to black.
    axis_spinecolor : color
        The axis spine color. Defaults to black. In other words,
        the color of the axis' edge lines.
    layout_scale : float | None
        Scaling factor for adjusting the relative size of the layout
        on the canvas. If None, nothing will be scaled.
    legend : bool
        If True, an additional axis is created in the bottom right corner
        that can be used to, e.g., construct a legend. The index of this
        axis will be -1.

    Returns
    -------
    gen : generator
        A generator that can be unpacked into:

        ax : matplotlib.axis.Axis
            The current axis of the topo plot.
        ch_dx : int
            The related channel index.
    """
    return _iter_topography(
        info,
        layout,
        on_pick,
        fig,
        fig_facecolor,
        axis_facecolor,
        axis_spinecolor,
        layout_scale,
        legend=legend,
    )


def _legend_axis(pos):
    """Add a legend axis to the bottom right."""
    import matplotlib.pyplot as plt

    left, bottom = pos[:, 0].max(), pos[:, 1].min()
    # check if legend axis overlaps a data axis
    overlaps = False
    for _pos in pos:
        h_overlap = _pos[0] <= left <= (_pos[0] + _pos[2])
        v_overlap = _pos[1] <= bottom <= (_pos[1] + _pos[3])
        if h_overlap and v_overlap:
            overlaps = True
            break
    if overlaps:
        left += 1.2 * _pos[2]
    wid, hei = pos[-1, 2:]
    return plt.axes([left, bottom, wid, hei])


def _iter_topography(
    info,
    layout,
    on_pick,
    fig,
    fig_facecolor="k",
    axis_facecolor="k",
    axis_spinecolor="k",
    layout_scale=None,
    unified=False,
    img=False,
    axes=None,
    legend=False,
):
    """Iterate over topography.

    Has the same parameters as iter_topography, plus:

    unified : bool
        If False (default), multiple matplotlib axes will be used.
        If True, a single axis will be constructed. The former is
        useful for custom plotting, the latter for speed.
    """
    from matplotlib import collections
    from matplotlib import pyplot as plt

    from ..channels.layout import find_layout

    if fig is None:
        # Don't use constrained layout because we place axes manually
        fig = plt.figure(layout=None)

    def format_coord_unified(x, y, pos=None, ch_names=None):
        """Update status bar with channel name under cursor."""
        # find candidate channels (ones that are down and left from cursor)
        pdist = np.array([x, y]) - pos[:, :2]
        pind = np.where((pdist >= 0).all(axis=1))[0]
        if len(pind) > 0:
            # find the closest channel
            closest = pind[np.sum(pdist[pind, :] ** 2, axis=1).argmin()]
            # check whether we are inside its box
            in_box = (pdist[closest, :] < pos[closest, 2:]).all()
        else:
            in_box = False
        return (
            f"{ch_names[closest]} (click to magnify)" if in_box else "No channel here"
        )

    def format_coord_multiaxis(x, y, ch_name=None):
        """Update status bar with channel name under cursor."""
        return f"{ch_name} (click to magnify)"

    fig.set_facecolor(fig_facecolor)
    if layout is None:
        layout = find_layout(info)

    if on_pick is not None:
        callback = partial(_plot_topo_onpick, show_func=on_pick)
        fig.canvas.mpl_connect("button_press_event", callback)

    pos = layout.pos.copy()
    if layout_scale:
        pos[:, :2] *= layout_scale

    ch_names = _clean_names(info["ch_names"])
    iter_ch = [(x, y) for x, y in enumerate(layout.names) if y in ch_names]
    if unified:
        if axes is None:
            under_ax = plt.axes([0, 0, 1, 1])
            under_ax.axis("off")
        else:
            under_ax = axes
        under_ax.format_coord = partial(
            format_coord_unified, pos=pos, ch_names=layout.names
        )
        under_ax.set(xlim=[0, 1], ylim=[0, 1])

        axs = list()
    for idx, name in iter_ch:
        ch_idx = ch_names.index(name)
        if not unified:  # old, slow way
            ax = plt.axes(pos[idx])
            ax.patch.set_facecolor(axis_facecolor)
            for spine in ax.spines.values():
                spine.set_color(axis_spinecolor)
            if not legend:
                ax.set(xticklabels=[], yticklabels=[])
                for tick in ax.get_xticklines() + ax.get_yticklines():
                    tick.set_visible(False)
            ax._mne_ch_name = name
            ax._mne_ch_idx = ch_idx
            ax._mne_ax_face_color = axis_facecolor
            ax.format_coord = partial(format_coord_multiaxis, ch_name=name)
            yield ax, ch_idx
        else:
            ax = Bunch(
                ax=under_ax,
                pos=pos[idx],
                data_lines=list(),
                _mne_ch_name=name,
                _mne_ch_idx=ch_idx,
                _mne_ax_face_color=axis_facecolor,
            )
            axs.append(ax)
    if not unified and legend:
        ax = _legend_axis(pos)
        yield ax, -1

