File: moarchiving.py

package info (click to toggle)
python-moarchiving 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 404 kB
  • sloc: python: 2,989; makefile: 6
file content (1202 lines) | stat: -rw-r--r-- 49,908 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
# -*- coding: utf-8 -*-
"""A bi-objective nondominated archive,

implemented as sorted list and with incremental update in logarithmic time.
"""
from __future__ import division, print_function, unicode_literals
import warnings as _warnings
# from collections import deque  # does not support deletion of slices!?
import bisect as _bisect # to find the insertion index efficiently
try:
    import fractions
except ImportError:
    _warnings.warn(
    '`fractions` module not installed, arbitrary precision hypervolume computation not available')
del division, print_function, unicode_literals

inf = float('inf')


def _debug_trace(*args, **kwargs):
    """return a string like printing the calling trace stack"""
    try:
        import traceback
    except:
        s = ''
    else:
        s = ''.join(traceback.format_stack(*args, **kwargs))
    return s


def true_fraction(val, copy=False):
    """return a `fractions.Fraction` object from `val`.

    Fixes the issue that `Fraction` does not convert an `np.intc` or
    `np.int32` type to infinite representation `int`.
    """
    try:
        fractions.Fraction
    except NameError:
        return val
    if isinstance(val, fractions.Fraction):
        if copy:  # Fraction(.) is almost 20 times slower than float(.)
            return fractions.Fraction(val)
        return val
    if not isinstance(val, (int, float)):
        val = float(val)
    return fractions.Fraction(val)


class BiobjectiveNondominatedSortedList(list):
    """A sorted list of non-dominated unique objective-pairs.

    Non-domination here means smaller in at least one objective. The list is
    sorted (naturally) by the first objective. No equal entries in either
    objective exist in the list (assuming it is in a consistent state).

    The operation

    >>> from moarchiving import BiobjectiveNondominatedSortedList
    >>> any_list = BiobjectiveNondominatedSortedList(any_list)  # doctest:+SKIP

    sorts and prunes the pair list `any_list` to become a consistent
    nondominated sorted archive.

    Afterwards, the methods `add` and `add_list` keep the list always
    in a consistent state. If a reference point was given on initialization,
    also the hypervolume of the archive is computed and updated.

    The `contributing_hypervolume` and `hypervolume_improvement` methods
    give the uncrowded hypervolume improvement, with or without removing
    the input from the archive before the computation, respectively, see
    https://arxiv.org/abs/1904.08823

    Removing elements with `pop` or `del` keeps the archive sorted and
    non-dominated but does not update the hypervolume, which hence
    becomes inconsistent.

    >>> a = BiobjectiveNondominatedSortedList([[1,0.9], [0,1], [0,2]])
    >>> a
    [[0, 1], [1, 0.9]]
    >>> a.add([0, 1])  # doesn't change anything, [0, 1] is not duplicated
    >>> BiobjectiveNondominatedSortedList(
    ...     [[-0.749, -1.188], [-0.557, 1.1076],
    ...     [0.2454, 0.4724], [-1.146, -0.110]])
    [[-1.146, -0.11], [-0.749, -1.188]]
    >>> a._asserts()  # consistency assertions

    Details: This list doesn't prevent the user to insert a new element
    anywhere and hence get into an inconsistent state. Inheriting from
    `sortedcontainers.SortedList` would ensure that the `list` remains
    at least sorted.

    See also:
    https://pypi.org/project/sortedcontainers
    https://code.activestate.com/recipes/577197-sortedcollection/
    https://pythontips.com/2016/04/24/python-sorted-collections/

"""
    # DONE: implement large-precision hypervolume computation.
    # DONE (method remove): implement a `delete` method that also updates the hypervolume.
    # TODO (DONE): implement a copy method
    # TODO: compute a hypervolume also without a reference point. Using the
    # two extreme points as reference should just work fine also for
    # hypervolume improvement, as making them more extreme improves
    # the volume. This is not equivalent with putting the reference
    # to infty, as the contribution from a new extreme could be small.
    # TODO (discarded): currently, points beyond the reference point (which do not contribute
    # to the hypervolume) are discarded. We may want to keep them, for simplicity
    # in a separate list?

