1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
|
"""Functions to plot M/EEG data e.g. topographies."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import copy
import itertools
import warnings
from functools import partial
from numbers import Integral
import numpy as np
from scipy.interpolate import (
CloughTocher2DInterpolator,
LinearNDInterpolator,
NearestNDInterpolator,
)
from scipy.sparse import csr_array
from scipy.spatial import Delaunay, Voronoi
from scipy.spatial.distance import pdist, squareform
from .._fiff.meas_info import Info, _simplify_info
from .._fiff.pick import (
_MEG_CH_TYPES_SPLIT,
_pick_data_channels,
_picks_by_type,
_picks_to_idx,
pick_channels,
pick_info,
pick_types,
)
from ..baseline import rescale
from ..defaults import (
_BORDER_DEFAULT,
_EXTRAPOLATE_DEFAULT,
_INTERPOLATION_DEFAULT,
_handle_default,
)
from ..transforms import apply_trans, invert_transform
from ..utils import (
_check_option,
_check_sphere,
_clean_names,
_is_numeric,
_time_mask,
_validate_type,
check_version,
fill_doc,
legacy,
logger,
verbose,
warn,
)
from ..utils.spectrum import _split_psd_kwargs
from .ui_events import TimeChange, publish, subscribe
from .utils import (
DraggableColorbar,
_check_delayed_ssp,
_check_time_unit,
_check_type_projs,
_draw_proj_checkbox,
_format_units_psd,
_get_cmap,
_get_plot_ch_type,
_prepare_sensor_names,
_prepare_trellis,
_process_times,
_set_3d_axes_equal,
_setup_cmap,
_setup_vmin_vmax,
_validate_if_list_of_axes,
figure_nobar,
plot_sensors,
plt_show,
)
_fnirs_types = ("hbo", "hbr", "fnirs_cw_amplitude", "fnirs_od")
# 3.8+ uses a single Collection artist rather than .collections
# https://github.com/matplotlib/matplotlib/pull/25247
def _cont_collections(cont):
return (cont,) if check_version("matplotlib", "3.8") else tuple(cont.collections)
def _adjust_meg_sphere(sphere, info, ch_type):
sphere = _check_sphere(sphere, info)
assert ch_type is not None
if ch_type in ("mag", "grad", "planar1", "planar2"):
# move sphere X/Y (head coords) to device X/Y space
if info["dev_head_t"] is not None:
head_dev_t = invert_transform(info["dev_head_t"])
sphere[:3] = apply_trans(head_dev_t, sphere[:3])
# Set the sphere Z=0 because all this really affects is flattening.
# We could make the head size change as a function of depth in
# the helmet like:
#
# sphere[2] /= -5
#
# but let's just assume some orthographic rather than parallel
# projection for explicitness / simplicity.
sphere[2] = 0.0
clip_origin = (0.0, 0.0)
else:
clip_origin = sphere[:2].copy()
return sphere, clip_origin
def _prepare_topomap_plot(inst, ch_type, sphere=None):
"""Prepare topo plot."""
from ..channels.layout import _find_topomap_coords, _pair_grad_sensors, find_layout
info = copy.deepcopy(inst if isinstance(inst, Info) else inst.info)
sphere, clip_origin = _adjust_meg_sphere(sphere, info, ch_type)
clean_ch_names = _clean_names(info["ch_names"])
for ii, this_ch in enumerate(info["chs"]):
this_ch["ch_name"] = clean_ch_names[ii]
for comp in info["comps"]:
comp["data"]["col_names"] = _clean_names(comp["data"]["col_names"])
info._update_redundant()
info["bads"] = _clean_names(info["bads"])
info._check_consistency()
# special case for merging grad channels
layout = find_layout(info)
if (
ch_type == "grad"
and layout is not None
and (
layout.kind.startswith("Vectorview")
or layout.kind.startswith("Neuromag_122")
)
):
picks, _ = _pair_grad_sensors(info, layout)
pos = _find_topomap_coords(info, picks[::2], sphere=sphere)
merge_channels = True
elif ch_type in _fnirs_types:
# fNIRS data commonly has overlapping channels, so deal with separately
picks, pos, merge_channels, overlapping_channels = _average_fnirs_overlaps(
info, ch_type, sphere
)
else:
merge_channels = False
if ch_type == "eeg":
picks = pick_types(info, meg=False, eeg=True, ref_meg=False, exclude="bads")
elif ch_type == "csd":
picks = pick_types(info, meg=False, csd=True, ref_meg=False, exclude="bads")
elif ch_type == "dbs":
picks = pick_types(info, meg=False, dbs=True, ref_meg=False, exclude="bads")
elif ch_type == "seeg":
picks = pick_types(
info, meg=False, seeg=True, ref_meg=False, exclude="bads"
)
else:
picks = pick_types(info, meg=ch_type, ref_meg=False, exclude="bads")
if len(picks) == 0:
raise ValueError(f"No channels of type {ch_type!r}")
pos = _find_topomap_coords(info, picks, sphere=sphere)
ch_names = [info["ch_names"][k] for k in picks]
if ch_type in _fnirs_types:
# Remove the chroma label type for cleaner labeling.
ch_names = [k[:-4] for k in ch_names]
if merge_channels:
if ch_type == "grad":
# change names so that vectorview combined grads appear as MEG014x
# instead of MEG0142 or MEG0143 which are the 2 planar grads.
ch_names = [ch_names[k][:-1] + "x" for k in range(0, len(ch_names), 2)]
else:
assert ch_type in _fnirs_types
# Modify the nirs channel names to indicate they are to be merged
# New names will have the form S1_D1xS2_D2
# More than two channels can overlap and be merged
for set_ in overlapping_channels:
idx = ch_names.index(set_[0][:-4])
new_name = "x".join(s[:-4] for s in set_)
ch_names[idx] = new_name
pos = np.array(pos)[:, :2] # 2D plot, otherwise interpolation bugs
return picks, pos, merge_channels, ch_names, ch_type, sphere, clip_origin
def _average_fnirs_overlaps(info, ch_type, sphere):
from ..channels.layout import _find_topomap_coords
picks = pick_types(info, meg=False, ref_meg=False, fnirs=ch_type, exclude="bads")
chs = [info["chs"][i] for i in picks]
locs3d = np.array([ch["loc"][:3] for ch in chs])
dist = pdist(locs3d)
# Store the sets of channels to be merged
overlapping_channels = list()
# Channels to be excluded from picks, as will be removed after merging
channels_to_exclude = list()
if len(locs3d) > 1 and np.min(dist) < 1e-10:
overlapping_mask = np.triu(squareform(dist < 1e-10))
for chan_idx in range(overlapping_mask.shape[0]):
already_overlapped = list(
itertools.chain.from_iterable(overlapping_channels)
)
if overlapping_mask[chan_idx].any() and (
chs[chan_idx]["ch_name"] not in already_overlapped
):
# Determine the set of channels to be combined. Ensure the
# first listed channel is the one to be replaced with merge
overlapping_set = [
chs[i]["ch_name"] for i in np.where(overlapping_mask[chan_idx])[0]
]
overlapping_set = np.insert(
overlapping_set, 0, (chs[chan_idx]["ch_name"])
)
overlapping_channels.append(overlapping_set)
channels_to_exclude.append(overlapping_set[1:])
exclude = list(itertools.chain.from_iterable(channels_to_exclude))
[exclude.append(bad) for bad in info["bads"]]
picks = pick_types(
info, meg=False, ref_meg=False, fnirs=ch_type, exclude=exclude
)
pos = _find_topomap_coords(info, picks, sphere=sphere)
picks = pick_types(info, meg=False, ref_meg=False, fnirs=ch_type)
# Overload the merge_channels variable as this is returned to calling
# function and indicates that merging of data is required
merge_channels = overlapping_channels
else:
picks = pick_types(
info, meg=False, ref_meg=False, fnirs=ch_type, exclude="bads"
)
merge_channels = False
pos = _find_topomap_coords(info, picks, sphere=sphere)
return picks, pos, merge_channels, overlapping_channels
def _plot_update_evoked_topomap(params, bools):
"""Update topomaps."""
from ..channels.layout import _merge_ch_data
projs = [
proj for ii, proj in enumerate(params["projs"]) if ii in np.where(bools)[0]
]
params["proj_bools"] = bools
new_evoked = params["evoked"].copy()
with new_evoked.info._unlock():
new_evoked.info["projs"] = []
new_evoked.add_proj(projs)
new_evoked.apply_proj()
data = new_evoked.data[:, params["time_idx"]] * params["scale"]
if params["merge_channels"]:
data, _ = _merge_ch_data(data, "grad", [])
interp = params["interp"]
new_contours = list()
use_contours = params["contours_"]
if not len(use_contours):
use_contours = [None] * len(params["axes"])
assert len(use_contours) == len(params["images"])
assert len(params["axes"]) == len(params["images"])
assert len(data.T) == len(params["images"])
for cont, ax, im, d in zip(use_contours, params["axes"], params["images"], data.T):
Zi = interp.set_values(d)()
im.set_data(Zi)
if cont is None:
continue
# must be removed and re-added
cont_collections = _cont_collections(cont)
for col in cont_collections:
col.remove()
col = cont_collections[0]
lw = col.get_linewidth()
visible = col.get_visible()
patch_ = col.get_clip_path()
color = col.get_edgecolors()
cont = ax.contour(
interp.Xi, interp.Yi, Zi, params["contours"], colors=color, linewidths=lw
)
cont_collections = _cont_collections(cont)
for col in cont_collections:
col.set_visible(visible)
col.set_clip_path(patch_)
new_contours.append(cont)
params["contours_"] = new_contours
params["fig"].canvas.draw()
def _add_colorbar(
ax,
im,
cmap,
*,
title=None,
format_=None,
kind=None,
ch_type=None,
):
"""Add a colorbar to an axis."""
cbar = ax.figure.colorbar(im, format=format_, shrink=0.6)
if cmap is not None and cmap[1]:
ax.CB = DraggableColorbar(cbar, im, kind, ch_type)
cax = cbar.ax
if title is not None:
cax.set_title(title, y=1.05, fontsize=10)
return cbar, cax
def _eliminate_zeros(proj):
"""Remove grad or mag data if only contains 0s (gh 5641)."""
GRAD_ENDING = ("2", "3")
MAG_ENDING = "1"
proj = copy.deepcopy(proj)
proj["data"]["data"] = np.atleast_2d(proj["data"]["data"])
for ending in (GRAD_ENDING, MAG_ENDING):
names = proj["data"]["col_names"]
idx = [i for i, name in enumerate(names) if name.endswith(ending)]
# if all 0, remove the 0s an their labels
if not proj["data"]["data"][0][idx].any():
new_col_names = np.delete(np.array(names), idx).tolist()
new_data = np.delete(np.array(proj["data"]["data"][0]), idx)
proj["data"]["col_names"] = new_col_names
proj["data"]["data"] = np.array([new_data])
proj["data"]["ncol"] = len(proj["data"]["col_names"])
return proj
@fill_doc
def plot_projs_topomap(
projs,
info,
*,
sensors=True,
show_names=False,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=False,
cbar_fmt="%3.1f",
units=None,
axes=None,
show=True,
):
"""Plot topographic maps of SSP projections.
Parameters
----------
projs : list of Projection
The projections.
%(info_not_none)s Must be associated with the channels in the projectors.
.. versionchanged:: 0.20
The positional argument ``layout`` was replaced by ``info``.
%(sensors_topomap)s
%(show_names_topomap)s
.. versionadded:: 1.2
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionadded:: 0.20
.. versionchanged:: 0.21
- The default was changed to ``'local'`` for MEG sensors.
- ``'local'`` was changed to use a convex hull mask
- ``'head'`` was changed to extrapolate out to the clipping circle.
%(border_topomap)s
.. versionadded:: 0.20
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap_proj)s
%(cnorm)s
.. versionadded:: 1.2
%(colorbar_topomap)s
%(cbar_fmt_topomap)s
.. versionadded:: 1.2
%(units_topomap)s
.. versionadded:: 1.2
%(axes_plot_projs_topomap)s
%(show)s
Returns
-------
fig : instance of matplotlib.figure.Figure
Figure with a topomap subplot for each projector.
