File: README.md

package info (click to toggle)
python-moarchiving 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 404 kB
  • sloc: python: 2,989; makefile: 6
file content (304 lines) | stat: -rw-r--r-- 12,483 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Introduction

[This package](https://cma-es.github.io/moarchiving/moarchiving-apidocs/index.html) implements a multi-objective 
 non-dominated archive for 2, 3 or 4 objectives, providing easy and fast access to multiple hypervolume indicators:

- the hypervolume of the entire archive,
- the contributing hypervolume of each element,
- the [uncrowded hypervolume improvement](https://doi.org/10.1145/3321707.3321852) (see also [here](https://arxiv.org/abs/1904.08823)) of any given point in the objective space, and
- the uncrowded hypervolume of the (unpruned) archive, here called [hypervolume plus](https://cma-es.github.io/moarchiving/moarchiving-apidocs/moarchiving.moarchiving.BiobjectiveNondominatedSortedList.html#hypervolume_plus).

Additionally, the package provides a constrained version of the archive,
which allows to store points with constraints.

The source code is available [on GitHub](https://github.com/CMA-ES/moarchiving).

## Installation

On a system shell, either like
```
pip install moarchiving
```

or from GitHub, for example
```
pip install git+https://github.com/CMA-ES/moarchiving.git@development
```
installing from the `development` branch.

## Testing

```
python -m moarchiving.test
```

on a system shell should output something like

```
doctest.testmod(<module 'moarchiving.moarchiving2obj' from '...\\moarchiving\\moarchiving2obj.py'>)
TestResults(failed=0, attempted=90)

...

OK
unittest.TextTestRunner().run(unittest.TestLoader().loadTestsFromModule(<module 'moarchiving.tests.test_sorted_list' from '...\\moarchiving\\tests\\test_sorted_list.py'>))
.......
----------------------------------------------------------------------
Ran 7 tests in 0.001s
```


## Links

- [API documentation](https://cma-es.github.io/moarchiving/moarchiving-apidocs/index.html)
- [This page including performance test examples](https://cma-es.github.io/moarchiving/)
- [Code on Github](https://github.com/CMA-ES/moarchiving)


## Details

`moarchiving` with 2 objectives uses the [`fractions.Fraction`](https://docs.python.org/3/library/fractions.html) type to avoid rounding errors when computing hypervolume differences, but its usage can also be easily switched off by assigning the respective class attributes `hypervolume_computation_float_type` and `hypervolume_final_float_type`. The Fraction type can become prohibitively computationally expensive with increasing precision.

The implementation of the two-objective archive is heavily based on the [`bisect`](https://docs.python.org/3/library/bisect.html) module, while in three and four objectives it is based on the [`sortedcontainers`](https://pypi.org/project/sortedcontainers/) module.


## Releases
- 1.0.0 addition of MOArchive classes for 3 and 4 objectives, as well as a class for handling solutions to constrained problems
- 0.7.0 reimplementation of `BiobjectiveNondominatedSortedList.hypervolume_improvement` by extracting a sublist first.
- 0.6.0 the `infos` attribute is a `list` with corresponding (arbitrary) information, e.g. for keeping the respective solutions.
- 0.5.3 fixed assertion error when not using `fractions.Fraction`
- 0.5.2 first published version

# Usage examples
1. [Initialization](#1-initialization)
2. [Constrained MOArchive](#2-constrained-moarchive)
3. [Accessing solution information](#3-accessing-solution-information)
4. [Adding solutions](#4-adding-solutions)
5. [Archive size](#5-archive-size)
6. [Performance indicators](#6-performance-indicators)
7. [Contributing hypervolumes](#7-contributing-hypervolumes)
8. [Hypervolume improvement](#8-hypervolume-improvement)
9. [Distance to the Pareto front](#9-distance-to-the-pareto-front)
10. [Enabling or disabling fractions](#10-enabling-or-disabling-fractions)
11. [Additional functions](#11-additional-functions)
12. [Visualization of indicator values](#12-visualization-of-indicator-values)
13. [Performance tests](#13-performance-tests)