    # Default Values for meta control attributes
    make_expensive_asserts = False

    hypervolume_final_float_type = true_fraction
    """HV computation takes increasingly longer with increasing precision (number of iterations).

        Set ``BiobjectiveNondominatedSortedList.hypervolume_final_float_type = float``
        when speed is an issue.
        """ # lambda x: x is marginally faster than float
    hypervolume_computation_float_type = true_fraction
    """HV computation takes increasingly longer with increasing precision (number of iterations).

        Precision may be less relevant here than for
        `hypervolume_final_float_type`.

        Set ``BiobjectiveNondominatedSortedList.hypervolume_computation_float_type = float``
        here first when speed is an issue.
        """

    maintain_contributing_hypervolumes = False

    def __init__(self,
                 list_of_f_pairs=None,
                 reference_point=None,
                 sort=sorted,
                 infos=None,
                 hypervolume_final_float_type=None,
                 hypervolume_computation_float_type=None):
        """`list_of_f_pairs` does not need to be sorted.

        f-pairs beyond the `reference_point` are pruned away. The
        `reference_point` is also used to compute the hypervolume.

        `sort` is a sorting function and ``sort=None`` will prevent a sort,
        which can be useful if the `list_of_f_pairs` is already sorted.

        CAVEAT: the interface, in particular the positional interface
        may change in future versions.
        """
        if hypervolume_final_float_type is None:
            self.hypervolume_final_float_type = BiobjectiveNondominatedSortedList.hypervolume_final_float_type
        else:
            self.hypervolume_final_float_type = hypervolume_final_float_type

        if hypervolume_computation_float_type is None:
            self.hypervolume_computation_float_type = BiobjectiveNondominatedSortedList.hypervolume_computation_float_type
        else:
            self.hypervolume_computation_float_type = hypervolume_computation_float_type

        self.make_expensive_asserts = BiobjectiveNondominatedSortedList.make_expensive_asserts
        self.maintain_contributing_hypervolumes = BiobjectiveNondominatedSortedList.maintain_contributing_hypervolumes
        self.n_obj = 2

        if list_of_f_pairs is not None and len(list_of_f_pairs):
            try:
                list_of_f_pairs = list_of_f_pairs.tolist()
            except:
                pass
            if len(list_of_f_pairs[0]) != 2:
                raise ValueError("need elements of len 2, got %s"
                                 " as first element" % str(list_of_f_pairs[0]))
            if sort is None:
                list.__init__(self, list_of_f_pairs)
            else:
                if infos is not None:
                    f_pair2info = dict(zip([tuple(f_pair) for f_pair in list_of_f_pairs], infos))
                    list.__init__(self, sort(list_of_f_pairs))
                    infos = [f_pair2info[tuple(f_pair)] for f_pair in self]
                else:
                    list.__init__(self, sort(list_of_f_pairs))

            # super(BiobjectiveNondominatedSortedList, self).__init__(sort(list_of_f_pairs))
        if reference_point is not None:
            self.reference_point = list(reference_point)
        else:
            self.reference_point = reference_point

        if infos is not None:
            if len(infos) != len(list_of_f_pairs):
                raise ValueError(f"need as many infos as f_pairs, got "
                                 f"{len(infos)} infos and {len(list_of_f_pairs)} f_pairs")
            self._infos = infos
        else:
            self._infos = None

        self.prune()  # remove dominated entries, uses in_domain, hence ref-point
        if self.maintain_contributing_hypervolumes:
            self._contributing_hypervolumes = self.contributing_hypervolumes
            raise NotImplementedError('update of _contributing_hypervolumes in _add_HV and _subtract_HV not implemented')
        else:
            self._contributing_hypervolumes = []
        self._set_HV()

        if reference_point is not None:
            if self._hypervolume > 0:
                self._hypervolume_plus = self._hypervolume
            else:
                if list_of_f_pairs is None or len(list_of_f_pairs) == 0:
                    self._hypervolume_plus = -inf
                else:
                    self._hypervolume_plus = -min([self.distance_to_hypervolume_area(f)
                                                   for f in list_of_f_pairs])
        else:
            self._hypervolume_plus = None
        self.make_expensive_asserts and self._asserts()