Notes
-----
.. versionadded:: 0.9.0
"""
fig = _plot_projs_topomap(
projs,
info,
sensors=sensors,
show_names=show_names,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=cmap,
vlim=vlim,
cnorm=cnorm,
colorbar=colorbar,
cbar_fmt=cbar_fmt,
units=units,
axes=axes,
)
with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore")
plt_show(show)
return fig
def _plot_projs_topomap(
projs,
info,
sensors=True,
show_names=False,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=False,
cbar_fmt="%3.1f",
units=None,
axes=None,
):
import matplotlib.pyplot as plt
from ..channels.layout import _merge_ch_data
sphere = _check_sphere(sphere, info)
projs = _check_type_projs(projs)
_validate_type(info, "info", "info")
# Preprocess projs to deal with joint MEG projectors. If we duplicate these and
# split into mag and grad, they should work as expected
info_names = _clean_names(info["ch_names"], remove_whitespace=True)
use_projs = list()
for proj in projs:
proj = _eliminate_zeros(proj) # gh 5641, makes a copy
proj["data"]["col_names"] = _clean_names(
proj["data"]["col_names"],
remove_whitespace=True,
)
picks = pick_channels(info_names, proj["data"]["col_names"], ordered=True)
proj_types = info.get_channel_types(picks)
unique_types = sorted(set(proj_types))
for type_ in unique_types:
proj_picks = np.where([proj_type == type_ for proj_type in proj_types])[0]
use_projs.append(copy.deepcopy(proj))
use_projs[-1]["data"]["data"] = proj["data"]["data"][:, proj_picks]
use_projs[-1]["data"]["col_names"] = [
proj["data"]["col_names"][pick] for pick in proj_picks
]
projs = use_projs
datas, poss, spheres, outliness, ch_typess = [], [], [], [], []
for proj in projs:
# get ch_names, ch_types, data
data = proj["data"]["data"].ravel()
picks = pick_channels(info_names, proj["data"]["col_names"], ordered=True)
use_info = pick_info(info, picks)
these_ch_types = use_info.get_channel_types(unique=True)
assert len(these_ch_types) == 1 # should be guaranteed above
ch_type = these_ch_types[0]
(
data_picks,
pos,
merge_channels,
names,
_,
this_sphere,
clip_origin,
) = _prepare_topomap_plot(use_info, ch_type, sphere=sphere)
these_outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
data = data[data_picks]
if merge_channels:
data, _ = _merge_ch_data(data, "grad", [])
data = data.ravel()
# populate containers
datas.append(data)
poss.append(pos)
spheres.append(this_sphere)
outliness.append(these_outlines)
ch_typess.append(ch_type)
del data, pos, this_sphere, these_outlines, ch_type
del sphere
# setup axes
n_projs = len(projs)
if axes is None:
fig, axes, ncols, nrows = _prepare_trellis(
n_projs, ncols="auto", nrows="auto", size=size, sharex=True, sharey=True
)
elif isinstance(axes, plt.Axes):
axes = [axes]
_validate_if_list_of_axes(axes, n_projs)
# handle vmin/vmax
vlims = [None for _ in range(len(datas))]
if vlim == "joint":
for _ch_type in set(ch_typess):
idx = np.where(np.isin(ch_typess, _ch_type))[0]
these_data = np.concatenate(np.array(datas, dtype=object)[idx])
norm = all(these_data >= 0)
_vl = _setup_vmin_vmax(these_data, vmin=None, vmax=None, norm=norm)
for _idx in idx:
vlims[_idx] = _vl
# make sure we got a vlim for all projs
assert all([vl is not None for vl in vlims])
else:
vlims = [vlim] * len(datas)
# plot
for proj, ax, _data, _pos, _vlim, _sphere, _outlines, _ch_type in zip(
projs, axes, datas, poss, vlims, spheres, outliness, ch_typess
):
# ch_names
names = [info["ch_names"][k] for k in _picks_to_idx(info, _ch_type)]
names = _prepare_sensor_names(names, show_names)
# title
title = proj["desc"]
title = "\n".join(title[ii : ii + 22] for ii in range(0, len(title), 22))
ax.set_title(title, fontsize=10)
# plot
im, _ = plot_topomap(
_data,
_pos[:, :2],
vlim=_vlim,
cmap=cmap,
sensors=sensors,
names=names,
res=res,
axes=ax,
outlines=_outlines,
contours=contours,
cnorm=cnorm,
image_interp=image_interp,
show=False,
extrapolate=extrapolate,
sphere=_sphere,
border=border,
ch_type=_ch_type,
)
if colorbar:
_add_colorbar(
ax,
im,
cmap,
title=units,
format_=cbar_fmt,
kind="projs_topomap",
ch_type=_ch_type,
)
return ax.get_figure()
def _make_head_outlines(sphere, pos, outlines, clip_origin):
"""Check or create outlines for topoplot."""
assert isinstance(sphere, np.ndarray)
x, y, _, radius = sphere
del sphere
if outlines in ("head", None):
ll = np.linspace(0, 2 * np.pi, 101)
head_x = np.cos(ll) * radius + x
head_y = np.sin(ll) * radius + y
dx = np.exp(np.arccos(np.deg2rad(12)) * 1j)
dx, dy = dx.real, dx.imag
nose_x = np.array([-dx, 0, dx]) * radius + x
nose_y = np.array([dy, 1.15, dy]) * radius + y
ear_x = np.array(
[0.497, 0.510, 0.518, 0.5299, 0.5419, 0.54, 0.547, 0.532, 0.510, 0.489]
) * (radius * 2)
ear_y = (
np.array(
[
0.0555,
0.0775,
0.0783,
0.0746,
0.0555,
-0.0055,
-0.0932,
-0.1313,
-0.1384,
-0.1199,
]
)
* (radius * 2)
+ y
)
if outlines is not None:
# Define the outline of the head, ears and nose
outlines_dict = dict(
head=(head_x, head_y),
nose=(nose_x, nose_y),
ear_left=(-ear_x + x, ear_y),
ear_right=(ear_x + x, ear_y),
)
else:
outlines_dict = dict()
# Make the figure encompass slightly more than all points
# We probably want to ensure it always contains our most
# extremely positioned channels, so we do:
mask_scale = max(1.0, np.linalg.norm(pos, axis=1).max() * 1.01 / radius)
outlines_dict["mask_pos"] = (mask_scale * head_x, mask_scale * head_y)
clip_radius = radius * mask_scale
outlines_dict["clip_radius"] = (clip_radius,) * 2
outlines_dict["clip_origin"] = clip_origin
outlines = outlines_dict
elif isinstance(outlines, dict):
if "mask_pos" not in outlines:
raise ValueError("You must specify the coordinates of the image mask.")
else:
raise ValueError("Invalid value for `outlines`.")
return outlines
def _draw_outlines(ax, outlines):
"""Draw the outlines for a topomap."""
from matplotlib import rcParams
outlines_ = {k: v for k, v in outlines.items() if k not in ["patch"]}
for key, (x_coord, y_coord) in outlines_.items():
if "mask" in key or key in ("clip_radius", "clip_origin"):
continue
ax.plot(
x_coord,
y_coord,
color=rcParams["axes.edgecolor"],
linewidth=1,
clip_on=False,
)
return outlines_
def _get_extra_points(pos, extrapolate, origin, radii):
"""Get coordinates of additional interpolation points."""
radii = np.array(radii, float)
assert radii.shape == (2,)
x, y = origin
# auto should be gone by now
_check_option("extrapolate", extrapolate, ("head", "box", "local"))
# the old method of placement - large box
mask_pos = None
if extrapolate == "box":
extremes = np.array([pos.min(axis=0), pos.max(axis=0)])
diffs = extremes[1] - extremes[0]
extremes[0] -= diffs
extremes[1] += diffs
eidx = np.array(
list(itertools.product(*([[0] * (pos.shape[1] - 1) + [1]] * pos.shape[1])))
)
pidx = np.tile(np.arange(pos.shape[1])[np.newaxis], (len(eidx), 1))
outer_pts = extremes[eidx, pidx]
return outer_pts, mask_pos, Delaunay(np.concatenate((pos, outer_pts)))
# check if positions are colinear:
diffs = np.diff(pos, axis=0)
with np.errstate(divide="ignore"):
slopes = diffs[:, 1] / diffs[:, 0]
colinear = (slopes == slopes[0]).all() or np.isinf(slopes).all()
# compute median inter-electrode distance
if colinear or pos.shape[0] < 4:
dim = 1 if diffs[:, 1].sum() > diffs[:, 0].sum() else 0
sorting = np.argsort(pos[:, dim])
pos_sorted = pos[sorting, :]
diffs = np.diff(pos_sorted, axis=0)
distances = np.linalg.norm(diffs, axis=1)
distance = np.median(distances)
else:
tri = Delaunay(pos, incremental=True)
idx1, idx2, idx3 = tri.simplices.T
distances = np.concatenate(
[
np.linalg.norm(pos[i1, :] - pos[i2, :], axis=1)
for i1, i2 in zip([idx1, idx2], [idx2, idx3])
]
)
distance = np.median(distances)
if extrapolate == "local":
if colinear or pos.shape[0] < 4:
# special case for colinear points and when there is too
# little points for Delaunay (needs at least 3)
edge_points = sorting[[0, -1]]
line_len = np.diff(pos[edge_points, :], axis=0)
unit_vec = line_len / np.linalg.norm(line_len) * distance
unit_vec_par = unit_vec[:, ::-1] * [[-1, 1]]
edge_pos = pos[edge_points, :] + np.concatenate(
[-unit_vec, unit_vec], axis=0
)
new_pos = np.concatenate(
[pos + unit_vec_par, pos - unit_vec_par, edge_pos], axis=0
)
if pos.shape[0] == 3:
# there may be some new_pos points that are too close
# to the original points
new_pos_diff = pos[..., np.newaxis] - new_pos.T[np.newaxis, :]
new_pos_diff = np.linalg.norm(new_pos_diff, axis=1)
good_extra = (new_pos_diff > 0.5 * distance).all(axis=0)
new_pos = new_pos[good_extra]
tri = Delaunay(np.concatenate([pos, new_pos], axis=0))
return new_pos, new_pos, tri
# get the convex hull of data points from triangulation
hull_pos = pos[tri.convex_hull]
# extend the convex hull limits outwards a bit
channels_center = pos.mean(axis=0)
radial_dir = hull_pos - channels_center
unit_radial_dir = radial_dir / np.linalg.norm(
radial_dir, axis=-1, keepdims=True
)
hull_extended = hull_pos + unit_radial_dir * distance
mask_pos = hull_pos + unit_radial_dir * distance * 0.5
hull_diff = np.diff(hull_pos, axis=1)[:, 0]
hull_distances = np.linalg.norm(hull_diff, axis=-1)
del channels_center
# Construct a mask
mask_pos = np.unique(mask_pos.reshape(-1, 2), axis=0)
mask_center = np.mean(mask_pos, axis=0)
mask_pos -= mask_center
mask_pos = mask_pos[np.argsort(np.arctan2(mask_pos[:, 1], mask_pos[:, 0]))]
mask_pos += mask_center
# add points along hull edges so that the distance between points
# is around that of average distance between channels
add_points = list()
eps = np.finfo("float").eps
n_times_dist = np.round(0.25 * hull_distances / distance).astype("int")
for n in range(2, n_times_dist.max() + 1):
mask = n_times_dist == n
mult = np.arange(1 / n, 1 - eps, 1 / n)[:, np.newaxis, np.newaxis]
steps = hull_diff[mask][np.newaxis, ...] * mult
add_points.append(
(hull_extended[mask, 0][np.newaxis, ...] + steps).reshape((-1, 2))
)
# remove duplicates from hull_extended
hull_extended = np.unique(hull_extended.reshape((-1, 2)), axis=0)
new_pos = np.concatenate([hull_extended] + add_points)
else:
assert extrapolate == "head"
# return points on the head circle
angle = np.arcsin(min(distance / np.mean(radii), 1))
n_pnts = max(12, int(np.round(2 * np.pi / angle)))
points_l = np.linspace(0, 2 * np.pi, n_pnts, endpoint=False)
use_radii = radii * 1.1 + distance
points_x = np.cos(points_l) * use_radii[0] + x
points_y = np.sin(points_l) * use_radii[1] + y
new_pos = np.stack([points_x, points_y], axis=1)
if colinear or pos.shape[0] == 3:
tri = Delaunay(np.concatenate([pos, new_pos], axis=0))
return new_pos, mask_pos, tri
tri.add_points(new_pos)
return new_pos, mask_pos, tri
class _GridData:
"""Unstructured (x,y) data interpolator.
This class allows optimized interpolation by computing parameters
for a fixed set of true points, and allowing the values at those points
to be set independently.
"""
def __init__(self, pos, image_interp, extrapolate, origin, radii, border):
# in principle this works in N dimensions, not just 2
assert pos.ndim == 2 and pos.shape[1] == 2, pos.shape
_validate_type(border, ("numeric", str), "border")
# check that border, if string, is correct
if isinstance(border, str):
_check_option("border", border, ("mean",), extra="when a string")
# Adding points outside the extremes helps the interpolators
outer_pts, mask_pts, tri = _get_extra_points(pos, extrapolate, origin, radii)
self.n_extra = outer_pts.shape[0]
self.mask_pts = mask_pts
self.border = border
self.tri = tri
self.interp = {
"cubic": CloughTocher2DInterpolator,
"nearest": NearestNDInterpolator, # used only for anim
"linear": LinearNDInterpolator,
}[image_interp]
def set_values(self, v):
"""Set the values at interpolation points."""
# Rbf with thin-plate is what we used to use, but it's slower and
# looks about the same:
#
# zi = Rbf(x, y, v, function='multiquadric', smooth=0)(xi, yi)
#
# Eventually we could also do set_values with this class if we want,
# see scipy/interpolate/rbf.py, especially the self.nodes one-liner.
if isinstance(self.border, str):
# we've already checked that border = 'mean'
n_points = v.shape[0]
v_extra = np.zeros(self.n_extra)
indices, indptr = self.tri.vertex_neighbor_vertices
rng = range(n_points, n_points + self.n_extra)
used = np.zeros(len(rng), bool)
for idx, extra_idx in enumerate(rng):
ngb = indptr[indices[extra_idx] : indices[extra_idx + 1]]
ngb = ngb[ngb < n_points]
if len(ngb) > 0:
used[idx] = True
v_extra[idx] = v[ngb].mean()
if not used.all() and used.any():
# Eventually we might want to use the value of the nearest
# point or something, but this case should hopefully be
# rare so for now just use the average value of all extras
v_extra[~used] = np.mean(v_extra[used])
else:
v_extra = np.full(self.n_extra, self.border, dtype=float)
v = np.concatenate((v, v_extra))
self.interpolator = self.interp(self.tri, v)
return self
def set_locations(self, Xi, Yi):
"""Set locations for easier (delayed) calling."""
self.Xi = Xi
self.Yi = Yi
return self
def __call__(self, *args):
"""Evaluate the interpolator."""
if len(args) == 0:
args = [self.Xi, self.Yi]
return self.interpolator(*args)
def _topomap_plot_sensors(pos_x, pos_y, sensors, ax):
"""Plot sensors."""
if sensors is True:
ax.scatter(
pos_x,
pos_y,
s=0.25,
marker="o",
edgecolor=["k"] * len(pos_x),
facecolor="none",
)
else:
ax.plot(pos_x, pos_y, sensors)
def _get_pos_outlines(info, picks, sphere, to_sphere=True):
from ..channels.layout import _find_topomap_coords
picks = _picks_to_idx(info, picks, "all", exclude=(), allow_empty=False)
ch_type = _get_plot_ch_type(pick_info(_simplify_info(info), picks), None)
orig_sphere = sphere
sphere, clip_origin = _adjust_meg_sphere(sphere, info, ch_type)
logger.debug(
"Generating pos outlines with sphere "
f"{sphere} from {orig_sphere} for {ch_type}"
)
pos = _find_topomap_coords(
info, picks, ignore_overlap=True, to_sphere=to_sphere, sphere=sphere
)
outlines = _make_head_outlines(sphere, pos, "head", clip_origin)
return pos, outlines
@fill_doc
def plot_topomap(
data,
pos,
*,
ch_type="eeg",
sensors=True,
names=None,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
axes=None,
show=True,
onselect=None,
):
"""Plot a topographic map as image.
Parameters
----------
data : array, shape (n_chan,)
The data values to plot.