    if unified:
        under_ax._mne_axs = axs
        # Create a PolyCollection for the axis backgrounds
        verts = np.transpose(
            [
                pos[:, :2],
                pos[:, :2] + pos[:, 2:] * [1, 0],
                pos[:, :2] + pos[:, 2:],
                pos[:, :2] + pos[:, 2:] * [0, 1],
            ],
            [1, 0, 2],
        )
        if not img:
            under_ax.add_collection(
                collections.PolyCollection(
                    verts,
                    facecolor=axis_facecolor,
                    edgecolor=axis_spinecolor,
                    linewidth=1.0,
                )
            )  # Not needed for image plots.
        for ax in axs:
            yield ax, ax._mne_ch_idx


def _plot_topo(
    info,
    times,
    show_func,
    click_func=None,
    layout=None,
    vmin=None,
    vmax=None,
    ylim=None,
    colorbar=None,
    border="none",
    axis_facecolor="k",
    fig_facecolor="k",
    cmap="RdBu_r",
    layout_scale=None,
    title=None,
    x_label=None,
    y_label=None,
    font_color="w",
    unified=False,
    img=False,
    axes=None,
):
    """Plot on sensor layout."""
    import matplotlib.pyplot as plt

    if layout.kind == "custom":
        layout = deepcopy(layout)
        layout.pos[:, :2] -= layout.pos[:, :2].min(0)
        layout.pos[:, :2] /= layout.pos[:, :2].max(0)

    # prepare callbacks
    tmin, tmax = times[0], times[-1]
    click_func = show_func if click_func is None else click_func
    on_pick = partial(
        click_func,
        tmin=tmin,
        tmax=tmax,
        vmin=vmin,
        vmax=vmax,
        ylim=ylim,
        x_label=x_label,
        y_label=y_label,
    )

    if axes is None:
        # Don't use constrained layout because we place axes manually
        fig = plt.figure(layout=None)
        axes = plt.axes([0.015, 0.025, 0.97, 0.95])
        axes.set_facecolor(fig_facecolor)
    else:
        fig = axes.figure
    if colorbar:
        sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin, vmax))
        sm.set_array(np.linspace(vmin, vmax))
        cb = fig.colorbar(
            sm, ax=axes, pad=0.025, fraction=0.075, shrink=0.5, anchor=(-1, 0.5)
        )
        cb_yticks = plt.getp(cb.ax.axes, "yticklabels")
        plt.setp(cb_yticks, color=font_color)
    axes.axis("off")

    my_topo_plot = _iter_topography(
        info,
        layout=layout,
        on_pick=on_pick,
        fig=fig,
        layout_scale=layout_scale,
        axis_spinecolor=border,
        axis_facecolor=axis_facecolor,
        fig_facecolor=fig_facecolor,
        unified=unified,
        img=img,
        axes=axes,
    )

    for ax, ch_idx in my_topo_plot:
        if layout.kind == "Vectorview-all" and ylim is not None:
            ylim_ = ylim.get(channel_type(info, ch_idx))
        else:
            ylim_ = ylim

        show_func(ax, ch_idx, tmin=tmin, tmax=tmax, vmin=vmin, vmax=vmax, ylim=ylim_)

    if title is not None:
        plt.figtext(0.03, 0.95, title, color=font_color, fontsize=15, va="top")

    return fig


def _plot_topo_onpick(event, show_func):
    """Onpick callback that shows a single channel in a new figure."""
    # make sure that the swipe gesture in OS-X doesn't open many figures
    orig_ax = event.inaxes
    import matplotlib.pyplot as plt

    try:
        if hasattr(orig_ax, "_mne_axs"):  # in unified, single-axes mode
            x, y = event.xdata, event.ydata
            for ax in orig_ax._mne_axs:
                if (
                    x >= ax.pos[0]
                    and y >= ax.pos[1]
                    and x <= ax.pos[0] + ax.pos[2]
                    and y <= ax.pos[1] + ax.pos[3]
                ):
                    orig_ax = ax
                    break
            else:
                # no axis found
                return
        elif not hasattr(orig_ax, "_mne_ch_idx"):
            # neither old nor new mode
            return
        ch_idx = orig_ax._mne_ch_idx
        face_color = orig_ax._mne_ax_face_color
        fig, ax = plt.subplots(1)

        plt.title(orig_ax._mne_ch_name)
        ax.set_facecolor(face_color)

