1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
# Introduction
[This package](https://cma-es.github.io/moarchiving/moarchiving-apidocs/index.html) implements a multi-objective
non-dominated archive for 2, 3 or 4 objectives, providing easy and fast access to multiple hypervolume indicators:
- the hypervolume of the entire archive,
- the contributing hypervolume of each element,
- the [uncrowded hypervolume improvement](https://doi.org/10.1145/3321707.3321852) (see also [here](https://arxiv.org/abs/1904.08823)) of any given point in the objective space, and
- the uncrowded hypervolume of the (unpruned) archive, here called [hypervolume plus](https://cma-es.github.io/moarchiving/moarchiving-apidocs/moarchiving.moarchiving.BiobjectiveNondominatedSortedList.html#hypervolume_plus).
Additionally, the package provides a constrained version of the archive,
which allows to store points with constraints.
The source code is available [on GitHub](https://github.com/CMA-ES/moarchiving).
## Installation
On a system shell, either like
```
pip install moarchiving
```
or from GitHub, for example
```
pip install git+https://github.com/CMA-ES/moarchiving.git@development
```
installing from the `development` branch.
## Testing
```
python -m moarchiving.test
```
on a system shell should output something like
```
doctest.testmod(<module 'moarchiving.moarchiving2obj' from '...\\moarchiving\\moarchiving2obj.py'>)
TestResults(failed=0, attempted=90)
...
OK
unittest.TextTestRunner().run(unittest.TestLoader().loadTestsFromModule(<module 'moarchiving.tests.test_sorted_list' from '...\\moarchiving\\tests\\test_sorted_list.py'>))
.......
----------------------------------------------------------------------
Ran 7 tests in 0.001s
```
## Links
- [API documentation](https://cma-es.github.io/moarchiving/moarchiving-apidocs/index.html)
- [This page including performance test examples](https://cma-es.github.io/moarchiving/)
- [Code on Github](https://github.com/CMA-ES/moarchiving)
## Details
`moarchiving` with 2 objectives uses the [`fractions.Fraction`](https://docs.python.org/3/library/fractions.html) type to avoid rounding errors when computing hypervolume differences, but its usage can also be easily switched off by assigning the respective class attributes `hypervolume_computation_float_type` and `hypervolume_final_float_type`. The Fraction type can become prohibitively computationally expensive with increasing precision.
The implementation of the two-objective archive is heavily based on the [`bisect`](https://docs.python.org/3/library/bisect.html) module, while in three and four objectives it is based on the [`sortedcontainers`](https://pypi.org/project/sortedcontainers/) module.
## Releases
- 1.0.0 addition of MOArchive classes for 3 and 4 objectives, as well as a class for handling solutions to constrained problems
- 0.7.0 reimplementation of `BiobjectiveNondominatedSortedList.hypervolume_improvement` by extracting a sublist first.
- 0.6.0 the `infos` attribute is a `list` with corresponding (arbitrary) information, e.g. for keeping the respective solutions.
- 0.5.3 fixed assertion error when not using `fractions.Fraction`
- 0.5.2 first published version
# Usage examples
1. [Initialization](#1-initialization)
2. [Constrained MOArchive](#2-constrained-moarchive)
3. [Accessing solution information](#3-accessing-solution-information)
4. [Adding solutions](#4-adding-solutions)
5. [Archive size](#5-archive-size)
6. [Performance indicators](#6-performance-indicators)
7. [Contributing hypervolumes](#7-contributing-hypervolumes)
8. [Hypervolume improvement](#8-hypervolume-improvement)
9. [Distance to the Pareto front](#9-distance-to-the-pareto-front)
10. [Enabling or disabling fractions](#10-enabling-or-disabling-fractions)
11. [Additional functions](#11-additional-functions)
12. [Visualization of indicator values](#12-visualization-of-indicator-values)
13. [Performance tests](#13-performance-tests)
### 1. Initialization
The MOArchive object can be created using the `get_mo_archive` function by providing a list of objective values, a reference point, or at least the number of objectives.
Further solutions can be added using `add` or `add_list` methods, but the reference point cannot be changed once the instance is created. A list of information strings can be provided for each element, which will be stored as long as the corresponding element remains in the archive (e.g., the x values of the element). At any time, the list of non-dominated elements and their corresponding information can be accessed.