%(pos_topomap)s
If an :class:`~mne.Info` object it must contain only one channel type
and exactly ``len(data)`` channels; the x/y coordinates will
be inferred from the montage in the :class:`~mne.Info` object.
%(ch_type_topomap)s
.. versionadded:: 0.21
%(sensors_topomap)s
%(names_topomap)s
%(mask_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionadded:: 0.18
.. versionchanged:: 0.21
- The default was changed to ``'local'`` for MEG sensors.
- ``'local'`` was changed to use a convex hull mask
- ``'head'`` was changed to extrapolate out to the clipping circle.
%(border_topomap)s
.. versionadded:: 0.20
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap)s
.. versionadded:: 1.2
%(cnorm)s
.. versionadded:: 0.24
%(axes_plot_topomap)s
.. versionchanged:: 1.2
If ``axes=None``, a new :class:`~matplotlib.figure.Figure` is
created instead of plotting into the current axes.
%(show)s
onselect : callable | None
A function to be called when the user selects a set of channels by
click-dragging (uses a matplotlib
:class:`~matplotlib.widgets.RectangleSelector`). If ``None``
interactive channel selection is disabled. Defaults to ``None``.
Returns
-------
im : matplotlib.image.AxesImage
The interpolated data.
cn : matplotlib.contour.ContourSet
The fieldlines.
"""
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize
if axes is None:
_, axes = plt.subplots(figsize=(size, size), layout="constrained")
sphere = _check_sphere(sphere, pos if isinstance(pos, Info) else None)
_validate_type(cnorm, (Normalize, None), "cnorm")
if cnorm is not None and (vlim[0] is not None or vlim[1] is not None):
warn(
f"Provided cnorm implicitly defines vmin={cnorm.vmin} and "
f"vmax={cnorm.vmax}; ignoring additional vlim/vmin/vmax params."
)
return _plot_topomap(
data,
pos,
vmin=vlim[0],
vmax=vlim[1],
cmap=cmap,
sensors=sensors,
res=res,
axes=axes,
names=names,
mask=mask,
mask_params=mask_params,
outlines=outlines,
contours=contours,
image_interp=image_interp,
show=show,
onselect=onselect,
extrapolate=extrapolate,
sphere=sphere,
border=border,
ch_type=ch_type,
cnorm=cnorm,
)[:2]
def _setup_interp(pos, res, image_interp, extrapolate, outlines, border):
if image_interp not in ("cubic", "linear", "nearest"):
raise RuntimeError(
"`image_interp` must be `cubic`, `linear` or `nearest`, got "
f"{image_interp}. Previously, `image_interp` controlled "
"the matplotlib image interpolation after an original cubic "
"interpolation but this was changed to control the first "
"interpolation instead for simplicity. To change the "
"matplotlib image interpolation, use "
"`im.set_interpolation(...)"
)
logger.debug(
f"Interpolation mode {image_interp}, "
f"extrapolation mode {extrapolate} to {border}"
)
xlim = (
np.inf,
-np.inf,
)
ylim = (
np.inf,
-np.inf,
)
mask_ = np.c_[outlines["mask_pos"]]
clip_radius = outlines["clip_radius"]
clip_origin = outlines.get("clip_origin", (0.0, 0.0))
xmin, xmax = (
np.min(np.r_[xlim[0], mask_[:, 0], clip_origin[0] - clip_radius[0]]),
np.max(np.r_[xlim[1], mask_[:, 0], clip_origin[0] + clip_radius[0]]),
)
ymin, ymax = (
np.min(np.r_[ylim[0], mask_[:, 1], clip_origin[1] - clip_radius[1]]),
np.max(np.r_[ylim[1], mask_[:, 1], clip_origin[1] + clip_radius[1]]),
)
xi = np.linspace(xmin, xmax, res)
yi = np.linspace(ymin, ymax, res)
Xi, Yi = np.meshgrid(xi, yi)
interp = _GridData(pos, image_interp, extrapolate, clip_origin, clip_radius, border)
extent = (xmin, xmax, ymin, ymax)
return extent, Xi, Yi, interp
_VORONOI_CIRCLE_RES = 100
def _voronoi_topomap(data, pos, outlines, ax, cmap, norm, extent, res):
"""Make a Voronoi diagram on a topomap."""
# we need an image axis object so first empty image to plot over
im = ax.imshow(
np.zeros((res, res)) * np.nan,
cmap=cmap,
origin="lower",
aspect="equal",
extent=extent,
norm=norm,
)
rx, ry = outlines["clip_radius"]
cx, cy = outlines.get("clip_origin", (0.0, 0.0))
# add points on the circle to make boundaries, expand out to
# ensure regions extend to the edge of the topomap
vor = Voronoi(
np.concatenate(
[
pos,
[
(
rx * 1.5 * np.cos(2 * np.pi / _VORONOI_CIRCLE_RES * t),
ry * 1.5 * np.sin(2 * np.pi / _VORONOI_CIRCLE_RES * t),
)
for t in range(_VORONOI_CIRCLE_RES)
],
]
)
)
for point_idx, region_idx in enumerate(vor.point_region[:-_VORONOI_CIRCLE_RES]):
if -1 in vor.regions[region_idx]:
continue
polygon = list()
for i in vor.regions[region_idx]:
x, y = vor.vertices[i]
if (x - cx) ** 2 / rx**2 + (y - cy) ** 2 / ry**2 < 1:
polygon.append((x, y))
else:
x *= rx / np.linalg.norm(vor.vertices[i])
y *= ry / np.linalg.norm(vor.vertices[i])
polygon.append((x, y))
ax.fill(*zip(*polygon), color=cmap(norm(data[point_idx])))
return im
def _get_patch(outlines, extrapolate, interp, ax):
from matplotlib import patches
clip_radius = outlines["clip_radius"]
clip_origin = outlines.get("clip_origin", (0.0, 0.0))
_use_default_outlines = any(k.startswith("head") for k in outlines)
patch_ = None
if "patch" in outlines:
patch_ = outlines["patch"]
patch_ = patch_() if callable(patch_) else patch_
patch_.set_clip_on(False)
ax.add_patch(patch_)
ax.set_transform(ax.transAxes)
ax.set_clip_path(patch_)
if _use_default_outlines:
if extrapolate == "local":
patch_ = patches.Polygon(
interp.mask_pts, clip_on=True, transform=ax.transData
)
else:
patch_ = patches.Ellipse(
clip_origin,
2 * clip_radius[0],
2 * clip_radius[1],
clip_on=True,
transform=ax.transData,
)
return patch_
def _plot_topomap(
data,
pos,
axes,
*,
ch_type="eeg",
sensors=True,
names=None,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
cmap=None,
vmin=None,
vmax=None,
cnorm=None,
show=True,
onselect=None,
):
from matplotlib.colors import Normalize
from matplotlib.widgets import RectangleSelector
from ..channels.layout import (
_find_topomap_coords,
_merge_ch_data,
_pair_grad_sensors,
)
data = np.asarray(data)
logger.debug(f"Plotting topomap for {ch_type} data shape {data.shape}")
if isinstance(pos, Info): # infer pos from Info object
picks = _pick_data_channels(pos, exclude=()) # pick only data channels
pos = pick_info(pos, picks)
# check if there is only 1 channel type, and n_chans matches the data
ch_type = pos.get_channel_types(picks=None, unique=True)
info_help = "Pick Info with e.g. mne.pick_info and mne.channel_indices_by_type."
if len(ch_type) > 1:
raise ValueError("Multiple channel types in Info structure. " + info_help)
elif len(pos["chs"]) != data.shape[0]:
raise ValueError(
f"Number of channels in the Info object ({len(pos['chs'])}) and the "
f"data array ({data.shape[0]}) do not match." + info_help
)
else:
ch_type = ch_type.pop()
if any(type_ in ch_type for type_ in ("planar", "grad")):
# deal with grad pairs
picks = _pair_grad_sensors(pos, topomap_coords=False)
pos = _find_topomap_coords(pos, picks=picks[::2], sphere=sphere)
data, _ = _merge_ch_data(data[picks], ch_type, [])
data = data.reshape(-1)
else:
picks = list(range(data.shape[0]))
pos = _find_topomap_coords(pos, picks=picks, sphere=sphere)
extrapolate = _check_extrapolate(extrapolate, ch_type)
if data.ndim > 1:
raise ValueError(
f"Data needs to be array of shape (n_sensors,); got shape {data.shape}."
)
# Give a helpful error message for common mistakes regarding the position
# matrix.
pos_help = (
"Electrode positions should be specified as a 2D array with "
"shape (n_channels, 2). Each row in this matrix contains the "
"(x, y) position of an electrode."
)
if pos.ndim != 2:
error = (
f"{pos.ndim}D array supplied as electrode positions, where a 2D array was "
"expected"
)
raise ValueError(error + " " + pos_help)
elif pos.shape[1] == 3:
error = (
"The supplied electrode positions matrix contains 3 columns. "
"Are you trying to specify XYZ coordinates? Perhaps the "
"mne.channels.create_eeg_layout function is useful for you."
)
raise ValueError(error + " " + pos_help)
# No error is raised in case of pos.shape[1] == 4. In this case, it is
# assumed the position matrix contains both (x, y) and (width, height)
# values, such as Layout.pos.
elif pos.shape[1] == 1 or pos.shape[1] > 4:
raise ValueError(pos_help)
pos = pos[:, :2]
if len(data) != len(pos):
raise ValueError(
"Data and pos need to be of same length. Got data of "
f"length {len(data)}, pos of length { len(pos)}"
)
norm = min(data) >= 0
vmin, vmax = _setup_vmin_vmax(data, vmin, vmax, norm)
if cmap is None:
cmap = "Reds" if norm else "RdBu_r"
cmap = _get_cmap(cmap)
outlines = _make_head_outlines(sphere, pos, outlines, (0.0, 0.0))
assert isinstance(outlines, dict)
_prepare_topomap(pos, axes)
mask_params = _handle_default("mask_params", mask_params)
# find mask limits and setup interpolation
extent, Xi, Yi, interp = _setup_interp(
pos, res, image_interp, extrapolate, outlines, border
)
interp.set_values(data)
Zi = interp.set_locations(Xi, Yi)()
# plot outline
patch_ = _get_patch(outlines, extrapolate, interp, axes)
# get colormap normalization
if cnorm is None:
cnorm = Normalize(vmin=vmin, vmax=vmax)
# plot interpolated map
if image_interp == "nearest": # plot over with Voronoi, more accurate
im = _voronoi_topomap(
data,
pos=pos,
outlines=outlines,
ax=axes,
cmap=cmap,
norm=cnorm,
extent=extent,
res=res,
)
else:
im = axes.imshow(
Zi,
cmap=cmap,
origin="lower",
aspect="equal",
extent=extent,
interpolation="bilinear",
norm=cnorm,
)
# gh-1432 had a workaround for no contours here, but we'll remove it
# because mpl has probably fixed it
linewidth = mask_params["markeredgewidth"]
cont = True
if isinstance(contours, np.ndarray | list):
pass
elif contours == 0 or ((Zi == Zi[0, 0]) | np.isnan(Zi)).all():
cont = None # can't make contours for constant-valued functions
if cont:
with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore")
cont = axes.contour(
Xi, Yi, Zi, contours, colors="k", linewidths=linewidth / 2.0
)
if patch_ is not None:
im.set_clip_path(patch_)
if cont is not None:
for col in _cont_collections(cont):
col.set_clip_path(patch_)
pos_x, pos_y = pos.T
mask = mask.astype(bool, copy=False) if mask is not None else None
if sensors is not False and mask is None:
_topomap_plot_sensors(pos_x, pos_y, sensors=sensors, ax=axes)
elif sensors and mask is not None:
idx = np.where(mask)[0]
axes.plot(pos_x[idx], pos_y[idx], **mask_params)
idx = np.where(~mask)[0]
_topomap_plot_sensors(pos_x[idx], pos_y[idx], sensors=sensors, ax=axes)
elif not sensors and mask is not None:
idx = np.where(mask)[0]
axes.plot(pos_x[idx], pos_y[idx], **mask_params)
if isinstance(outlines, dict):
_draw_outlines(axes, outlines)
if names is not None:
show_idx = np.arange(len(names)) if mask is None else np.where(mask)[0]
for ii, (_pos, _name) in enumerate(zip(pos, names)):
if ii not in show_idx:
continue
axes.text(
_pos[0],
_pos[1],
_name,
horizontalalignment="center",
verticalalignment="center",
size="x-small",
)
if onselect is not None:
lim = axes.dataLim
x0, y0, width, height = lim.x0, lim.y0, lim.width, lim.height
axes.RS = RectangleSelector(axes, onselect=onselect)
axes.set(xlim=[x0, x0 + width], ylim=[y0, y0 + height])
plt_show(show)
return im, cont, interp
def _plot_ica_topomap(
ica,
idx=0,
ch_type=None,
res=64,
vmin=None,
vmax=None,
cmap="RdBu_r",
colorbar=False,
title=None,
show=True,
outlines="head",
contours=6,
image_interp=_INTERPOLATION_DEFAULT,
axes=None,
sensors=True,
allow_ref_meg=False,
extrapolate=_EXTRAPOLATE_DEFAULT,
sphere=None,
border=_BORDER_DEFAULT,
):
"""Plot single ica map to axes."""
from matplotlib.axes import Axes
from ..channels.layout import _merge_ch_data
if ica.info is None:
raise RuntimeError(
"The ICA's measurement info is missing. Please "
"fit the ICA or add the corresponding info object."
)
sphere = _check_sphere(sphere, ica.info)
if not isinstance(axes, Axes):
raise ValueError(
"axis has to be an instance of matplotlib Axes, "
f"got {type(axes)} instead."