        # allow custom function to override parameters
        show_func(ax, ch_idx)
        plt_show(fig=fig)

    except Exception as err:
        # matplotlib silently ignores exceptions in event handlers,
        # so we print
        # it here to know what went wrong
        print(err)
        raise


def _compute_ax_scalings(bn, xlim, ylim):
    """Compute scale factors for a unified plot."""
    if isinstance(ylim, dict):
        # Take the first (ymin, ymax) entry.
        ylim = next(iter(ylim.values()))
    pos = bn.pos
    bn.x_s = pos[2] / (xlim[1] - xlim[0])
    bn.x_t = pos[0] - bn.x_s * xlim[0]
    bn.y_s = pos[3] / (ylim[1] - ylim[0])
    bn.y_t = pos[1] - bn.y_s * ylim[0]


def _imshow_tfr(
    ax,
    ch_idx,
    tmin,
    tmax,
    vmin,
    vmax,
    onselect,
    *,
    ylim=None,
    tfr=None,
    freq=None,
    x_label=None,
    y_label=None,
    colorbar=False,
    cmap=("RdBu_r", True),
    yscale="auto",
    mask=None,
    mask_style="both",
    mask_cmap="Greys",
    mask_alpha=0.1,
    cnorm=None,
):
    """Show time-frequency map as two-dimensional image."""
    from matplotlib.widgets import RectangleSelector

    _check_option("yscale", yscale, ["auto", "linear", "log"])

    cmap, interactive_cmap = cmap
    times = np.linspace(tmin, tmax, num=tfr[ch_idx].shape[1])

    img, t_end = _plot_masked_image(
        ax,
        tfr[ch_idx],
        times,
        mask,
        yvals=freq,
        cmap=cmap,
        vmin=vmin,
        vmax=vmax,
        mask_style=mask_style,
        mask_alpha=mask_alpha,
        mask_cmap=mask_cmap,
        yscale=yscale,
        cnorm=cnorm,
    )

    if x_label is not None:
        ax.set_xlabel(x_label)
    if y_label is not None:
        ax.set_ylabel(y_label)
    if colorbar:
        if isinstance(colorbar, DraggableColorbar):
            cbar = colorbar.cbar  # this happens with multiaxes case
        else:
            cbar = ax.get_figure().colorbar(mappable=img, ax=ax)
        if interactive_cmap:
            ax.CB = DraggableColorbar(cbar, img, kind="tfr_image", ch_type=None)
    ax.RS = RectangleSelector(ax, onselect=onselect)  # reference must be kept

    return t_end


def _imshow_tfr_unified(
    bn,
    ch_idx,
    tmin,
    tmax,
    vmin,
    vmax,
    onselect,
    *,
    ylim=None,
    tfr=None,
    freq=None,
    vline=None,
    x_label=None,
    y_label=None,
    colorbar=False,
    picker=True,
    cmap="RdBu_r",
    title=None,
    hline=None,
):
    """Show multiple tfrs on topo using a single axes."""
    _compute_ax_scalings(bn, (tmin, tmax), (freq[0], freq[-1]))
    ax = bn.ax
    data_lines = bn.data_lines
    extent = (
        bn.x_t + bn.x_s * tmin,
        bn.x_t + bn.x_s * tmax,
        bn.y_t + bn.y_s * freq[0],
        bn.y_t + bn.y_s * freq[-1],
    )
    data_lines.append(
        ax.imshow(
            tfr[ch_idx],
            extent=extent,
            aspect="auto",
            origin="lower",
            vmin=vmin,
            vmax=vmax,
            cmap=cmap,
        )
    )
    data_lines[-1].set_clip_box(_pos_to_bbox(bn.pos, ax))


def _plot_timeseries(
    ax,
    ch_idx,
    tmin,
    tmax,
    vmin,
    vmax,
    ylim,
    data,
    color,
    times,
    vline=None,
    x_label=None,
    y_label=None,
    colorbar=False,
    hline=None,
    hvline_color="w",
    labels=None,
):
    """Show time series on topo split across multiple axes."""
    import matplotlib.pyplot as plt

    picker_flag = False
    for data_, color_, times_ in zip(data, color, times):
        if not picker_flag:
            # use large tol for picker so we can click anywhere in the axes
            line = ax.plot(times_, data_[ch_idx], color=color_, picker=True)[0]
            line.set_pickradius(1e9)
            picker_flag = True
        else:
            ax.plot(times_, data_[ch_idx], color=color_)