    def _debug_info(self):
        """return debug info as a list of (key, value) tuples"""
        def cut_list(l, n=100):
            n2 = int(n/2) - 2
            try:
                if len(l) > n:
                    return l[:n2] + ['...'] + [l[int(len(l) / 2)]] + ['...'] + l[-n2:]
            except:
                pass
            return l
        return [('len', len(self)),
                ('attributes', dict((k, cut_list(v)) for k, v in self.__dict__.items())),
                ('self', cut_list(self)),
               ]

    def add(self, f_pair, info=None):
        """insert `f_pair` in `self` if it is not (weakly) dominated.

        Return index at which the insertion took place or `None`. The
        list remains sorted in the process.

        The list remains non-dominated with unique elements, which
        means that some or many or even all of its present elements may
        be removed.

        `info` is added to the `infos` `list`. It can be an arbitrary object,
        e.g. a list or dictionary. It can in particular contain (or be) the
        solution ``x`` such that ``f_pair == fun(info['x'])``.

        Implementation detail: For performance reasons, `insert` is
        avoided in favor of `__setitem__`, if possible.

        >>> from moarchiving import BiobjectiveNondominatedSortedList
        >>> arch = BiobjectiveNondominatedSortedList()
        >>> len(arch.infos) == len(arch) == 0
        True
        >>> len(arch), arch.add([2, 2]), len(arch), arch.infos
        (0, 0, 1, [None])
        >>> arch.add([3, 1], info={'x': [-1, 2, 3], 'note': 'rocks'})
        1
        >>> len(arch.infos) == len(arch) == 2
        True
        >>> arch.infos[0], sorted(arch.infos[1].items())
        (None, [('note', 'rocks'), ('x', [-1, 2, 3])])
        >>> arch.infos[arch.index([3, 1])]['x']
        [-1, 2, 3]

        """
        f_pair = list(f_pair)  # convert array to list
        if len(f_pair) != 2:
            raise ValueError("argument `f_pair` must be of length 2, was"
                             " ``%s``" % str(f_pair))
        if not self.in_domain(f_pair):
            if self.hypervolume_plus is not None and self.hypervolume_plus < 0:
                self._hypervolume_plus = max((self._hypervolume_plus,
                                              -self.distance_to_hypervolume_area(f_pair)))
            self._removed = [f_pair]
            return None
        idx = self.bisect_left(f_pair)
        if self.dominates_with(idx - 1, f_pair) or self.dominates_with(idx, f_pair):
            if f_pair not in self[idx - 1:idx + 1]:
                self._removed = [f_pair]
            return None
        assert idx == len(self) or not f_pair == self[idx]
        # here f_pair now is non-dominated
        self._add_at(idx, f_pair, info)
        # self.make_expensive_asserts and self._asserts()
        return idx

    def _add_at(self, idx, f_pair, info=None):
        """add `f_pair` at position `idx` and remove dominated elements.

        This method assumes that `f_pair` is not weakly dominated by
        `self` and that `idx` is the correct insertion place e.g.
        acquired by `bisect_left`.
        """
        if self._infos is None and info is not None:  # prepare for inserting info
            self._infos = len(self) * [None]  # `_infos` and `self` are in a consistent state now
        if idx == len(self) or f_pair[1] > self[idx][1]:
            self.insert(idx, f_pair)
            if self._infos is not None:  # if the list exists it needs to be updated
                self._infos.insert(idx, info)  # also insert None, otherwise lists get out of sync
            self._add_HV(idx)
            # self.make_expensive_asserts and self._asserts()
            return
        # here f_pair now dominates self[idx]
        idx2 = idx + 1
        while idx2 < len(self) and f_pair[1] <= self[idx2][1]:
            # f_pair also dominates self[idx2]
            # self.pop(idx)  # slow
            # del self[idx]  # slow
            idx2 += 1  # delete later in a chunk
        self._subtract_HV(idx, idx2)
        self._removed = self[idx:idx2]
        self[idx] = f_pair  # on long lists [.] is much cheaper than insert
        if self._infos is not None:  # if the list exists it needs to be updated
            self._infos[idx] = info
        del self[idx + 1:idx2]  # can make `add` 20x faster
        if self._infos:
            del self._infos[idx + 1:idx2]
        self._add_HV(idx)
        assert len(self) >= 1
        assert self._infos is None or len(self) == len(self.infos) == len(self._infos), (
            self._infos, len(self._infos), len(self.infos))
        # assert len(self) == len(self.infos), (self._infos, self.infos, len(self.infos), len(self))
        # caveat: len(self.infos) creates a list if self._infos is None
        # self.make_expensive_asserts and self._asserts()