)
ch_type = _get_plot_ch_type(ica, ch_type, allow_ref_meg=ica.allow_ref_meg)
if ch_type == "ref_meg":
logger.info("Cannot produce topographies for MEG reference channels.")
return
data = ica.get_components()[:, idx]
(
data_picks,
pos,
merge_channels,
names,
_,
sphere,
clip_origin,
) = _prepare_topomap_plot(ica, ch_type, sphere=sphere)
data = data[data_picks]
outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
if merge_channels:
data, names = _merge_ch_data(data, ch_type, names)
topo_title = ica._ica_names[idx]
if len(set(ica.get_channel_types())) > 1:
topo_title += f" ({ch_type})"
axes.set_title(topo_title, fontsize=12)
vlim = _setup_vmin_vmax(data, vmin, vmax)
im = plot_topomap(
data.ravel(),
pos,
vlim=vlim,
res=res,
axes=axes,
cmap=cmap,
outlines=outlines,
contours=contours,
sensors=sensors,
image_interp=image_interp,
show=show,
extrapolate=extrapolate,
sphere=sphere,
border=border,
ch_type=ch_type,
)[0]
if colorbar:
cbar, cax = _add_colorbar(
axes,
im,
cmap,
title="AU",
format_="%3.2f",
kind="ica_topomap",
ch_type=ch_type,
)
cbar.ax.tick_params(labelsize=12)
cbar.set_ticks(vlim)
_hide_frame(axes)
@verbose
def plot_ica_components(
ica,
picks=None,
ch_type=None,
*,
inst=None,
plot_std=True,
reject="auto",
sensors=True,
show_names=False,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap="RdBu_r",
vlim=(None, None),
cnorm=None,
colorbar=False,
cbar_fmt="%3.2f",
axes=None,
title=None,
nrows="auto",
ncols="auto",
show=True,
image_args=None,
psd_args=None,
verbose=None,
):
"""Project mixing matrix on interpolated sensor topography.
Parameters
----------
ica : instance of mne.preprocessing.ICA
The ICA solution.
%(picks_ica)s
%(ch_type_topomap)s
inst : Raw | Epochs | None
To be able to see component properties after clicking on component
topomap you need to pass relevant data - instances of Raw or Epochs
(for example the data that ICA was trained on). This takes effect
only when running matplotlib in interactive mode.
plot_std : bool | float
Whether to plot standard deviation in ERP/ERF and spectrum plots.
Defaults to True, which plots one standard deviation above/below.
If set to float allows to control how many standard deviations are
plotted. For example 2.5 will plot 2.5 standard deviation above/below.
reject : ``'auto'`` | dict | None
Allows to specify rejection parameters used to drop epochs
(or segments if continuous signal is passed as inst).
If None, no rejection is applied. The default is 'auto',
which applies the rejection parameters used when fitting
the ICA object.
%(sensors_topomap)s
%(show_names_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionadded:: 1.3
%(border_topomap)s
.. versionadded:: 1.3
%(res_topomap)s
%(size_topomap)s
.. versionadded:: 1.3
%(cmap_topomap)s
%(vlim_plot_topomap)s
.. versionadded:: 1.3
%(cnorm)s
.. versionadded:: 1.3
%(colorbar_topomap)s
%(cbar_fmt_topomap)s
axes : Axes | array of Axes | None
The subplot(s) to plot to. Either a single Axes or an iterable of Axes
if more than one subplot is needed. The number of subplots must match
the number of selected components. If None, new figures will be created
with the number of subplots per figure controlled by ``nrows`` and
``ncols``.
title : str | None
The title of the generated figure. If ``None`` (default) and
``axes=None``, a default title of "ICA Components" will be used.
%(nrows_ncols_ica_components)s
.. versionadded:: 1.3
%(show)s
image_args : dict | None
Dictionary of arguments to pass to :func:`~mne.viz.plot_epochs_image`
in interactive mode. Ignored if ``inst`` is not supplied. If ``None``,
nothing is passed. Defaults to ``None``.
psd_args : dict | None
Dictionary of arguments to pass to :meth:`~mne.Epochs.compute_psd` in
interactive mode. Ignored if ``inst`` is not supplied. If ``None``,
nothing is passed. Defaults to ``None``.
%(verbose)s
Returns
-------
fig : instance of matplotlib.figure.Figure | list of matplotlib.figure.Figure
The figure object(s).
Notes
-----
When run in interactive mode, ``plot_ica_components`` allows to reject
components by clicking on their title label. The state of each component
is indicated by its label color (gray: rejected; black: retained). It is
also possible to open component properties by clicking on the component
topomap (this option is only available when the ``inst`` argument is
supplied).
""" # noqa E501
from matplotlib.pyplot import Axes
from ..channels.layout import _merge_ch_data
from ..epochs import BaseEpochs
from ..io import BaseRaw
if ica.info is None:
raise RuntimeError(
"The ICA's measurement info is missing. Please "
"fit the ICA or add the corresponding info object."
)
# for backward compat, nrow='auto' ncol='auto' should yield 4 rows 5 cols
# and create multiple figures if more than 20 components requested
if nrows == "auto" and ncols == "auto":
ncols = 5
max_subplots = 20
elif nrows == "auto" or ncols == "auto":
# user provided incomplete row/col spec; put all in one figure
max_subplots = ica.n_components_
else:
max_subplots = nrows * ncols
# handle ch_type=None
ch_type = _get_plot_ch_type(ica, ch_type)
figs = []
if picks is None:
cut_points = range(max_subplots, ica.n_components_, max_subplots)
pick_groups = np.split(range(ica.n_components_), cut_points)
else:
pick_groups = [_picks_to_idx(ica.n_components_, picks, picks_on="components")]
axes = axes.flatten() if isinstance(axes, np.ndarray) else axes
for k, picks in enumerate(pick_groups):
try: # either an iterable, 1D numpy array or others
_axes = axes[k * max_subplots : (k + 1) * max_subplots]
except TypeError: # None or Axes
_axes = axes
(
data_picks,
pos,
merge_channels,
names,
ch_type,
sphere,
clip_origin,
) = _prepare_topomap_plot(ica, ch_type, sphere=sphere)
cmap = _setup_cmap(cmap, n_axes=len(picks))
names = _prepare_sensor_names(names, show_names)
outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
data = np.dot(
ica.mixing_matrix_[:, picks].T, ica.pca_components_[: ica.n_components_]
)
data = np.atleast_2d(data)
data = data[:, data_picks]
if title is None:
title = "ICA components"
user_passed_axes = _axes is not None
if not user_passed_axes:
fig, _axes, _, _ = _prepare_trellis(len(data), ncols=ncols, nrows=nrows)
fig.suptitle(title)
else:
_axes = [_axes] if isinstance(_axes, Axes) else _axes
fig = _axes[0].get_figure()
subplot_titles = list()
for ii, data_, ax in zip(picks, data, _axes):
kwargs = dict(color="gray") if ii in ica.exclude else dict()
comp_title = ica._ica_names[ii]
if len(set(ica.get_channel_types())) > 1:
comp_title += f" ({ch_type})"
subplot_titles.append(ax.set_title(comp_title, fontsize=12, **kwargs))
if merge_channels:
data_, names_ = _merge_ch_data(data_, ch_type, copy.copy(names))
# ↓↓↓ NOTE: we intentionally use the default norm=False here, so that
# ↓↓↓ we get vlims that are symmetric-about-zero, even if the data for
# ↓↓↓ a given component happens to be one-sided.
_vlim = _setup_vmin_vmax(data_, *vlim)
im = plot_topomap(
data_.flatten(),
pos,
ch_type=ch_type,
sensors=sensors,
names=names,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=cmap[0],
vlim=_vlim,
cnorm=cnorm,
axes=ax,
show=False,
)[0]
im.axes.set_label(ica._ica_names[ii])
if colorbar:
cbar, cax = _add_colorbar(
ax,
im,
cmap,
title="AU",
format_=cbar_fmt,
kind="ica_comp_topomap",
ch_type=ch_type,
)
cbar.ax.tick_params(labelsize=12)
cbar.set_ticks(_vlim)
_hide_frame(ax)
del pos
fig.canvas.draw()
# add title selection interactivity
def onclick_title(event, ica=ica, titles=subplot_titles, fig=fig):
# check if any title was pressed
title_pressed = None
for title in titles:
if title.contains(event)[0]:
title_pressed = title
break
# title was pressed -> identify the IC
if title_pressed is not None:
label = title_pressed.get_text()
ic = int(label.split(" ")[0][-3:])
# add or remove IC from exclude depending on current state
if ic in ica.exclude:
ica.exclude.remove(ic)
title_pressed.set_color("k")
else:
ica.exclude.append(ic)
title_pressed.set_color("gray")
fig.canvas.draw()
fig.canvas.mpl_connect("button_press_event", onclick_title)
# add plot_properties interactivity only if inst was passed
if isinstance(inst, BaseRaw | BaseEpochs):
topomap_args = dict(
sensors=sensors,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
cmap=cmap[0],
vmin=vlim[0],
vmax=vlim[1],
)
def onclick_topo(event, ica=ica, inst=inst):
# check which component to plot
if event.inaxes is not None:
label = event.inaxes.get_label()
if label.startswith("ICA"):
ic = int(label.split(" ")[0][-3:])
ica.plot_properties(
inst,
picks=ic,
show=True,
plot_std=plot_std,
topomap_args=topomap_args,
image_args=image_args,
psd_args=psd_args,
reject=reject,
)
fig.canvas.mpl_connect("button_press_event", onclick_topo)
figs.append(fig)
plt_show(show)
return figs[0] if len(figs) == 1 else figs
@fill_doc
def plot_tfr_topomap(
tfr,
tmin=None,
tmax=None,
fmin=0.0,
fmax=np.inf,
*,
ch_type=None,
baseline=None,
mode="mean",
sensors=True,
show_names=False,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=2,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="%1.1e",
units=None,
axes=None,
show=True,
):
"""Plot topographic maps of specific time-frequency intervals of TFR data.
Parameters
----------
tfr : AverageTFR
The AverageTFR object.
%(tmin_tmax_psd)s
%(fmin_fmax_psd)s
%(ch_type_topomap_psd)s
baseline : tuple or list of length 2
The time interval to apply rescaling / baseline correction. If None do
not apply it. If baseline is (a, b) the interval is between "a (s)" and
"b (s)". If a is None the beginning of the data is used and if b is
None then b is set to the end of the interval. If baseline is equal to
(None, None) the whole time interval is used.
mode : 'mean' | 'ratio' | 'logratio' | 'percent' | 'zscore' | 'zlogratio' | None
Perform baseline correction by
- subtracting the mean baseline power ('mean')
- dividing by the mean baseline power ('ratio')
- dividing by the mean baseline power and taking the log ('logratio')
- subtracting the mean baseline power followed by dividing by the
mean baseline power ('percent')
- subtracting the mean baseline power and dividing by the standard
deviation of the baseline power ('zscore')
- dividing by the mean baseline power, taking the log, and dividing
by the standard deviation of the baseline power ('zlogratio')
If None no baseline correction is applied.
%(sensors_topomap)s
%(show_names_topomap)s
%(mask_evoked_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionchanged:: 0.21
- The default was changed to ``'local'`` for MEG sensors.
- ``'local'`` was changed to use a convex hull mask
- ``'head'`` was changed to extrapolate out to the clipping circle.
%(border_topomap)s
.. versionadded:: 0.20
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap)s
.. versionadded:: 1.2
%(cnorm)s
.. versionadded:: 1.2
%(colorbar_topomap)s
%(cbar_fmt_topomap)s
%(units_topomap)s
%(axes_plot_topomap)s
%(show)s
Returns
-------
fig : matplotlib.figure.Figure
The figure containing the topography.
""" # noqa: E501
import matplotlib.pyplot as plt
from ..channels.layout import _merge_ch_data
ch_type = _get_plot_ch_type(tfr, ch_type)
picks, pos, merge_channels, names, _, sphere, clip_origin = _prepare_topomap_plot(
tfr, ch_type, sphere=sphere
)
outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
data = tfr.data[picks, :, :]
# merging grads before rescaling makes ERDs visible
if merge_channels:
data, names = _merge_ch_data(data, ch_type, names, method="mean")
data = rescale(data, tfr.times, baseline, mode, copy=True)
if np.iscomplexobj(data):
data = np.sqrt((data * data.conj()).real)
# crop time
itmin, itmax = None, None
idx = np.where(_time_mask(tfr.times, tmin, tmax))[0]
if tmin is not None:
itmin = idx[0]
if tmax is not None:
itmax = idx[-1] + 1
# crop freqs
ifmin, ifmax = None, None
idx = np.where(_time_mask(tfr.freqs, fmin, fmax))[0]
ifmin = idx[0]
ifmax = idx[-1] + 1
data = data[:, ifmin:ifmax, itmin:itmax]
data = data.mean(axis=(1, 2))[:, np.newaxis]
norm = False if np.min(data) < 0 else True
vlim = _setup_vmin_vmax(data, *vlim, norm)
cmap = _setup_cmap(cmap, norm=norm)
axes = (
plt.subplots(figsize=(size, size), layout="constrained")[1]
if axes is None
else axes
)
fig = axes.figure
_hide_frame(axes)
locator = None
if not isinstance(contours, list | np.ndarray):
locator, contours = _set_contour_locator(*vlim, contours)
fig_wrapper = list()
selection_callback = partial(
_onselect,
tfr=tfr,
pos=pos,
ch_type=ch_type,
itmin=itmin,
itmax=itmax,
ifmin=ifmin,
ifmax=ifmax,
cmap=cmap[0],
fig=fig_wrapper,
)
if not isinstance(contours, list | np.ndarray):
_, contours = _set_contour_locator(*vlim, contours)
names = _prepare_sensor_names(names, show_names)
im, _ = plot_topomap(
data[:, 0],
pos,
ch_type=ch_type,
sensors=sensors,
names=names,
mask=mask,
mask_params=mask_params,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=cmap[0],
vlim=vlim,
cnorm=cnorm,
axes=axes,
show=False,
onselect=selection_callback,
)
if colorbar:
from matplotlib import ticker
units = _handle_default("units", units)["misc"]
cbar, cax = _add_colorbar(
axes,
im,
cmap,
title=units,
format_=cbar_fmt,
kind="tfr_topomap",
ch_type=ch_type,
)
if locator is None:
locator = ticker.MaxNLocator(nbins=5)
cbar.locator = locator
cbar.update_ticks()
cbar.ax.tick_params(labelsize=12)
plt_show(show)
return fig
@fill_doc
def plot_evoked_topomap(
evoked,
times="auto",
*,
average=None,
ch_type=None,
scalings=None,
proj=False,
sensors=True,
show_names=False,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="%3.1f",
units=None,
axes=None,
time_unit="s",
time_format=None,
nrows=1,
ncols="auto",
show=True,
):
"""Plot topographic maps of specific time points of evoked data.