    def _format_coord(x, y, labels, ax):
        """Create status string based on cursor coordinates."""
        # find indices for datasets near cursor (if any)
        tdiffs = [np.abs(tvec - x).min() for tvec in times]
        nearby = [k for k, tdiff in enumerate(tdiffs) if tdiff < (tmax - tmin) / 100]
        xlabel = ax.get_xlabel()
        xunit = (
            xlabel[xlabel.find("(") + 1 : xlabel.find(")")]
            if "(" in xlabel and ")" in xlabel
            else "s"
        )
        timestr = f"{x:6.3f} {xunit}: "
        if not nearby:
            return f"{timestr} Nothing here"
        labels = [""] * len(nearby) if labels is None else labels
        nearby_data = [(data[n], labels[n], times[n]) for n in nearby]
        ylabel = ax.get_ylabel()
        yunit = (
            ylabel[ylabel.find("(") + 1 : ylabel.find(")")]
            if "(" in ylabel and ")" in ylabel
            else ""
        )
        # try to estimate whether to truncate condition labels
        slen = 9 + len(xunit) + sum([12 + len(yunit) + len(label) for label in labels])
        bar_width = (ax.figure.get_size_inches() * ax.figure.dpi)[0] / 5.5
        # show labels and y values for datasets near cursor
        trunc_labels = bar_width < slen
        s = timestr
        for data_, label, tvec in nearby_data:
            idx = np.abs(tvec - x).argmin()
            s += f"{data_[ch_idx, idx]:7.2f} {yunit}"
            if trunc_labels:
                label = label if len(label) <= 10 else f"{label[:6]}..{label[-2:]}"
            s += f" [{label}] " if label else " "
        return s

    ax.format_coord = lambda x, y: _format_coord(x, y, labels=labels, ax=ax)

    def _cursor_vline(event):
        """Draw cursor (vertical line)."""
        ax = event.inaxes
        if not ax:
            return
        if ax._cursorline is not None:
            ax._cursorline.remove()
        ax._cursorline = ax.axvline(event.xdata, color=ax._cursorcolor)
        ax.figure.canvas.draw()

    def _rm_cursor(event):
        ax = event.inaxes
        if ax._cursorline is not None:
            ax._cursorline.remove()
            ax._cursorline = None
        ax.figure.canvas.draw()

    ax._cursorline = None
    # choose cursor color based on perceived brightness of background
    facecol = _to_rgb(ax.get_facecolor())
    face_brightness = np.dot(facecol, [299, 587, 114])
    ax._cursorcolor = "white" if face_brightness < 150 else "black"

    plt.connect("motion_notify_event", _cursor_vline)
    plt.connect("axes_leave_event", _rm_cursor)

    ymin, ymax = ax.get_ylim()
    # don't pass vline or hline here (this fxn doesn't do hvline_color):
    _setup_ax_spines(ax, [], tmin, tmax, ymin, ymax, hline=False)
    ax.figure.set_facecolor("k" if hvline_color == "w" else "w")
    ax.spines["bottom"].set_color(hvline_color)
    ax.spines["left"].set_color(hvline_color)
    ax.tick_params(axis="x", colors=hvline_color, which="both")
    ax.tick_params(axis="y", colors=hvline_color, which="both")
    ax.title.set_color(hvline_color)
    ax.xaxis.label.set_color(hvline_color)
    ax.yaxis.label.set_color(hvline_color)

    if x_label is not None:
        ax.set_xlabel(x_label)

    if y_label is not None:
        if isinstance(y_label, list):
            ax.set_ylabel(y_label[ch_idx])
        else:
            ax.set_ylabel(y_label)

    if vline is not None:
        vline = [vline] if _is_numeric(vline) else vline
        for vline_ in vline:
            plt.axvline(vline_, color=hvline_color, linewidth=1.0, linestyle="--")
    if hline is not None:
        hline = [hline] if _is_numeric(hline) else hline
        for hline_ in hline:
            plt.axhline(hline_, color=hvline_color, linewidth=1.0, zorder=10)

    if colorbar:
        plt.colorbar()


def _plot_timeseries_unified(
    bn,
    ch_idx,
    tmin,
    tmax,
    vmin,
    vmax,
    ylim,
    data,
    color,
    times,
    vline=None,
    x_label=None,
    y_label=None,
    colorbar=False,
    hline=None,
    hvline_color="w",
):
    """Show multiple time series on topo using a single axes."""
    import matplotlib.pyplot as plt

    if not (ylim and not any(v is None for v in ylim)):
        ylim = [min(np.min(d) for d in data), max(np.max(d) for d in data)]
    # Translation and scale parameters to take data->under_ax normalized coords
    _compute_ax_scalings(bn, (tmin, tmax), ylim)
    pos = bn.pos
    data_lines = bn.data_lines
    ax = bn.ax
    for data_, color_, times_ in zip(data, color, times):
        data_lines.append(
            ax.plot(
                bn.x_t + bn.x_s * times_,
                bn.y_t + bn.y_s * data_[ch_idx],
                linewidth=0.5,
                color=color_,
            )[0]
        )
        # Needs to be done afterward for some reason (probable matlotlib bug)
        data_lines[-1].set_clip_box(_pos_to_bbox(pos, ax))
    if vline:
        vline = np.array(vline) * bn.x_s + bn.x_t
        ax.vlines(
            vline,
            pos[1],
            pos[1] + pos[3],
            color=hvline_color,
            linewidth=0.5,
            linestyle="--",
        )
    if hline:
        hline = np.array(hline) * bn.y_s + bn.y_t
        ax.hlines(hline, pos[0], pos[0] + pos[2], color=hvline_color, linewidth=0.5)
    if x_label is not None:
        ax.text(
            pos[0] + pos[2] / 2.0,
            pos[1],
            x_label,
            horizontalalignment="center",
            verticalalignment="top",
        )
    if y_label is not None:
        y_label = y_label[ch_idx] if isinstance(y_label, list) else y_label
        ax.text(
            pos[0],
            pos[1] + pos[3] / 2.0,
            y_label,
            horizontalignment="right",
            verticalalignment="middle",
            rotation=90,
        )
    if colorbar:
        plt.colorbar()