### 1. Initialization
The MOArchive object can be created using the `get_mo_archive` function by providing a list of objective values, a reference point, or at least the number of objectives. 
Further solutions can be added using `add` or `add_list` methods, but the reference point cannot be changed once the instance is created. A list of information strings can be provided for each element, which will be stored as long as the corresponding element remains in the archive (e.g., the x values of the element). At any time, the list of non-dominated elements and their corresponding information can be accessed.


```python
from moarchiving import get_mo_archive

moa2obj = get_mo_archive([[1, 5], [2, 3], [4, 5], [5, 0]], reference_point=[10, 10], infos=["a", "b", "c", "d"])
moa3obj = get_mo_archive([[1, 2, 3], [3, 2, 1], [3, 3, 0], [2, 2, 1]], [10, 10, 10], ["a", "b", "c", "d"])
moa4obj = get_mo_archive([[1, 2, 3, 4], [1, 3, 4, 5], [4, 3, 2, 1], [1, 3, 0, 1]], reference_point=[10, 10, 10, 10], infos=["a", "b", "c", "d"])

print("points in the 2 objective archive:", list(moa2obj))
print("points in the 3 objective archive:", list(moa3obj))
print("points in the 4 objective archive:", list(moa4obj))
```

    points in the 2 objective archive: [[1, 5], [2, 3], [5, 0]]
    points in the 3 objective archive: [[3, 3, 0], [2, 2, 1], [1, 2, 3]]
    points in the 4 objective archive: [[1, 3, 0, 1], [1, 2, 3, 4]]


MOArchive objects can also be initialized empty.


```python
moa = get_mo_archive(reference_point=[4, 4, 4])
print("points in the empty archive:", list(moa))
```

    points in the empty archive: []


### 2. Constrained MOArchive
Constrained MOArchive supports all the functionalities of a non-constrained MOArchive, with the added capability of handling constraints when adding or initializing the archive. In addition to the objective values of a solution, constraint values must be provided in the form of a list or a number. A solution is deemed feasible when all its constraint values are less than or equal to zero. 


```python
from moarchiving import get_cmo_archive

cmoa = get_cmo_archive([[1, 2, 3], [1, 3, 4], [4, 3, 2], [1, 3, 0]], [[3, 0], [0, 0], [0, 0], [0, 1]], 
                       reference_point=[5, 5, 5], infos=["a", "b", "c", "d"])
print("points in the archive:", list(cmoa))
```

    points in the archive: [[4, 3, 2], [1, 3, 4]]


### 3. Accessing solution information
`archive.infos` is used to get the information on solutions in the archive.


```python
# infos of the previously defined empty archive
print("infos of the empty archive", moa.infos)
print("infos of the constrained archive", cmoa.infos)
```

    infos of the empty archive []
    infos of the constrained archive ['c', 'b']


### 4. Adding solutions
Solutions can be added to the MOArchive at any time using the `add` function (for a single solution) or the `add_list` function (for multiple solutions).


```python
moa.add([1, 2, 3], "a")
print("points:", list(moa))
print("infos:", moa.infos)

moa.add_list([[3, 2, 1], [2, 3, 2], [2, 2, 2]], ["b", "c", "d"])
print("points:", list(moa))
print("infos:", moa.infos)
```

    points: [[1, 2, 3]]
    infos: ['a']
    points: [[3, 2, 1], [2, 2, 2], [1, 2, 3]]
    infos: ['b', 'd', 'a']


When adding to the constrained archive, constraint values must be added as well.


```python
cmoa.add_list([[3, 3, 3], [1, 1, 1]], [[0, 0], [42, 0]], ["e", "f"])
print("points:", list(cmoa))
print("infos:", cmoa.infos)
```

    points: [[4, 3, 2], [3, 3, 3], [1, 3, 4]]
    infos: ['c', 'e', 'b']


### 5. Archive size
The MOArchive implements some functionality of a list (in the 2 objective case, it actually extends the `list` class, though this is not the case in 3 and 4 objectives).  In particular, it includes the `len` method to get the number of solutions in the archive as well as the `in` keyword to check if a point is in the archive.


```python
print("Points in the archive:", list(moa))
print("Length of the archive:", len(moa))
print("[2, 2, 2] in moa:", [2, 2, 2] in moa)
print("[3, 2, 0] in moa:", [3, 2, 0] in moa)
```

    Points in the archive: [[3, 2, 1], [2, 2, 2], [1, 2, 3]]
    Length of the archive: 3
    [2, 2, 2] in moa: True
    [3, 2, 0] in moa: False