Parameters
----------
evoked : Evoked
The Evoked object.
times : float | array of float | "auto" | "peaks" | "interactive"
The time point(s) to plot. If "auto", the number of ``axes`` determines
the amount of time point(s). If ``axes`` is also None, at most 10
topographies will be shown with a regular time spacing between the
first and last time instant. If "peaks", finds time points
automatically by checking for local maxima in global field power. If
"interactive", the time can be set interactively at run-time by using a
slider.
%(average_plot_evoked_topomap)s
%(ch_type_topomap)s
%(scalings_topomap)s
%(proj_plot)s
%(sensors_topomap)s
%(show_names_topomap)s
%(mask_evoked_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionadded:: 0.18
.. versionchanged:: 0.21
- The default was changed to ``'local'`` for MEG sensors.
- ``'local'`` was changed to use a convex hull mask
- ``'head'`` was changed to extrapolate out to the clipping circle.
%(border_topomap)s
.. versionadded:: 0.20
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap_psd)s
.. versionadded:: 1.2
%(cnorm)s
.. versionadded:: 1.2
%(colorbar_topomap)s
%(cbar_fmt_topomap)s
%(units_topomap_evoked)s
%(axes_evoked_plot_topomap)s
time_unit : str
The units for the time axis, can be "ms" or "s" (default).
.. versionadded:: 0.16
time_format : str | None
String format for topomap values. Defaults (None) to "%%01d ms" if
``time_unit='ms'``, "%%0.3f s" if ``time_unit='s'``, and
"%%g" otherwise. Can be an empty string to omit the time label.
%(nrows_ncols_topomap)s Ignored when times == 'interactive'.
.. versionadded:: 0.20
%(show)s
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
Notes
-----
When existing ``axes`` are provided and ``colorbar=True``, note that the
colorbar scale will only accurately reflect topomaps that are generated in
the same call as the colorbar. Note also that the colorbar will not be
resized automatically when ``axes`` are provided; use Matplotlib's
:meth:`axes.set_position() <matplotlib.axes.Axes.set_position>` method or
:ref:`gridspec <matplotlib:arranging_axes>` interface to adjust the colorbar
size yourself.
When ``time=="interactive"``, the figure will publish and subscribe to the
following UI events:
* :class:`~mne.viz.ui_events.TimeChange` whenever a new time is selected.
"""
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
from matplotlib.widgets import Slider
from ..channels.layout import _merge_ch_data
from ..evoked import Evoked
_validate_type(evoked, Evoked, "evoked")
_validate_type(colorbar, bool, "colorbar")
evoked = evoked.copy() # make a copy, since we'll be picking
ch_type = _get_plot_ch_type(evoked, ch_type)
# time units / formatting
time_unit, _ = _check_time_unit(time_unit, evoked.times)
scaling_time = 1.0 if time_unit == "s" else 1e3
_validate_type(time_format, (None, str), "time_format")
if time_format is None:
time_format = "%0.3f s" if time_unit == "s" else "%01d ms"
del time_unit
# mask_params defaults
mask_params = _handle_default("mask_params", mask_params)
mask_params["markersize"] *= size / 2.0
mask_params["markeredgewidth"] *= size / 2.0
# setup various parameters, and prepare outlines
(
picks,
pos,
merge_channels,
names,
ch_type,
sphere,
clip_origin,
) = _prepare_topomap_plot(evoked, ch_type, sphere=sphere)
outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
# check interactive
axes_given = axes is not None
interactive = isinstance(times, str) and times == "interactive"
if interactive and axes_given:
raise ValueError("User-provided axes not allowed when times='interactive'.")
# units, scalings
key = "grad" if ch_type.startswith("planar") else ch_type
default_scaling = _handle_default("scalings", None)[key]
scaling = _handle_default("scalings", scalings)[key]
# if non-default scaling, fall back to "AU" if unit wasn't given by user
key = "misc" if scaling != default_scaling else key
unit = _handle_default("units", units)[key]
# ch_names (required for NIRS)
ch_names = names
names = _prepare_sensor_names(names, show_names)
# apply projections before picking. NOTE: the `if proj is True`
# anti-pattern is needed here to exclude proj='interactive'
_check_option("proj", proj, (True, False, "interactive", "reconstruct"))
if proj is True and not evoked.proj:
evoked.apply_proj()
elif proj == "reconstruct":
evoked._reconstruct_proj()
data = evoked.data
# remove compensation matrices (safe: only plotting & already made copy)
with evoked.info._unlock():
evoked.info["comps"] = []
evoked = evoked._pick_drop_channels(picks, verbose=False)
# determine which times to plot
if isinstance(axes, plt.Axes):
axes = [axes]
n_peaks = len(axes) - int(colorbar) if axes_given else None
times = _process_times(evoked, times, n_peaks)
n_times = len(times)
space = 1 / (2.0 * evoked.info["sfreq"])
if max(times) > max(evoked.times) + space or min(times) < min(evoked.times) - space:
raise ValueError(
f"Times should be between {evoked.times[0]:0.3} and "
f"{evoked.times[-1]:0.3}."
)
# create axes
want_axes = n_times + int(colorbar)
if interactive:
height_ratios = [5, 1]
nrows = 2
ncols = n_times
width = size * want_axes
height = size + max(0, 0.1 * (4 - size))
fig = figure_nobar(figsize=(width * 1.5, height * 1.5))
gs = GridSpec(nrows, ncols, height_ratios=height_ratios, figure=fig)
axes = []
for ax_idx in range(n_times):
axes.append(plt.subplot(gs[0, ax_idx]))
elif axes is None:
fig, axes, ncols, nrows = _prepare_trellis(
n_times, ncols=ncols, nrows=nrows, size=size
)
else:
nrows, ncols = None, None # Deactivate ncols when axes were passed
fig = axes[0].get_figure()
# check: enough space for colorbar?
if len(axes) != want_axes:
cbar_err = " plus one for the colorbar" if colorbar else ""
raise RuntimeError(
f"You must provide {want_axes} axes (one for "
f"each time{cbar_err}), got {len(axes)}."
)
del want_axes
# find first index that's >= (to rounding error) to each time point
time_idx = [
np.where(
_time_mask(evoked.times, tmin=t, tmax=None, sfreq=evoked.info["sfreq"])
)[0][0]
for t in times
]
# do averaging if requested
avg_err = (
'"average" must be `None`, a positive number of seconds, or '
"an array-like object of the previous"
)
averaged_times = []
if average is None:
average = np.array([None] * n_times)
data = data[np.ix_(picks, time_idx)]
else:
if _is_numeric(average):
average = np.array([average] * n_times)
elif np.array(average).ndim == 0:
# It should be an array-like object
raise TypeError(f"{avg_err}; got type: {type(average)}.")
else:
average = np.array(average)
if len(average) != n_times:
raise ValueError(
f"You requested to plot topographic maps for {n_times} time "
f"points, but provided {len(average)} periods for "
f"averaging. The number of time points and averaging periods "
f"must be equal."
)
data_ = np.zeros((len(picks), len(time_idx)))
for average_idx, (this_average, this_time, this_time_idx) in enumerate(
zip(average, evoked.times[time_idx], time_idx)
):
if (_is_numeric(this_average) and this_average <= 0) or (
not _is_numeric(this_average) and this_average is not None
):
if len(average) == 1:
msg = f"{avg_err}; got {this_average}"
else:
msg = f"{avg_err}; got {this_average} in {average}"
raise ValueError(msg)
if this_average is None:
data_[:, average_idx] = data[picks][:, this_time_idx]
averaged_times.append([this_time])
else:
tmin_ = this_time - this_average / 2
tmax_ = this_time + this_average / 2
time_mask = (tmin_ < evoked.times) & (evoked.times < tmax_)
data_[:, average_idx] = data[picks][:, time_mask].mean(-1)
averaged_times.append(evoked.times[time_mask])
data = data_
# apply scalings and merge channels
data *= scaling
if merge_channels:
data, ch_names = _merge_ch_data(data, ch_type, ch_names)
if ch_type in _fnirs_types:
merge_channels = False
# apply mask if requested
if mask is not None:
mask = mask.astype(bool, copy=False)
if ch_type == "grad":
mask_ = (
mask[np.ix_(picks[::2], time_idx)] | mask[np.ix_(picks[1::2], time_idx)]
)
else: # mag, eeg, planar1, planar2
mask_ = mask[np.ix_(picks, time_idx)]
# set up colormap
_vlim = [
_setup_vmin_vmax(data[:, i], *vlim, norm=merge_channels) for i in range(n_times)
]
_vlim = (np.min(_vlim), np.max(_vlim))
cmap = _setup_cmap(cmap, n_axes=n_times, norm=_vlim[0] >= 0)
# set up contours
if not isinstance(contours, list | np.ndarray):
_, contours = _set_contour_locator(*_vlim, contours)
# prepare for main loop over times
kwargs = dict(
sensors=sensors,
res=res,
names=names,
cmap=cmap[0],
cnorm=cnorm,
mask_params=mask_params,
outlines=outlines,
contours=contours,
image_interp=image_interp,
show=False,
extrapolate=extrapolate,
sphere=sphere,
border=border,
ch_type=ch_type,
)
images, contours_ = [], []
# loop over times
for average_idx, (time, this_average) in enumerate(zip(times, average)):
tp, cn, interp = _plot_topomap(
data[:, average_idx],
pos,
axes=axes[average_idx],
mask=mask_[:, average_idx] if mask is not None else None,
vmin=_vlim[0],
vmax=_vlim[1],
**kwargs,
)
images.append(tp)
if cn is not None:
contours_.append(cn)
if time_format != "":
if this_average is None:
axes_title = time_format % (time * scaling_time)
else:
tmin_ = averaged_times[average_idx][0]
tmax_ = averaged_times[average_idx][-1]
from_time = time_format % (tmin_ * scaling_time)
from_time = from_time.split(" ")[0] # Remove unit
to_time = time_format % (tmax_ * scaling_time)
axes_title = f"{from_time} – {to_time}"
del from_time, to_time, tmin_, tmax_
axes[average_idx].set_title(axes_title)
if interactive:
# Add a slider to the figure and start publishing and subscribing to time_change
# events.
kwargs.update(vlim=_vlim)
axes.append(fig.add_subplot(gs[1]))
slider = Slider(
axes[-1],
"Time",
evoked.times[0],
evoked.times[-1],
valinit=times[0],
valfmt="%1.2fs",
)
slider.vline.remove() # remove initial point indicator
func = _merge_ch_data if merge_channels else lambda x: x
def _slider_changed(val):
publish(fig, TimeChange(time=val))
slider.on_changed(_slider_changed)
ts = np.tile(evoked.times, len(evoked.data)).reshape(evoked.data.shape)
axes[-1].plot(ts, evoked.data, color="k")
axes[-1].slider = slider
subscribe(
fig,
"time_change",
partial(
_on_time_change,
fig=fig,
data=evoked.data,
times=evoked.times,
pos=pos,
scaling=scaling,
func=func,
time_format=time_format,
scaling_time=scaling_time,
slider=slider,
kwargs=kwargs,
),
)
subscribe(
fig,
"colormap_range",
partial(_on_colormap_range, kwargs=kwargs),
)
if colorbar:
if nrows is None or ncols is None:
# axes were given by the user, so don't resize the colorbar
cax = axes[-1]
else: # use the default behavior
cax = None
cbar = fig.colorbar(images[-1], ax=axes, cax=cax, format=cbar_fmt, shrink=0.6)
if unit is not None:
cbar.ax.set_title(unit)
if cn is not None:
cbar.set_ticks(contours)
cbar.ax.tick_params(labelsize=7)
if cmap[1]:
for im in images:
im.axes.CB = DraggableColorbar(
cbar, im, kind="evoked_topomap", ch_type=ch_type
)
if proj == "interactive":
_check_delayed_ssp(evoked)
params = dict(
evoked=evoked,
fig=fig,
projs=evoked.info["projs"],
picks=picks,
images=images,
contours_=contours_,
pos=pos,
time_idx=time_idx,
res=res,
plot_update_proj_callback=_plot_update_evoked_topomap,
merge_channels=merge_channels,
scale=scaling,
axes=axes[: len(axes) - bool(interactive)],
contours=contours,
interp=interp,
extrapolate=extrapolate,
)
_draw_proj_checkbox(None, params)
# This is mostly for testing purposes, but it's also consistent with
# raw.plot, so maybe not a bad thing in principle either
from mne.viz._figure import BrowserParams
fig.mne = BrowserParams(proj_checkboxes=params["proj_checks"])
plt_show(show, block=False)
if axes_given:
fig.canvas.draw()
return fig
def _resize_cbar(cax, n_fig_axes, size=1):
"""Resize colorbar."""
cpos = cax.get_position()
if size <= 1:
cpos.x0 = 1 - (0.7 + 0.1 / size) / n_fig_axes
cpos.x1 = cpos.x0 + 0.1 / n_fig_axes
cpos.y0 = 0.2
cpos.y1 = 0.7
cax.set_position(cpos)
def _on_time_change(
event,
fig,
data,
times,
pos,
scaling,
func,
time_format,
scaling_time,
slider,
kwargs,
):
"""Handle updating topomap to show a new time."""
idx = np.argmin(np.abs(times - event.time))
data = func(data[:, idx]).ravel() * scaling
ax = fig.axes[0]
ax.clear()
im, _ = plot_topomap(data, pos, axes=ax, **kwargs)
if hasattr(ax, "CB"):
ax.CB.mappable = im
_resize_cbar(ax.CB.cbar.ax, 2)
if time_format is not None:
ax.set_title(time_format % (event.time * scaling_time))
# Updating the slider will generate a new time_change event. To prevent an
# infinite loop, only update the slider if the time has actually changed.
if event.time != slider.val:
slider.set_val(event.time)
ax.figure.canvas.draw_idle()
def _on_colormap_range(event, kwargs):
"""Handle updating colormap range."""
logger.debug(f"Updating colormap range to {event.fmin}, {event.fmax}")
kwargs.update(vlim=(event.fmin, event.fmax), cmap=event.cmap)
def _plot_topomap_multi_cbar(
data,
pos,
ax,
*,
vlim,
title,
unit,
cmap,
outlines,
colorbar,
cbar_fmt,
sphere,
ch_type,
sensors,
names,
mask,
mask_params,
contours,
image_interp,
extrapolate,
border,
res,
size,
cnorm,
):
_hide_frame(ax)
_vlim = (
np.min(data) if vlim[0] is None else vlim[0],
np.max(data) if vlim[1] is None else vlim[1],
)
# this definition of "norm" allows non-diverging colormap for cases
# where min & vmax are both negative (e.g., when they are power in dB)
signs = np.sign(_vlim)
norm = len(set(signs)) == 1 or np.any(signs == 0)
_cmap = _setup_cmap(cmap, norm=norm)
if title is not None:
ax.set_title(title, fontsize=10)
im, _ = plot_topomap(
data,
pos,
ch_type=ch_type,
sensors=sensors,
names=names,
mask=mask,
mask_params=mask_params,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=_cmap[0],
vlim=_vlim,
cnorm=cnorm,
axes=ax,
show=False,
onselect=None,
)
if colorbar:
cbar, cax = _add_colorbar(ax, im, cmap, title=None, format_=cbar_fmt)
cbar.set_ticks(_vlim)
if unit is not None:
cbar.ax.set_ylabel(unit, fontsize=8)
cbar.ax.tick_params(labelsize=8)
@legacy(alt="Epochs.compute_psd().plot_topomap()")
@verbose
def plot_epochs_psd_topomap(
epochs,
bands=None,
tmin=None,
tmax=None,
proj=False,
*,
bandwidth=None,
adaptive=False,
low_bias=True,
normalization="length",
ch_type=None,
normalize=False,
agg_fun=None,
dB=False,
sensors=True,
names=None,
mask=None,
mask_params=None,
contours=0,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="auto",
units=None,
axes=None,
show=True,
n_jobs=None,
verbose=None,
):
"""Plot the topomap of the power spectral density across epochs.