def _erfimage_imshow(
    ax,
    ch_idx,
    tmin,
    tmax,
    vmin,
    vmax,
    ylim=None,
    data=None,
    epochs=None,
    sigma=None,
    order=None,
    scalings=None,
    vline=None,
    x_label=None,
    y_label=None,
    colorbar=False,
    cmap="RdBu_r",
    vlim_array=None,
):
    """Plot erfimage on sensor topography."""
    import matplotlib.pyplot as plt

    this_data = data[:, ch_idx, :]
    if vlim_array is not None:
        vmin, vmax = vlim_array[ch_idx]

    if callable(order):
        order = order(epochs.times, this_data)

    if order is not None:
        this_data = this_data[order]

    if sigma > 0.0:
        this_data = ndimage.gaussian_filter1d(this_data, sigma=sigma, axis=0)

    img = ax.imshow(
        this_data,
        extent=[tmin, tmax, 0, len(data)],
        aspect="auto",
        origin="lower",
        vmin=vmin,
        vmax=vmax,
        picker=True,
        cmap=cmap,
        interpolation="nearest",
    )

    ax = plt.gca()
    if x_label is not None:
        ax.set_xlabel(x_label)
    if y_label is not None:
        ax.set_ylabel(y_label)
    if colorbar:
        plt.colorbar(mappable=img)


def _erfimage_imshow_unified(
    bn,
    ch_idx,
    tmin,
    tmax,
    vmin,
    vmax,
    ylim=None,
    data=None,
    epochs=None,
    sigma=None,
    order=None,
    scalings=None,
    vline=None,
    x_label=None,
    y_label=None,
    colorbar=False,
    cmap="RdBu_r",
    vlim_array=None,
):
    """Plot erfimage topography using a single axis."""
    _compute_ax_scalings(bn, (tmin, tmax), (0, len(epochs.events)))
    ax = bn.ax
    data_lines = bn.data_lines
    extent = (
        bn.x_t + bn.x_s * tmin,
        bn.x_t + bn.x_s * tmax,
        bn.y_t,
        bn.y_t + bn.y_s * len(epochs.events),
    )
    this_data = data[:, ch_idx, :]
    vmin, vmax = (None, None) if vlim_array is None else vlim_array[ch_idx]

    if callable(order):
        order = order(epochs.times, this_data)

    if order is not None:
        this_data = this_data[order]

    if sigma > 0.0:
        this_data = ndimage.gaussian_filter1d(this_data, sigma=sigma, axis=0)

    data_lines.append(
        ax.imshow(
            this_data,
            extent=extent,
            aspect="auto",
            origin="lower",
            vmin=vmin,
            vmax=vmax,
            picker=True,
            cmap=cmap,
            interpolation="nearest",
        )
    )


def _plot_evoked_topo(
    evoked,
    layout=None,
    layout_scale=0.945,
    color=None,
    border="none",
    ylim=None,
    scalings=None,
    title=None,
    proj=False,
    vline=(0.0,),
    hline=(0.0,),
    fig_facecolor="k",
    fig_background=None,
    axis_facecolor="k",
    font_color="w",
    merge_channels=False,
    legend=True,
    axes=None,
    exclude="bads",
    show=True,
    noise_cov=None,
):
    """Plot 2D topography of evoked responses.

    Clicking on the plot of an individual sensor opens a new figure showing
    the evoked response for the selected sensor.