### 6. Performance indicators
An archive provides the following performance indicators:
- `hypervolume`
- `hypervolume_plus`, providing additionally the closest distance to the reference area for an empty archive, see [here](https://doi.org/10.1145/3321707.3321852) and [here](https://doi.org/10.1109/TEVC.2022.3210897)
- `hypervolume_plus_constr` (for CMOArchive), based on, but not completely equal to the one defined [here](https://doi.org/10.1016/j.ins.2022.05.106)

Indicators are defined for maximization (the original `hypervolume_plus_constr` indicator is multiplied by -1). When the archive is not empty, all the indicators are positive and have the same value. As the archive does not (yet) support an ideal point, the values of indicators are not normalized.



```python
print("Hypervolume of the archive:", moa.hypervolume)
print("Hypervolume plus of the archive:", moa.hypervolume_plus)
```

    Hypervolume of the archive: 12
    Hypervolume plus of the archive: 12


In case of a constrained MOArchive, the `hypervolume_plus_constr` attribute can be accessed as well. 


```python
print("Hyperolume of the constrained archive:", cmoa.hypervolume)
print("Hypervolume plus of the constrained archive:", cmoa.hypervolume_plus)
print("Hypervolume plus constr of the constrained archive:", cmoa.hypervolume_plus_constr)
```

    Hyperolume of the constrained archive: 14
    Hypervolume plus of the constrained archive: 14
    Hypervolume plus constr of the constrained archive: 14


### 7. Contributing hypervolumes
The `contributing_hypervolumes` attribute provides a list of hypervolume contributions for each point of the archive. Alternatively, the contribution for a single point can be computed using the `contributing_hypervolume(point)` method.


```python
for i, objectives in enumerate(moa):
    assert moa.contributing_hypervolume(objectives) == moa.contributing_hypervolumes[i]
    print("contributing hv of point", objectives, "is", moa.contributing_hypervolume(objectives))

print("All contributing hypervolumes:", moa.contributing_hypervolumes)
```

    contributing hv of point [3, 2, 1] is 2
    contributing hv of point [2, 2, 2] is 2
    contributing hv of point [1, 2, 3] is 2
    All contributing hypervolumes: [Fraction(2, 1), Fraction(2, 1), Fraction(2, 1)]


### 8. Hypervolume improvement
The `hypervolume_improvement(point)` method returns the improvement of the hypervolume if we would add the point to the archive.


```python
point = [1, 3, 0]
print(f"hypervolume before adding {point}: {moa.hypervolume}")
print(f"hypervolume improvement of point {point}: {moa.hypervolume_improvement(point)}")
moa.add(point)
print(f"hypervolume after adding {point}: {moa.hypervolume}")
```

    hypervolume before adding [1, 3, 0]: 12
    hypervolume improvement of point [1, 3, 0]: 6
    hypervolume after adding [1, 3, 0]: 18


### 9. Distance to the empirical Pareto front
The `distance_to_pareto_front(point)` method returns the distance between the given point and the Pareto front.


```python
print(f"Current archive: {list(moa)}")
print("Distance of [3, 2, 1] to pareto front:", moa.distance_to_pareto_front([3, 2, 1]))
print("Distance of [3, 2, 2] to pareto front:", moa.distance_to_pareto_front([3, 3, 3]))
```

    Current archive: [[1, 3, 0], [3, 2, 1], [2, 2, 2], [1, 2, 3]]
    Distance of [3, 2, 1] to pareto front: 0.0
    Distance of [3, 2, 2] to pareto front: 1.0


### 10. Enabling or disabling fractions 
To avoid loss of precision, fractions are used by default. This can be changed to floats by setting the `hypervolume_final_float_type` and `hypervolume_computation_float_type` function attributes.


```python
import fractions
get_mo_archive.hypervolume_computation_float_type = fractions.Fraction
get_mo_archive.hypervolume_final_float_type = fractions.Fraction

moa3_fr = get_mo_archive([[1, 2, 3], [2, 1, 3], [3, 3, 1.32], [1.3, 1.3, 3], [1.7, 1.1, 2]], reference_point=[4, 4, 4])
print(moa3_fr.hypervolume)

get_mo_archive.hypervolume_computation_float_type = float
get_mo_archive.hypervolume_final_float_type = float

moa3_nofr = get_mo_archive([[1, 2, 3], [2, 1, 3], [3, 3, 1.32], [1.3, 1.3, 3], [1.7, 1.1, 2]], reference_point=[4, 4, 4])
print(moa3_nofr.hypervolume)
```

    161245156349030777798724819133399/10141204801825835211973625643008
    15.899999999999999