Parameters
----------
epochs : instance of Epochs
The epochs object.
%(bands_psd_topo)s
%(tmin_tmax_psd)s
%(proj_psd)s
bandwidth : float
The bandwidth of the multi taper windowing function in Hz. The default
value is a window half-bandwidth of 4 Hz.
adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD
(slow, use n_jobs >> 1 to speed up computation).
low_bias : bool
Only use tapers with more than 90%% spectral concentration within
bandwidth.
%(normalization)s
%(ch_type_topomap_psd)s
%(normalize_psd_topo)s
%(agg_fun_psd_topo)s
%(dB_plot_topomap)s
%(sensors_topomap)s
%(names_topomap)s
%(mask_evoked_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionchanged:: 0.21
- The default was changed to ``'local'`` for MEG sensors.
- ``'local'`` was changed to use a convex hull mask
- ``'head'`` was changed to extrapolate out to the clipping circle.
%(border_topomap)s
.. versionadded:: 0.20
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap_psd)s
.. versionadded:: 0.21
%(cnorm)s
.. versionadded:: 1.2
%(colorbar_topomap)s
%(cbar_fmt_topomap_psd)s
%(units_topomap)s
%(axes_spectrum_plot_topomap)s
%(show)s
%(n_jobs)s
%(verbose)s
Returns
-------
fig : instance of Figure
Figure showing one scalp topography per frequency band.
"""
from ..channels import rename_channels
from ..time_frequency import Spectrum
init_kw, plot_kw = _split_psd_kwargs(plot_fun=Spectrum.plot_topomap)
spectrum = epochs.compute_psd(**init_kw)
plot_kw.setdefault("show_names", False)
if names is not None:
rename_channels(
spectrum.info, dict(zip(spectrum.ch_names, names)), verbose=verbose
)
plot_kw["show_names"] = True
return spectrum.plot_topomap(**plot_kw)
@fill_doc
def plot_psds_topomap(
psds,
freqs,
pos,
*,
bands=None,
ch_type="eeg",
normalize=False,
agg_fun=None,
dB=True,
sensors=True,
names=None,
mask=None,
mask_params=None,
contours=0,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="auto",
unit=None,
axes=None,
show=True,
):
"""Plot spatial maps of PSDs.
Parameters
----------
psds : array of float, shape (n_channels, n_freqs)
Power spectral densities.
freqs : array of float, shape (n_freqs,)
Frequencies used to compute psds.
%(pos_topomap_psd)s
%(bands_psd_topo)s
%(ch_type_topomap)s
%(normalize_psd_topo)s
%(agg_fun_psd_topo)s
%(dB_plot_topomap)s
%(sensors_topomap)s
%(names_topomap)s
%(mask_evoked_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionchanged:: 0.21
- The default was changed to ``'local'`` for MEG sensors.
- ``'local'`` was changed to use a convex hull mask
- ``'head'`` was changed to extrapolate out to the clipping circle.
%(border_topomap)s
.. versionadded:: 0.20
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap_psd)s
.. versionadded:: 0.21
%(cnorm)s
.. versionadded:: 1.2
%(colorbar_topomap)s
%(cbar_fmt_topomap_psd)s
unit : str | None
Measurement unit to be displayed with the colorbar. If ``None``, no
unit is displayed (only "power" or "dB" as appropriate).
%(axes_spectrum_plot_topomap)s
%(show)s
Returns
-------
fig : instance of matplotlib.figure.Figure
Figure with a topomap subplot for each band.
"""
import matplotlib.pyplot as plt
from matplotlib.axes import Axes
# handle some defaults
sphere = _check_sphere(sphere)
if cbar_fmt == "auto":
cbar_fmt = "%0.1f" if dB else "%0.3f"
# make sure `bands` is a dict
if bands is None:
bands = {
"Delta (0-4 Hz)": (0, 4),
"Theta (4-8 Hz)": (4, 8),
"Alpha (8-12 Hz)": (8, 12),
"Beta (12-30 Hz)": (12, 30),
"Gamma (30-45 Hz)": (30, 45),
}
elif not hasattr(bands, "keys"):
# convert legacy list-of-tuple input to a dict
bands = {band[-1]: band[:-1] for band in bands}
logger.info(
"converting legacy list-of-tuples input to a dict for the "
"`bands` parameter"
)
# upconvert single freqs to band upper/lower edges as needed
bin_spacing = np.diff(freqs)[0]
bin_edges = np.array([0, bin_spacing]) - bin_spacing / 2
for band, _edges in bands.items():
if not hasattr(_edges, "__len__"):
_edges = (_edges,)
if len(_edges) == 1:
bands[band] = tuple(bin_edges + freqs[np.argmin(np.abs(freqs - _edges[0]))])
# normalize data (if requested)
if normalize:
psds /= psds.sum(axis=-1, keepdims=True)
assert np.allclose(psds.sum(axis=-1), 1.0)
# aggregate within bands
if agg_fun is None:
agg_fun = np.sum if normalize else np.mean
freq_masks = list()
for band, (fmin, fmax) in bands.items():
_mask = (fmin < freqs) & (freqs < fmax)
# make sure no bands are empty
if _mask.sum() == 0:
raise RuntimeError(f'No frequencies in band "{band}" ({fmin}, {fmax})')
freq_masks.append(_mask)
band_data = [agg_fun(psds[:, _mask], axis=1) for _mask in freq_masks]
if dB and not normalize:
band_data = [10 * np.log10(_d) for _d in band_data]
# handle vmin/vmax
joint_vlim = vlim == "joint"
if joint_vlim:
vlim = (np.array(band_data).min(), np.array(band_data).max())
# unit label
if unit is None:
unit = "dB" if dB and not normalize else "power"
else:
_dB = dB and not normalize
unit = _format_units_psd(unit, dB=_dB)
# set up figure / axes
n_axes = len(bands)
user_passed_axes = axes is not None
if user_passed_axes:
if isinstance(axes, Axes):
axes = [axes]
_validate_if_list_of_axes(axes, n_axes)
fig = axes[0].figure
else:
fig, axes = plt.subplots(
1, n_axes, figsize=(2 * n_axes, 1.5), layout="constrained"
)
if n_axes == 1:
axes = [axes]
# loop over subplots/frequency bands
for ax, _mask, _data, (title, (fmin, fmax)) in zip(
axes, freq_masks, band_data, bands.items()
):
plot_colorbar = False if not colorbar else (not joint_vlim) or ax == axes[-1]
_plot_topomap_multi_cbar(
_data,
pos,
ax,
title=title,
vlim=vlim,
cmap=cmap,
outlines=outlines,
colorbar=plot_colorbar,
unit=unit,
cbar_fmt=cbar_fmt,
sphere=sphere,
ch_type=ch_type,
sensors=sensors,
names=names,
mask=mask,
mask_params=mask_params,
contours=contours,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cnorm=cnorm,
)
if not user_passed_axes:
fig.canvas.draw()
plt_show(show)
return fig
@fill_doc
def plot_layout(layout, picks=None, show_axes=False, show=True):
"""Plot the sensor positions.
Parameters
----------
layout : None | Layout
Layout instance specifying sensor positions.
%(picks_layout)s
show_axes : bool
Show layout axes if True. Defaults to False.
show : bool
Show figure if True. Defaults to True.
Returns
-------
fig : instance of Figure
Figure containing the sensor topography.
Notes
-----
.. versionadded:: 0.12.0
"""
import matplotlib.pyplot as plt
fig = plt.figure(
figsize=(max(plt.rcParams["figure.figsize"]),) * 2, layout="constrained"
)
ax = fig.add_subplot(111)
ax.set(xticks=[], yticks=[], aspect="equal")
outlines = dict(border=([0, 1, 1, 0, 0], [0, 0, 1, 1, 0]))
_draw_outlines(ax, outlines)
layout = layout.copy().pick(picks)
for ii, (p, ch_id) in enumerate(zip(layout.pos, layout.names)):
center_pos = np.array((p[0] + p[2] / 2.0, p[1] + p[3] / 2.0))
ax.annotate(
ch_id,
xy=center_pos,
horizontalalignment="center",
verticalalignment="center",
size="x-small",
)
if show_axes:
x1, x2, y1, y2 = p[0], p[0] + p[2], p[1], p[1] + p[3]
ax.plot([x1, x1, x2, x2, x1], [y1, y2, y2, y1, y1], color="k")
ax.axis("off")
plt_show(show)
return fig
def _onselect(
eclick,
erelease,
tfr,
pos,
ch_type,
itmin,
itmax,
ifmin,
ifmax,
cmap,
fig,
layout=None,
):
"""Handle drawing average tfr over channels called from topomap."""
import matplotlib.pyplot as plt
from matplotlib.collections import PathCollection
from ..channels.layout import _pair_grad_sensors
ax = eclick.inaxes
xmin = min(eclick.xdata, erelease.xdata)
xmax = max(eclick.xdata, erelease.xdata)
ymin = min(eclick.ydata, erelease.ydata)
ymax = max(eclick.ydata, erelease.ydata)
indices = (
(pos[:, 0] < xmax)
& (pos[:, 0] > xmin)
& (pos[:, 1] < ymax)
& (pos[:, 1] > ymin)
)
colors = ["r" if ii else "k" for ii in indices]
indices = np.where(indices)[0]
for collection in ax.collections:
if isinstance(collection, PathCollection): # this is our "scatter"
collection.set_color(colors)
ax.figure.canvas.draw()
if len(indices) == 0:
return
data = tfr.data
if ch_type == "mag":
picks = pick_types(tfr.info, meg=ch_type, ref_meg=False)
data = np.mean(data[indices, ifmin:ifmax, itmin:itmax], axis=0)
chs = [tfr.ch_names[picks[x]] for x in indices]
elif ch_type == "grad":
grads = _pair_grad_sensors(tfr.info, layout=layout, topomap_coords=False)
idxs = list()
for idx in indices:
idxs.append(grads[idx * 2])
idxs.append(grads[idx * 2 + 1]) # pair of grads
data = np.mean(data[idxs, ifmin:ifmax, itmin:itmax], axis=0)
chs = [tfr.ch_names[x] for x in idxs]
elif ch_type == "eeg":
picks = pick_types(tfr.info, meg=False, eeg=True, ref_meg=False)
data = np.mean(data[indices, ifmin:ifmax, itmin:itmax], axis=0)
chs = [tfr.ch_names[picks[x]] for x in indices]
logger.info("Averaging TFR over channels " + str(chs))
if len(fig) == 0:
fig.append(figure_nobar())
if not plt.fignum_exists(fig[0].number):
fig[0] = figure_nobar()
ax = fig[0].add_subplot(111)
itmax = len(tfr.times) - 1 if itmax is None else min(itmax, len(tfr.times) - 1)
ifmax = len(tfr.freqs) - 1 if ifmax is None else min(ifmax, len(tfr.freqs) - 1)
if itmin is None:
itmin = 0
if ifmin is None:
ifmin = 0
extent = (
tfr.times[itmin] * 1e3,
tfr.times[itmax] * 1e3,
tfr.freqs[ifmin],
tfr.freqs[ifmax],
)
title = f"Average over {len(chs)} {ch_type} channels."
ax.set_title(title)
ax.set_xlabel("Time (ms)")
ax.set_ylabel("Frequency (Hz)")
img = ax.imshow(data, extent=extent, aspect="auto", origin="lower", cmap=cmap)
if len(fig[0].get_axes()) < 2:
fig[0].get_axes()[1].cbar = fig[0].colorbar(mappable=img)
else:
fig[0].get_axes()[1].cbar.on_mappable_changed(mappable=img)
fig[0].canvas.draw()
plt.figure(fig[0].number)
plt_show(True)
def _prepare_topomap(pos, ax, check_nonzero=True):
"""Prepare the topomap axis and check positions.
Hides axis frame and check that position information is present.
"""
_hide_frame(ax)
if check_nonzero and not pos.any():
raise RuntimeError(
"No position information found, cannot compute geometries for topomap."