    Parameters
    ----------
    evoked : list of Evoked | Evoked
        The evoked response to plot.
    layout : instance of Layout | None
        Layout instance specifying sensor positions (does not need to
        be specified for Neuromag data). If possible, the correct layout is
        inferred from the data.
    layout_scale : float
        Scaling factor for adjusting the relative size of the layout
        on the canvas.
    color : list of color objects | color object | None
        Everything matplotlib accepts to specify colors. If not list-like,
        the color specified will be repeated. If None, colors are
        automatically drawn.
    border : str
        Matplotlib borders style to be used for each sensor plot.
    ylim : dict | None
        ylim for plots (after scaling has been applied). The value
        determines the upper and lower subplot limits. e.g.
        ylim = dict(eeg=[-20, 20]). Valid keys are eeg, mag, grad. If None,
        the ylim parameter for each channel type is determined by the minimum
        and maximum peak.
    scalings : dict | None
        The scalings of the channel types to be applied for plotting. If None,`
        defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``.
    title : str
        Title of the figure.
    proj : bool | 'interactive'
        If true SSP projections are applied before display. If 'interactive',
        a check box for reversible selection of SSP projection vectors will
        be shown.
    vline : list of floats | None
        The values at which to show a vertical line.
    hline : list of floats | None
        The values at which to show a horizontal line.
    fig_facecolor : color
        The figure face color. Defaults to black.
    fig_background : None | array
        A background image for the figure. This must be a valid input to
        `matplotlib.pyplot.imshow`. Defaults to None.
    axis_facecolor : color
        The face color to be used for each sensor plot. Defaults to black.
    font_color : color
        The color of text in the colorbar and title. Defaults to white.
    merge_channels : bool
        Whether to use RMS value of gradiometer pairs. Only works for Neuromag
        data. Defaults to False.
    legend : bool | int | string | tuple
        If True, create a legend based on evoked.comment. If False, disable the
        legend. Otherwise, the legend is created and the parameter value is
        passed as the location parameter to the matplotlib legend call. It can
        be an integer (e.g. 0 corresponds to upper right corner of the plot),
        a string (e.g. 'upper right'), or a tuple (x, y coordinates of the
        lower left corner of the legend in the axes coordinate system).
        See matplotlib documentation for more details.
    axes : instance of matplotlib Axes | None
        Axes to plot into. If None, axes will be created.
    noise_cov : instance of Covariance | str | None
        Noise covariance used to whiten the data while plotting.
        Whitened data channels names are shown in italic.
        Can be a string to load a covariance from disk.
    exclude : list of str | 'bads'
        Channels names to exclude from being shown. If 'bads', the
        bad channels are excluded. By default, exclude is set to 'bads'.
    show : bool
        Show figure if True.

        .. versionadded:: 0.16.0

    Returns
    -------
    fig : instance of matplotlib.figure.Figure
        Images of evoked responses at sensor locations
    """
    import matplotlib.pyplot as plt

    from ..channels.layout import _merge_ch_data, _pair_grad_sensors, find_layout
    from ..cov import whiten_evoked

    if type(evoked) not in (tuple, list):
        evoked = [evoked]

    noise_cov = _check_cov(noise_cov, evoked[0].info)
    if noise_cov is not None:
        evoked = [whiten_evoked(e, noise_cov) for e in evoked]
    else:
        evoked = [e.copy() for e in evoked]
    info = evoked[0].info
    ch_names = evoked[0].ch_names
    scalings = _handle_default("scalings", scalings)
    if not all(e.ch_names == ch_names for e in evoked):
        raise ValueError("All evoked.picks must be the same")
    ch_names = _clean_names(ch_names)
    if merge_channels:
        picks = _pair_grad_sensors(info, topomap_coords=False, exclude=exclude)
        chs = list()
        for pick in picks[::2]:
            ch = info["chs"][pick]
            ch["ch_name"] = ch["ch_name"][:-1] + "X"
            chs.append(ch)
        with info._unlock(update_redundant=True, check_after=True):
            info["chs"] = chs
            info["bads"] = list()  # Bads handled by pair_grad_sensors
        new_picks = list()
        for e in evoked:
            data, _ = _merge_ch_data(e.data[picks], "grad", [])
            if noise_cov is None:
                data *= scalings["grad"]
            e.data = data
            new_picks.append(range(len(data)))
        picks = new_picks
        types_used = ["grad"]
        unit = _handle_default("units")["grad"] if noise_cov is None else "NA"
        y_label = f"RMS amplitude ({unit})"

    if layout is None:
        layout = find_layout(info, exclude=exclude)
    else:
        layout = layout.pick(
            "all",
            exclude=_picks_to_idx(
                info,
                exclude if exclude != "bads" else info["bads"],
                exclude=(),
                allow_empty=True,
            ),
        )

    if not merge_channels:
        # XXX. at the moment we are committed to 1- / 2-sensor-types layouts
        chs_in_layout = [ch_name for ch_name in ch_names if ch_name in layout.names]
        types_used = [channel_type(info, ch_names.index(ch)) for ch in chs_in_layout]
        # Using dict conversion to remove duplicates
        types_used = list(dict.fromkeys(types_used))
        # remove possible reference meg channels
        types_used = [
            types_used for types_used in types_used if types_used != "ref_meg"
        ]
        # one check for all vendors
        is_meg = len([x for x in types_used if x in ["mag", "grad"]]) > 0
        is_nirs = (
            len(
                [
                    x
                    for x in types_used
                    if x in ("hbo", "hbr", "fnirs_cw_amplitude", "fnirs_od")
                ]
            )
            > 0
        )
        if is_meg:
            picks = [
                pick_types(info, meg=kk, ref_meg=False, exclude=exclude)
                for kk in types_used
            ]
        elif is_nirs:
            picks = [
                pick_types(info, fnirs=kk, ref_meg=False, exclude=exclude)
                for kk in types_used
            ]
        else:
            types_used_kwargs = {t: True for t in types_used}
            picks = [pick_types(info, meg=False, exclude=exclude, **types_used_kwargs)]
        assert isinstance(picks, list) and len(types_used) == len(picks)