```python
from moarchiving import get_mo_archive
moa2obj = get_mo_archive([[1, 5], [2, 3], [4, 5], [5, 0]], reference_point=[10, 10], infos=["a", "b", "c", "d"])
moa3obj = get_mo_archive([[1, 2, 3], [3, 2, 1], [3, 3, 0], [2, 2, 1]], [10, 10, 10], ["a", "b", "c", "d"])
moa4obj = get_mo_archive([[1, 2, 3, 4], [1, 3, 4, 5], [4, 3, 2, 1], [1, 3, 0, 1]], reference_point=[10, 10, 10, 10], infos=["a", "b", "c", "d"])
print("points in the 2 objective archive:", list(moa2obj))
print("points in the 3 objective archive:", list(moa3obj))
print("points in the 4 objective archive:", list(moa4obj))
```
points in the 2 objective archive: [[1, 5], [2, 3], [5, 0]]
points in the 3 objective archive: [[3, 3, 0], [2, 2, 1], [1, 2, 3]]
points in the 4 objective archive: [[1, 3, 0, 1], [1, 2, 3, 4]]
MOArchive objects can also be initialized empty.
```python
moa = get_mo_archive(reference_point=[4, 4, 4])
print("points in the empty archive:", list(moa))
```
points in the empty archive: []
### 2. Constrained MOArchive
Constrained MOArchive supports all the functionalities of a non-constrained MOArchive, with the added capability of handling constraints when adding or initializing the archive. In addition to the objective values of a solution, constraint values must be provided in the form of a list or a number. A solution is deemed feasible when all its constraint values are less than or equal to zero.
```python
from moarchiving import get_cmo_archive
cmoa = get_cmo_archive([[1, 2, 3], [1, 3, 4], [4, 3, 2], [1, 3, 0]], [[3, 0], [0, 0], [0, 0], [0, 1]],
reference_point=[5, 5, 5], infos=["a", "b", "c", "d"])
print("points in the archive:", list(cmoa))
```
points in the archive: [[4, 3, 2], [1, 3, 4]]
### 3. Accessing solution information
`archive.infos` is used to get the information on solutions in the archive.
```python
# infos of the previously defined empty archive
print("infos of the empty archive", moa.infos)
print("infos of the constrained archive", cmoa.infos)
```
infos of the empty archive []
infos of the constrained archive ['c', 'b']
### 4. Adding solutions
Solutions can be added to the MOArchive at any time using the `add` function (for a single solution) or the `add_list` function (for multiple solutions).
```python
moa.add([1, 2, 3], "a")
print("points:", list(moa))
print("infos:", moa.infos)
moa.add_list([[3, 2, 1], [2, 3, 2], [2, 2, 2]], ["b", "c", "d"])
print("points:", list(moa))
print("infos:", moa.infos)
```
points: [[1, 2, 3]]
infos: ['a']
points: [[3, 2, 1], [2, 2, 2], [1, 2, 3]]
infos: ['b', 'd', 'a']
When adding to the constrained archive, constraint values must be added as well.
```python
cmoa.add_list([[3, 3, 3], [1, 1, 1]], [[0, 0], [42, 0]], ["e", "f"])
print("points:", list(cmoa))
print("infos:", cmoa.infos)
```
points: [[4, 3, 2], [3, 3, 3], [1, 3, 4]]
infos: ['c', 'e', 'b']
### 5. Archive size
The MOArchive implements some functionality of a list (in the 2 objective case, it actually extends the `list` class, though this is not the case in 3 and 4 objectives). In particular, it includes the `len` method to get the number of solutions in the archive as well as the `in` keyword to check if a point is in the archive.
```python
print("Points in the archive:", list(moa))
print("Length of the archive:", len(moa))
print("[2, 2, 2] in moa:", [2, 2, 2] in moa)
print("[3, 2, 0] in moa:", [3, 2, 0] in moa)
```
Points in the archive: [[3, 2, 1], [2, 2, 2], [1, 2, 3]]
Length of the archive: 3
[2, 2, 2] in moa: True
[3, 2, 0] in moa: False
### 6. Performance indicators
An archive provides the following performance indicators:
- `hypervolume`
- `hypervolume_plus`, providing additionally the closest distance to the reference area for an empty archive, see [here](https://doi.org/10.1145/3321707.3321852) and [here](https://doi.org/10.1109/TEVC.2022.3210897)
- `hypervolume_plus_constr` (for CMOArchive), based on, but not completely equal to the one defined [here](https://doi.org/10.1016/j.ins.2022.05.106)
Indicators are defined for maximization (the original `hypervolume_plus_constr` indicator is multiplied by -1). When the archive is not empty, all the indicators are positive and have the same value. As the archive does not (yet) support an ideal point, the values of indicators are not normalized.