)
def _hide_frame(ax):
"""Hide axis frame for topomaps."""
ax.get_yticks()
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
ax.set_frame_on(False)
def _check_extrapolate(extrapolate, ch_type):
_check_option("extrapolate", extrapolate, ("box", "local", "head", "auto"))
if extrapolate == "auto":
extrapolate = "local" if ch_type in _MEG_CH_TYPES_SPLIT else "head"
return extrapolate
@verbose
def _init_anim(
ax,
ax_line,
ax_cbar,
params,
merge_channels,
sphere,
ch_type,
image_interp,
extrapolate,
verbose,
):
"""Initialize animated topomap."""
logger.info("Initializing animation...")
data = params["data"]
items = list()
vmin = params["vmin"] if "vmin" in params else None
vmax = params["vmax"] if "vmax" in params else None
if params["butterfly"]:
all_times = params["all_times"]
for idx in range(len(data)):
ax_line.plot(all_times, data[idx], color="k", lw=1)
vmin, vmax = _setup_vmin_vmax(data, vmin, vmax)
ax_line.set(
yticks=np.around(np.linspace(vmin, vmax, 5), -1), xlim=all_times[[0, -1]]
)
params["line"] = ax_line.axvline(all_times[0], color="r")
items.append(params["line"])
if merge_channels:
from mne.channels.layout import _merge_ch_data
data, _ = _merge_ch_data(data, "grad", [])
norm = True if np.min(data) > 0 else False
cmap = "Reds" if norm else "RdBu_r"
vmin, vmax = _setup_vmin_vmax(data, vmin, vmax, norm)
outlines = _make_head_outlines(sphere, params["pos"], "head", params["clip_origin"])
_hide_frame(ax)
extent, Xi, Yi, interp = _setup_interp(
pos=params["pos"],
res=64,
image_interp=image_interp,
extrapolate=extrapolate,
outlines=outlines,
border=0,
)
patch_ = _get_patch(outlines, extrapolate, interp, ax)
params["Zis"] = list()
for frame in params["frames"]:
params["Zis"].append(interp.set_values(data[:, frame])(Xi, Yi))
Zi = params["Zis"][0]
zi_min = np.nanmin(params["Zis"])
zi_max = np.nanmax(params["Zis"])
cont_lims = np.linspace(zi_min, zi_max, 7, endpoint=False)[1:]
params.update(
{
"vmin": vmin,
"vmax": vmax,
"Xi": Xi,
"Yi": Yi,
"Zi": Zi,
"extent": extent,
"cmap": cmap,
"cont_lims": cont_lims,
}
)
# plot map and contour
im = ax.imshow(
Zi,
cmap=cmap,
vmin=vmin,
vmax=vmax,
origin="lower",
aspect="equal",
extent=extent,
interpolation="bilinear",
)
ax.autoscale(enable=True, tight=True)
ax.figure.colorbar(im, cax=ax_cbar)
cont = ax.contour(Xi, Yi, Zi, levels=cont_lims, colors="k", linewidths=1)
im.set_clip_path(patch_)
text = ax.text(0.55, 0.95, "", transform=ax.transAxes, va="center", ha="right")
params["text"] = text
items.append(im)
items.append(text)
cont_collections = _cont_collections(cont)
for col in cont_collections:
col.set_clip_path(patch_)
outlines_ = _draw_outlines(ax, outlines)
params.update({"patch": patch_, "outlines": outlines_})
return tuple(items) + cont_collections
def _animate(frame, ax, ax_line, params):
"""Update animated topomap."""
if params["pause"]:
frame = params["frame"]
time_idx = params["frames"][frame]
if params["time_unit"] == "ms":
title = f"{params['times'][frame] * 1e3:6.0f} ms"
else:
title = f"{params['times'][frame]:6.3f} s"
if params["blit"]:
text = params["text"]
else:
ax.cla() # Clear old contours.
text = ax.text(0.45, 1.15, "", transform=ax.transAxes)
for k, (x, y) in params["outlines"].items():
if "mask" in k:
continue
ax.plot(x, y, color="k", linewidth=1, clip_on=False)
_hide_frame(ax)
text.set_text(title)
vmin = params["vmin"]
vmax = params["vmax"]
Xi = params["Xi"]
Yi = params["Yi"]
Zi = params["Zis"][frame]
extent = params["extent"]
cmap = params["cmap"]
patch = params["patch"]
im = ax.imshow(
Zi,
cmap=cmap,
vmin=vmin,
vmax=vmax,
origin="lower",
aspect="equal",
extent=extent,
interpolation="bilinear",
)
cont_lims = params["cont_lims"]
with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore")
cont = ax.contour(Xi, Yi, Zi, levels=cont_lims, colors="k", linewidths=1)
im.set_clip_path(patch)
cont_collections = _cont_collections(cont)
for col in cont_collections:
col.set_clip_path(patch)
items = [im, text]
if params["butterfly"]:
all_times = params["all_times"]
line = params["line"]
line.remove()
ylim = ax_line.get_ylim()
params["line"] = ax_line.axvline(all_times[time_idx], color="r")
ax_line.set_ylim(ylim)
items.append(params["line"])
params["frame"] = frame
return tuple(items) + cont_collections
def _pause_anim(event, params):
"""Pause or continue the animation on mouse click."""
params["pause"] = not params["pause"]
def _key_press(event, params):
"""Handle key presses for the animation."""
if event.key == "left":
params["pause"] = True
params["frame"] = max(params["frame"] - 1, 0)
elif event.key == "right":
params["pause"] = True
params["frame"] = min(params["frame"] + 1, len(params["frames"]) - 1)
def _topomap_animation(
evoked,
ch_type,
times,
frame_rate,
butterfly,
blit,
show,
time_unit,
sphere,
image_interp,
extrapolate,
*,
vmin,
vmax,
verbose=None,
):
"""Make animation of evoked data as topomap timeseries.
See mne.evoked.Evoked.animate_topomap.
"""
from matplotlib import animation
from matplotlib import pyplot as plt
if ch_type is None:
ch_type = _get_plot_ch_type(evoked, ch_type)
time_unit, _ = _check_time_unit(time_unit, evoked.times)
if times is None:
times = np.linspace(evoked.times[0], evoked.times[-1], 10)
times = np.array(times)
if times.ndim != 1:
raise ValueError(f"times must be 1D, got {times.ndim} dimensions")
if max(times) > evoked.times[-1] or min(times) < evoked.times[0]:
raise ValueError("All times must be inside the evoked time series.")
frames = [np.abs(evoked.times - time).argmin() for time in times]
picks, pos, merge_channels, _, ch_type, sphere, clip_origin = _prepare_topomap_plot(
evoked, ch_type, sphere=sphere
)
data = evoked.data[picks, :]
data *= _handle_default("scalings")[ch_type]
norm = np.min(data) >= 0
vmin, vmax = _setup_vmin_vmax(data, vmin, vmax, norm)
fig = plt.figure(figsize=(6, 5), layout="constrained")
shape = (8, 12)
colspan = shape[1] - 1
rowspan = shape[0] - bool(butterfly)
ax = plt.subplot2grid(shape, (0, 0), rowspan=rowspan, colspan=colspan)
if butterfly:
ax_line = plt.subplot2grid(shape, (rowspan, 0), colspan=colspan)
else:
ax_line = None
if isinstance(frames, Integral):
frames = np.linspace(0, len(evoked.times) - 1, frames).astype(int)
ax_cbar = plt.subplot2grid(shape, (0, colspan), rowspan=rowspan)
ax_cbar.set_title(_handle_default("units")[ch_type], fontsize=10)
extrapolate = _check_extrapolate(extrapolate, ch_type)
params = dict(
data=data,
pos=pos,
all_times=evoked.times,
frame=0,
frames=frames,
butterfly=butterfly,
blit=blit,
pause=False,
times=times,
time_unit=time_unit,
clip_origin=clip_origin,
vmin=vmin,
vmax=vmax,
)
init_func = partial(
_init_anim,
ax=ax,
ax_cbar=ax_cbar,
ax_line=ax_line,
params=params,
merge_channels=merge_channels,
sphere=sphere,
ch_type=ch_type,
image_interp=image_interp,
extrapolate=extrapolate,
verbose=verbose,
)
animate_func = partial(_animate, ax=ax, ax_line=ax_line, params=params)
pause_func = partial(_pause_anim, params=params)
fig.canvas.mpl_connect("button_press_event", pause_func)
key_press_func = partial(_key_press, params=params)
fig.canvas.mpl_connect("key_press_event", key_press_func)
if frame_rate is None:
frame_rate = evoked.info["sfreq"] / 10.0
interval = 1000 / frame_rate # interval is in ms
anim = animation.FuncAnimation(
fig,
animate_func,
init_func=init_func,
frames=len(frames),
interval=interval,
blit=blit,
)
fig.mne_animation = anim # to make sure anim is not garbage collected
plt_show(show, block=False)
if "line" in params:
# Finally remove the vertical line so it does not appear in saved fig.
params["line"].remove()
return fig, anim
def _set_contour_locator(vmin, vmax, contours):
"""Set correct contour levels."""
locator = None
if isinstance(contours, Integral) and contours > 0:
from matplotlib import ticker
# nbins = ticks - 1, since 2 of the ticks are vmin and vmax, the
# correct number of bins is equal to contours + 1.
locator = ticker.MaxNLocator(nbins=contours + 1)
contours = locator.tick_values(vmin, vmax)
return locator, contours
def _plot_corrmap(
data,
subjs,
indices,
ch_type,
ica,
label,
*,
show,
outlines,
cmap,
contours,
sensors=False,
template=False,
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
show_names=False,
):
"""Customize ica.plot_components for corrmap."""
from ..channels.layout import _merge_ch_data
if not template:
title = "Detected components"
if label is not None:
title += " of type " + label
else:
title = "Supplied template"
picks = list(range(len(data)))
p = 20
if len(picks) > p: # plot components by sets of 20
n_components = len(picks)
figs = [
_plot_corrmap(
data[k : k + p],
subjs[k : k + p],
indices[k : k + p],
ch_type,
ica,
label,
show=show,
outlines=outlines,
cmap=cmap,
contours=contours,
sensors=sensors,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
show_names=show_names,
)
for k in range(0, n_components, p)
]
return figs
elif np.isscalar(picks):
picks = [picks]
(
data_picks,
pos,
merge_channels,
names,
_,
sphere,
clip_origin,
) = _prepare_topomap_plot(ica, ch_type, sphere=sphere)
names = _prepare_sensor_names(names, show_names)
outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
data = np.atleast_2d(data)
data = data[:, data_picks]
# prepare data for iteration
fig, axes, _, _ = _prepare_trellis(len(picks), ncols=5)
fig.suptitle(title)
for ii, data_, ax, subject, idx in zip(picks, data, axes, subjs, indices):
if template:
ttl = f"Subj. {subject}, {ica._ica_names[idx]}"
ax.set_title(ttl, fontsize=12)
else:
ax.set_title(f"Subj. {subject}")
if merge_channels:
data_, _ = _merge_ch_data(data_, ch_type, [])
_vlim = _setup_vmin_vmax(data_, None, None)
plot_topomap(
data_.flatten(),
pos,
vlim=_vlim,
names=names,
res=64,
axes=ax,
cmap=cmap,
outlines=outlines,
contours=contours,
show=False,
sensors=sensors,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
)
_hide_frame(ax)
fig.canvas.draw()
plt_show(show)
return fig
def _trigradient(x, y, z):
"""Take gradients of z on a mesh."""
from matplotlib.tri import CubicTriInterpolator, Triangulation
with warnings.catch_warnings(): # catch matplotlib warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
tri = Triangulation(x, y)
tci = CubicTriInterpolator(tri, z)
dx, dy = tci.gradient(tri.x, tri.y)
return dx, dy
@fill_doc
def plot_arrowmap(
data,
info_from,
info_to=None,
scale=3e-10,
vlim=(None, None),
cnorm=None,
cmap=None,
sensors=True,
res=64,
axes=None,
show_names=False,
mask=None,
mask_params=None,
outlines="head",
contours=6,
image_interp=_INTERPOLATION_DEFAULT,
show=True,
onselect=None,
extrapolate=_EXTRAPOLATE_DEFAULT,
sphere=None,
):
"""Plot arrow map.
Compute arrowmaps, based upon the Hosaka-Cohen transformation
:footcite:`CohenHosaka1976`, these arrows represents an estimation of the
current flow underneath the MEG sensors. They are a poor man's MNE.
Since planar gradiometers takes gradients along latitude and longitude,
they need to be projected to the flattened manifold span by magnetometer
or radial gradiometers before taking the gradients in the 2D Cartesian
coordinate system for visualization on the 2D topoplot. You can use the
``info_from`` and ``info_to`` parameters to interpolate from
gradiometer data to magnetometer data.
Parameters
----------
data : array, shape (n_channels,)
The data values to plot.
info_from : instance of Info
The measurement info from data to interpolate from.
info_to : instance of Info | None
The measurement info to interpolate to. If None, it is assumed
to be the same as info_from.
scale : float, default 3e-10
To scale the arrows.
%(vlim_plot_topomap)s
.. versionadded:: 1.2
%(cnorm)s
.. versionadded:: 1.2
%(cmap_topomap_simple)s
%(sensors_topomap)s
%(res_topomap)s
%(axes_plot_topomap)s
%(show_names_topomap)s
If ``True``, a list of names must be provided (see ``names`` keyword).
%(mask_topomap)s
%(mask_params_topomap)s
%(outlines_topomap)s
%(contours_topomap)s
%(image_interp_topomap)s
%(show)s
onselect : callable | None
Handle for a function that is called when the user selects a set of
channels by rectangle selection (matplotlib ``RectangleSelector``). If
None interactive selection is disabled. Defaults to None.
%(extrapolate_topomap)s
.. versionadded:: 0.18
.. versionchanged:: 0.21
- The default was changed to ``'local'`` for MEG sensors.
- ``'local'`` was changed to use a convex hull mask
- ``'head'`` was changed to extrapolate out to the clipping circle.
%(sphere_topomap_auto)s
Returns
-------
fig : matplotlib.figure.Figure
The Figure of the plot.
Notes
-----
.. versionadded:: 0.17
References
----------
.. footbibliography::
"""
from matplotlib import pyplot as plt
from ..forward import _map_meg_or_eeg_channels
sphere = _check_sphere(sphere, info_from)
ch_type = _picks_by_type(info_from)
if len(ch_type) > 1:
raise ValueError(
"Multiple channel types are not supported."
"All channels must either be of type 'grad' "
"or 'mag'."
)
else:
ch_type = ch_type[0][0]
if ch_type not in ("mag", "grad"):
raise ValueError(
f"Channel type '{ch_type}' not supported. Supported channel "
"types are 'mag' and 'grad'."