        if noise_cov is None:
            for e in evoked:
                for pick, ch_type in zip(picks, types_used):
                    e.data[pick] *= scalings[ch_type]

        if proj is True and all(e.proj is not True for e in evoked):
            evoked = [e.apply_proj() for e in evoked]
        elif proj == "interactive":  # let it fail early.
            for e in evoked:
                _check_delayed_ssp(e)
        # Y labels for picked plots must be reconstructed
        y_label = list()
        for ch_idx in range(len(chs_in_layout)):
            if noise_cov is None:
                unit = _handle_default("units")[channel_type(info, ch_idx)]
            else:
                unit = "NA"
            y_label.append(f"Amplitude ({unit})")

    if ylim is None:
        # find minima and maxima over all evoked data for each channel pick
        ylim_ = dict()
        for ch_type, p in zip(types_used, picks):
            ylim_[ch_type] = [
                min([e.data[p].min() for e in evoked]),
                max([e.data[p].max() for e in evoked]),
            ]
    elif isinstance(ylim, dict):
        ylim_ = _handle_default("ylim", ylim)
        ylim_ = {kk: ylim_[kk] for kk in types_used}
    else:
        raise TypeError(f"ylim must be None or a dict. Got {type(ylim)}.")

    data = [e.data for e in evoked]
    comments = [e.comment for e in evoked]
    times = [e.times for e in evoked]

    show_func = partial(
        _plot_timeseries_unified,
        data=data,
        color=color,
        times=times,
        vline=vline,
        hline=hline,
        hvline_color=font_color,
    )
    click_func = partial(
        _plot_timeseries,
        data=data,
        color=color,
        times=times,
        vline=vline,
        hline=hline,
        hvline_color=font_color,
        labels=comments,
    )

    time_min = min([t[0] for t in times])
    time_max = max([t[-1] for t in times])
    fig = _plot_topo(
        info=info,
        times=[time_min, time_max],
        show_func=show_func,
        click_func=click_func,
        layout=layout,
        colorbar=False,
        ylim=ylim_,
        cmap=None,
        layout_scale=layout_scale,
        border=border,
        fig_facecolor=fig_facecolor,
        font_color=font_color,
        axis_facecolor=axis_facecolor,
        title=title,
        x_label="Time (s)",
        y_label=y_label,
        unified=True,
        axes=axes,
    )

    add_background_image(fig, fig_background)

    if legend is not False:
        legend_loc = 0 if legend is True else legend
        labels = [e.comment if e.comment else "Unknown" for e in evoked]
        handles = fig.axes[0].lines[: len(evoked)]
        legend = plt.legend(
            labels=labels, handles=handles, loc=legend_loc, prop={"size": 10}
        )
        legend.get_frame().set_facecolor(axis_facecolor)
        txts = legend.get_texts()
        for txt, col in zip(txts, color):
            txt.set_color(col)

    if proj == "interactive":
        for e in evoked:
            _check_delayed_ssp(e)
        params = dict(
            evokeds=evoked,
            times=times,
            plot_update_proj_callback=_plot_update_evoked_topo_proj,
            projs=evoked[0].info["projs"],
            fig=fig,
        )
        _draw_proj_checkbox(None, params)

    plt_show(show)
    return fig


def _plot_update_evoked_topo_proj(params, bools):
    """Update topo sensor plots."""
    evokeds = [e.copy() for e in params["evokeds"]]
    fig = params["fig"]
    projs = [proj for proj, b in zip(params["projs"], bools) if b]
    params["proj_bools"] = bools
    for e in evokeds:
        e.add_proj(projs, remove_existing=True)
        e.apply_proj()

    # make sure to only modify the time courses, not the ticks
    for ax in fig.axes[0]._mne_axs:
        for line, evoked in zip(ax.data_lines, evokeds):
            line.set_ydata(ax.y_t + ax.y_s * evoked.data[ax._mne_ch_idx])

    fig.canvas.draw()


def plot_topo_image_epochs(
    epochs,
    layout=None,
    sigma=0.0,
    vmin=None,
    vmax=None,
    colorbar=None,
    order=None,
    cmap="RdBu_r",
    layout_scale=0.95,
    title=None,
    scalings=None,
    border="none",
    fig_facecolor="k",
    fig_background=None,
    font_color="w",
    show=True,
):
    """Plot Event Related Potential / Fields image on topographies.