```python
print("Hypervolume of the archive:", moa.hypervolume)
print("Hypervolume plus of the archive:", moa.hypervolume_plus)
```
Hypervolume of the archive: 12
Hypervolume plus of the archive: 12
In case of a constrained MOArchive, the `hypervolume_plus_constr` attribute can be accessed as well.
```python
print("Hyperolume of the constrained archive:", cmoa.hypervolume)
print("Hypervolume plus of the constrained archive:", cmoa.hypervolume_plus)
print("Hypervolume plus constr of the constrained archive:", cmoa.hypervolume_plus_constr)
```
Hyperolume of the constrained archive: 14
Hypervolume plus of the constrained archive: 14
Hypervolume plus constr of the constrained archive: 14
### 7. Contributing hypervolumes
The `contributing_hypervolumes` attribute provides a list of hypervolume contributions for each point of the archive. Alternatively, the contribution for a single point can be computed using the `contributing_hypervolume(point)` method.
```python
for i, objectives in enumerate(moa):
assert moa.contributing_hypervolume(objectives) == moa.contributing_hypervolumes[i]
print("contributing hv of point", objectives, "is", moa.contributing_hypervolume(objectives))
print("All contributing hypervolumes:", moa.contributing_hypervolumes)
```
contributing hv of point [3, 2, 1] is 2
contributing hv of point [2, 2, 2] is 2
contributing hv of point [1, 2, 3] is 2
All contributing hypervolumes: [Fraction(2, 1), Fraction(2, 1), Fraction(2, 1)]
### 8. Hypervolume improvement
The `hypervolume_improvement(point)` method returns the improvement of the hypervolume if we would add the point to the archive.
```python
point = [1, 3, 0]
print(f"hypervolume before adding {point}: {moa.hypervolume}")
print(f"hypervolume improvement of point {point}: {moa.hypervolume_improvement(point)}")
moa.add(point)
print(f"hypervolume after adding {point}: {moa.hypervolume}")
```
hypervolume before adding [1, 3, 0]: 12
hypervolume improvement of point [1, 3, 0]: 6
hypervolume after adding [1, 3, 0]: 18
### 9. Distance to the empirical Pareto front
The `distance_to_pareto_front(point)` method returns the distance between the given point and the Pareto front.
```python
print(f"Current archive: {list(moa)}")
print("Distance of [3, 2, 1] to pareto front:", moa.distance_to_pareto_front([3, 2, 1]))
print("Distance of [3, 2, 2] to pareto front:", moa.distance_to_pareto_front([3, 3, 3]))
```
Current archive: [[1, 3, 0], [3, 2, 1], [2, 2, 2], [1, 2, 3]]
Distance of [3, 2, 1] to pareto front: 0.0
Distance of [3, 2, 2] to pareto front: 1.0
### 10. Enabling or disabling fractions
To avoid loss of precision, fractions are used by default. This can be changed to floats by setting the `hypervolume_final_float_type` and `hypervolume_computation_float_type` function attributes.
```python
import fractions
get_mo_archive.hypervolume_computation_float_type = fractions.Fraction
get_mo_archive.hypervolume_final_float_type = fractions.Fraction
moa3_fr = get_mo_archive([[1, 2, 3], [2, 1, 3], [3, 3, 1.32], [1.3, 1.3, 3], [1.7, 1.1, 2]], reference_point=[4, 4, 4])
print(moa3_fr.hypervolume)
get_mo_archive.hypervolume_computation_float_type = float
get_mo_archive.hypervolume_final_float_type = float
moa3_nofr = get_mo_archive([[1, 2, 3], [2, 1, 3], [3, 3, 1.32], [1.3, 1.3, 3], [1.7, 1.1, 2]], reference_point=[4, 4, 4])
print(moa3_nofr.hypervolume)
```
161245156349030777798724819133399/10141204801825835211973625643008
15.899999999999999
|