)
if info_to is None and ch_type == "mag":
info_to = info_from
else:
ch_type = _picks_by_type(info_to)
if len(ch_type) > 1:
raise ValueError("Multiple channel types are not supported.")
else:
ch_type = ch_type[0][0]
if ch_type != "mag":
raise ValueError(f"only 'mag' channel type is supported. Got {ch_type}")
if info_to is not info_from:
info_to = pick_info(info_to, pick_types(info_to, meg=True))
info_from = pick_info(info_from, pick_types(info_from, meg=True))
# XXX should probably support the "origin" argument
mapping = _map_meg_or_eeg_channels(
info_from, info_to, origin=(0.0, 0.0, 0.04), mode="accurate"
)
data = np.dot(mapping, data)
_, pos, _, _, _, sphere, clip_origin = _prepare_topomap_plot(
info_to, "mag", sphere=sphere
)
outlines = _make_head_outlines(sphere, pos, outlines, clip_origin)
if axes is None:
fig, axes = plt.subplots(layout="constrained")
else:
fig = axes.figure
plot_topomap(
data,
pos,
axes=axes,
vlim=vlim,
cmap=cmap,
cnorm=cnorm,
sensors=sensors,
res=res,
mask=mask,
mask_params=mask_params,
outlines=outlines,
contours=contours,
image_interp=image_interp,
show=False,
onselect=onselect,
extrapolate=extrapolate,
sphere=sphere,
ch_type=ch_type,
)
x, y = tuple(pos.T)
dx, dy = _trigradient(x, y, data)
dxx = dy.data
dyy = -dx.data
axes.quiver(x, y, dxx, dyy, scale=scale, color="k", lw=1)
plt_show(show)
return fig
@fill_doc
def plot_bridged_electrodes(
info, bridged_idx, ed_matrix, title=None, topomap_args=None
):
"""Topoplot electrode distance matrix with bridged electrodes connected.
Parameters
----------
%(info_not_none)s
bridged_idx : list of tuple
The indices of channels marked as bridged with each bridged
pair stored as a tuple.
Can be generated via
:func:`mne.preprocessing.compute_bridged_electrodes`.
ed_matrix : array of float, shape (n_channels, n_channels)
The electrical distance matrix for each pair of EEG electrodes.
Can be generated via
:func:`mne.preprocessing.compute_bridged_electrodes`.
title : str
A title to add to the plot.
topomap_args : dict | None
Arguments to pass to :func:`mne.viz.plot_topomap`.
Returns
-------
fig : instance of matplotlib.figure.Figure
The topoplot figure handle.
See Also
--------
mne.preprocessing.compute_bridged_electrodes
"""
import matplotlib.pyplot as plt
from ..channels.layout import _find_topomap_coords
if topomap_args is None:
topomap_args = dict()
else:
topomap_args = topomap_args.copy() # don't change original
picks = pick_types(info, eeg=True)
topomap_args.setdefault("image_interp", "nearest")
topomap_args.setdefault("cmap", "summer_r")
topomap_args.setdefault("names", pick_info(info, picks).ch_names)
topomap_args.setdefault("contours", False)
sphere = topomap_args.get("sphere", _check_sphere(None))
if "axes" not in topomap_args:
fig, ax = plt.subplots(layout="constrained")
topomap_args["axes"] = ax
else:
fig = None
# handle colorbar here instead of in plot_topomap
colorbar = topomap_args.pop("colorbar", True)
if ed_matrix.shape[1:] != (picks.size, picks.size):
raise RuntimeError(
f"Expected {(ed_matrix.shape[0], picks.size, picks.size)} "
f"shaped `ed_matrix`, got {ed_matrix.shape}"
)
# fill in lower triangular
ed_matrix = ed_matrix.copy()
tril_idx = np.tril_indices(picks.size)
for epo_idx in range(ed_matrix.shape[0]):
ed_matrix[epo_idx][tril_idx] = ed_matrix[epo_idx].T[tril_idx]
elec_dists = np.median(np.nanmin(ed_matrix, axis=1), axis=0)
im, cn = plot_topomap(elec_dists, pick_info(info, picks), **topomap_args)
fig = im.figure if fig is None else fig
# add bridged connections
for idx0, idx1 in bridged_idx:
pos = _find_topomap_coords(info, [idx0, idx1], sphere=sphere)
im.axes.plot([pos[0, 0], pos[1, 0]], [pos[0, 1], pos[1, 1]], color="r")
if title is not None:
im.axes.set_title(title)
if colorbar:
cax = fig.colorbar(im, shrink=0.6)
cax.set_label(r"Electrical Distance ($\mu$$V^2$)")
return fig
def plot_ch_adjacency(info, adjacency, ch_names, kind="2d", edit=False):
"""Plot channel adjacency.
Parameters
----------
info : instance of Info
Info object with channel locations.
adjacency : array
Array of channels x channels shape. Defines which channels are adjacent
to each other. Note that if you edit adjacencies
(via ``edit=True``), this array will be modified in place.
ch_names : list of str
Names of successive channels in the ``adjacency`` matrix.
kind : str
How to plot the adjacency. Can be either ``'3d'`` or ``'2d'``.
edit : bool
Whether to allow interactive editing of the adjacency matrix via
clicking respective channel pairs. Once clicked, the channel is
"activated" and turns green. Clicking on another channel adds or
removes adjacency relation between the activated and newly clicked
channel (depending on whether the channels are already adjacent or
not); the newly clicked channel now becomes activated. Clicking on
an activated channel deactivates it. Editing is currently only
supported for ``kind='2d'``.
Returns
-------
fig : Figure
The :class:`~matplotlib.figure.Figure` instance where the channel
adjacency is plotted.
See Also
--------
mne.channels.get_builtin_ch_adjacencies
mne.channels.read_ch_adjacency
mne.channels.find_ch_adjacency
Notes
-----
.. versionadded:: 1.1
"""
import matplotlib as mpl
import matplotlib.pyplot as plt
_validate_type(info, Info, "info")
_validate_type(adjacency, (np.ndarray, csr_array), "adjacency")
has_sparse = isinstance(adjacency, csr_array)
if edit and kind == "3d":
raise ValueError("Editing a 3d adjacency plot is not supported.")
# select relevant channels
sel = pick_channels(info.ch_names, ch_names, ordered=True)
info = pick_info(info, sel)
# make sure adjacency is correct size wrt to inst:
n_channels = len(info.ch_names)
if adjacency.shape[0] != n_channels:
raise ValueError(
"``adjacency`` must have the same number of rows "
"as the number of channels in ``info``. Found "
f"{adjacency.shape[0]} channels for ``adjacency`` and"
f" {n_channels} for ``inst``."
)
if kind == "3d":
with plt.rc_context({"toolbar": "None"}):
fig = plot_sensors(info, kind=kind, show=False)
_set_3d_axes_equal(fig.axes[0])
elif kind == "2d":
with plt.rc_context({"toolbar": "None"}):
fig = plot_sensors(info, kind="topomap", show=False)
fig.axes[0].axis("equal")
path_collection = fig.axes[0].findobj(mpl.collections.PathCollection)
path_collection[0].set_linewidths(0.0)
if kind == "2d":
path_collection[0].set_alpha(0.7)
pos = path_collection[0].get_offsets()
# make sure nodes are on top
path_collection[0].set_zorder(10)
# scale node size with number of connections
n_connections = [np.sum(adjacency[[i]]) - 1 for i in range(adjacency.shape[0])]
node_size = [max(x, 3) ** 2.5 for x in n_connections]
path_collection[0].set_sizes(node_size)
else:
# plotting channel positions via mne.viz.plot_sensors(info) and using
# the coordinates from info['chs'][ch_idx]['loc][:3] gives different
# positions. Also .get_offsets gives 2d projections even for 3d points
# so we use the private _offsets3d property...
pos = path_collection[0]._offsets3d
pos = np.stack([pos[0].data, pos[1].data, pos[2]], axis=1)
ax = fig.axes[0]
lines = dict()
n_channels = adjacency.shape[0]
for ch_idx in range(n_channels):
# make sure we don't repeat channels
row = adjacency[[ch_idx], ch_idx + 1 :]
if has_sparse:
ch_neighbours = row.nonzero()[1]
else:
ch_neighbours = np.where(row)[0]
if len(ch_neighbours) == 0:
continue
ch_neighbours += ch_idx + 1
for ngb_idx in ch_neighbours:
this_pos = pos[[ch_idx, ngb_idx], :]
ch_pair = tuple([ch_idx, ngb_idx])
lines[ch_pair] = ax.plot(*this_pos.T, color=(0.55, 0.55, 0.55), lw=0.75)[0]
if edit:
# allow interactivity in 2d plots
highlighted = dict()
this_onpick = partial(
_onpick_ch_adjacency,
axes=ax,
positions=pos,
highlighted=highlighted,
line_dict=lines,
adjacency=adjacency,
node_size=node_size,
path_collection=path_collection,
)
fig.canvas.mpl_connect("pick_event", this_onpick)
return fig
def _onpick_ch_adjacency(
event,
axes=None,
positions=None,
highlighted=None,
line_dict=None,
adjacency=None,
node_size=None,
path_collection=None,
):
"""Handle interactivity in plot_ch_adjacency."""
node_ind = event.ind[0]
if node_ind in highlighted:
# de-select node, change its color back to normal
highlighted[node_ind].remove()
del highlighted[node_ind]
axes.figure.canvas.draw()
else:
# new node selected
if len(highlighted) == 0:
# no highlighted nodes yet
size = max(node_size[node_ind] * 2, 100)
# add current node
dots = axes.scatter(
*positions[node_ind, :].T, color="tab:green", s=size, zorder=15
)
highlighted[node_ind] = dots
axes.figure.canvas.draw() # make sure it renders
else:
# one previously highlighted - add or remove line
key = list(highlighted.keys())[0]
both_nodes = [key, node_ind]
both_nodes.sort()
both_nodes = tuple(both_nodes)
if both_nodes in line_dict.keys():
# remove line
n_conn_change = -1
line_dict[both_nodes].remove()
# remove line_dict entry
del line_dict[both_nodes]
# clear adjacency matrix entry
_set_adjacency(adjacency, both_nodes, False)
else:
# add line
n_conn_change = +1
selected_pos = positions[both_nodes, :]
line = axes.plot(*selected_pos.T, color="tab:green")[0]
# add line to line_dict
line_dict[both_nodes] = line
# modify adjacency matrix
_set_adjacency(adjacency, both_nodes, True)
# de-highlight previous
highlighted[key].remove()
del highlighted[key]
# update node sizes
n_connections = [
np.sum(adjacency[[idx]]) - 1 + n_conn_change for idx in both_nodes
]
for idx, n_conn in zip(both_nodes, n_connections):
node_size[idx] = max(n_conn, 3) ** 2.5
path_collection[0].set_sizes(node_size)
# highlight new node
size = max(node_size[node_ind] * 2, 100)
dots = axes.scatter(
*positions[node_ind, :].T, color="tab:green", s=size, zorder=15
)
highlighted[node_ind] = dots
axes.figure.canvas.draw()
def _set_adjacency(adjacency, both_nodes, value):
"""Set adjacency for given node pair, caching errors for sparse arrays."""
import warnings
with warnings.catch_warnings(record=True):
adjacency[both_nodes, both_nodes[::-1]] = value
@fill_doc
def plot_regression_weights(
model,
*,
ch_type=None,
sensors=True,
show_names=False,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
axes=None,
colorbar=True,
cbar_fmt="%1.1e",
title=None,
show=True,
):
"""Plot the regression weights of a fitted EOGRegression model.
Parameters
----------
model : EOGRegression
The fitted EOGRegression model whose weights will be plotted.
%(ch_type_topomap)s
%(sensors_topomap)s
%(show_names_topomap)s
%(mask_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionchanged:: 0.21
- The default was changed to ``'local'`` for MEG sensors.
- ``'local'`` was changed to use a convex hull mask
- ``'head'`` was changed to extrapolate out to the clipping circle.
%(border_topomap)s
.. versionadded:: 0.20
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap)s
%(cnorm)s
%(axes_evoked_plot_topomap)s
%(colorbar_topomap)s
%(cbar_fmt_topomap)s
%(title_none)s
%(show)s
Returns
-------
fig : instance of matplotlib.figure.Figure
Figure with a topomap subplot for each channel type.
Notes
-----
.. versionadded:: 1.2
"""
import matplotlib
import matplotlib.pyplot as plt
from ..channels.layout import _merge_ch_data
sphere = _check_sphere(sphere)
if ch_type is None:
ch_types = model.info_.get_channel_types(unique=True, only_data_chs=True)
else:
ch_types = [ch_type]
del ch_type
nrows = model.coef_.shape[1]
ncols = len(ch_types)
axes_was_none = axes is None
if axes_was_none:
fig, axes = plt.subplots(
nrows,
ncols,
squeeze=False,
figsize=(ncols * 2, nrows * 1.5 + 1),
layout="constrained",
)
axes = axes.T.ravel()
else:
if isinstance(axes, matplotlib.axes.Axes):
axes = [axes]
fig = axes[0].get_figure()
if len(axes) != nrows * ncols:
raise ValueError(
f"axes must be a list of {nrows * ncols} axes, got "
f"length {len(axes)} ({axes})."
)
axes = iter(axes)
data_picks = _picks_to_idx(model.info_, model.picks, exclude=model.exclude)
data_info = pick_info(model.info_, data_picks)
artifact_ch_names = [
model.info_["chs"][idx]["ch_name"]
for idx in _picks_to_idx(model.info_, model.picks_artifact)
]
for ch_type in ch_types:
(
data_picks,
pos,
merge_channels,
names,
ch_type,
sphere,
clip_origin,
) = _prepare_topomap_plot(data_info, ch_type=ch_type, sphere=sphere)
outlines = _make_head_outlines(
sphere, pos, outlines=outlines, clip_origin=clip_origin
)
coef = model.coef_[data_picks]
for data, ch_name in zip(coef.T, artifact_ch_names):
if merge_channels:
data, names = _merge_ch_data(data, ch_type, names)
ax = next(axes)
names = _prepare_sensor_names(data_info.ch_names, show_names)
_plot_topomap_multi_cbar(
data,
pos,
ax,
title=f"{ch_type}/{ch_name}",
vlim=vlim,
cmap=cmap,
outlines=outlines,
colorbar=colorbar,
unit="",
cbar_fmt=cbar_fmt,
sphere=sphere,
ch_type=ch_type,
sensors=sensors,
names=names,
mask=mask,
mask_params=mask_params,
contours=contours,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cnorm=cnorm,
)
if axes_was_none:
fig.suptitle(title)
plt_show(show)
return fig
|