    Parameters
    ----------
    epochs : instance of :class:`~mne.Epochs`
        The epochs.
    layout : instance of Layout
        System specific sensor positions.
    sigma : float
        The standard deviation of the Gaussian smoothing to apply along
        the epoch axis to apply in the image. If 0., no smoothing is applied.
    vmin : float
        The min value in the image. The unit is µV for EEG channels,
        fT for magnetometers and fT/cm for gradiometers.
    vmax : float
        The max value in the image. The unit is µV for EEG channels,
        fT for magnetometers and fT/cm for gradiometers.
    colorbar : bool | None
        Whether to display a colorbar or not. If ``None`` a colorbar will be
        shown only if all channels are of the same type. Defaults to ``None``.
    order : None | array of int | callable
        If not None, order is used to reorder the epochs on the y-axis
        of the image. If it's an array of int it should be of length
        the number of good epochs. If it's a callable the arguments
        passed are the times vector and the data as 2d array
        (data.shape[1] == len(times)).
    cmap : colormap
        Colors to be mapped to the values.
    layout_scale : float
        Scaling factor for adjusting the relative size of the layout
        on the canvas.
    title : str
        Title of the figure.
    scalings : dict | None
        The scalings of the channel types to be applied for plotting. If
        ``None``, defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``.
    border : str
        Matplotlib borders style to be used for each sensor plot.
    fig_facecolor : color
        The figure face color. Defaults to black.
    fig_background : None | array
        A background image for the figure. This must be a valid input to
        :func:`matplotlib.pyplot.imshow`. Defaults to ``None``.
    font_color : color
        The color of tick labels in the colorbar. Defaults to white.
    show : bool
        Whether to show the figure. Defaults to ``True``.

    Returns
    -------
    fig : instance of :class:`matplotlib.figure.Figure`
        Figure distributing one image per channel across sensor topography.

    Notes
    -----
    In an interactive Python session, this plot will be interactive; clicking
    on a channel image will pop open a larger view of the image; this image
    will always have a colorbar even when the topo plot does not (because it
    shows multiple sensor types).
    """
    from ..channels.layout import find_layout

    scalings = _handle_default("scalings", scalings)

    # make a copy because we discard non-data channels and scale the data
    epochs = epochs.copy().load_data()
    # use layout to subset channels present in epochs object
    if layout is None:
        layout = find_layout(epochs.info)
    ch_names = set(layout.names) & set(epochs.ch_names)
    idxs = [epochs.ch_names.index(ch_name) for ch_name in ch_names]
    epochs = epochs.pick(idxs)
    # get lists of channel type & scale coefficient
    ch_types = epochs.get_channel_types()
    scale_coeffs = [scalings.get(ch_type, 1) for ch_type in ch_types]
    # scale the data
    epochs._data *= np.array(scale_coeffs)[:, np.newaxis]
    data = epochs.get_data(copy=False)
    # get vlims for each channel type
    vlim_dict = dict()
    for ch_type in set(ch_types):
        this_data = data[:, np.where(np.array(ch_types) == ch_type)]
        vlim_dict[ch_type] = _setup_vmin_vmax(this_data, vmin, vmax)
    vlim_array = np.array([vlim_dict[ch_type] for ch_type in ch_types])
    # only show colorbar if we have a single channel type
    if colorbar is None:
        colorbar = len(set(ch_types)) == 1
    # if colorbar=True, we know we have only 1 channel type so all entries
    # in vlim_array are the same, just take the first one
    if colorbar and vmin is None and vmax is None:
        vmin, vmax = vlim_array[0]

    show_func = partial(
        _erfimage_imshow_unified,
        scalings=scale_coeffs,
        order=order,
        data=data,
        epochs=epochs,
        sigma=sigma,
        cmap=cmap,
        vlim_array=vlim_array,
    )

    erf_imshow = partial(
        _erfimage_imshow,
        scalings=scale_coeffs,
        order=order,
        data=data,
        epochs=epochs,
        sigma=sigma,
        cmap=cmap,
        vlim_array=vlim_array,
        colorbar=True,
    )

    fig = _plot_topo(
        info=epochs.info,
        times=epochs.times,
        click_func=erf_imshow,
        show_func=show_func,
        layout=layout,
        colorbar=colorbar,
        vmin=vmin,
        vmax=vmax,
        cmap=cmap,
        layout_scale=layout_scale,
        title=title,
        fig_facecolor=fig_facecolor,
        font_color=font_color,
        border=border,
        x_label="Time (s)",
        y_label="Epoch",
        unified=True,
        img=True,
    )
    add_background_image(fig, fig_background)
    plt_show(show)
    return fig


def _pos_to_bbox(pos, ax):
    """Convert layout position to bbox."""
    import matplotlib.transforms as mtransforms

    return mtransforms.TransformedBbox(
        mtransforms.Bbox.from_bounds(*pos),
        ax.transAxes,
    )