    def remove(self, f_pair):
        """remove element `f_pair`.

        Raises a `ValueError` (like `list`) if ``f_pair is not in self``.
        To avoid the error, checking ``if f_pair is in self`` first is a
        possible coding solution, like

        >>> from moarchiving import BiobjectiveNondominatedSortedList
        >>> nda = BiobjectiveNondominatedSortedList([[2, 3]])
        >>> f_pair = [1, 2]
        >>> assert [2, 3] in nda and f_pair not in nda
        >>> if f_pair in nda:
        ...     nda.remove(f_pair)
        >>> nda = BiobjectiveNondominatedSortedList()
        >>> nda.add_list([[6, 6], [5, 7], [4, 8], [3, 9]])
        >>> nda.remove(nda[-1])
        >>> _ = nda.add([2, 10])
        >>> nda = BiobjectiveNondominatedSortedList._random_archive(p_ref_point=1)
        >>> for t in [None, float]:
        ...     if t:
        ...         nda.hypervolume_final_float_type = t
        ...         nda.hypervolume_computation_float_type = t
        ...     for pair in list(nda):
        ...         len_ = len(nda)
        ...         state = nda._state()
        ...         nda.remove(pair)
        ...         assert len(nda) == len_ - 1
        ...         if 100 * pair[0] - int(100 * pair[0]) < 0.7:
        ...             res = nda.add(pair)
        ...             assert all(state[i] == nda._state()[i] for i in (
        ...                [0, 3] if nda.hypervolume_final_float_type is float else [0, 2, 3]))

        Return `None` (like `list.remove`).
        """
        idx = self.index(f_pair)
        self._subtract_HV(idx)
        if hasattr(self, '_hypervolume'):
            self._hypervolume_plus = self._hypervolume if self._hypervolume > 0 else -inf
        self._removed = [self[idx]]
        del self[idx]  # == list.remove(self, f_pair)
        if self._infos:
            del self._infos[idx]

    def add_list(self, list_of_f_pairs, infos=None):
        """insert a list of f-pairs which doesn't need to be sorted.

        This is just a shortcut for looping over `add`, but `discarded`
        now contains the discarded elements from all `add` operations.

        >>> from moarchiving import BiobjectiveNondominatedSortedList
        >>> arch = BiobjectiveNondominatedSortedList()
        >>> list_of_f_pairs = [[1, 2], [0, 3]]
        >>> for f_pair in list_of_f_pairs:
        ...     arch.add(f_pair)  # return insert index or None
        0
        0
        >>> arch == sorted(list_of_f_pairs)  # both entries are nondominated
        True
        >>> arch.compute_hypervolume([3, 4]) == 5.0
        True
        >>> arch.infos  # to have infos use `add` instead
        [None, None]

        Return `None`.

        Details: discarded does not contain elements of `list_of_f_pairs`.
        When `list_of_pairs` is already sorted, `merge` may have
        a small performance benefit.
        """
        removed = []
        if infos is None:
            infos = len(list_of_f_pairs) * [None]
        # should we better create a non-dominated list and do a merge?
        for f_pair, info in zip(list_of_f_pairs, infos):
            if self.add(f_pair, info=info) is not None:
                removed += [self._removed]  # slightly faster than .extend
        self._removed = removed  # could contain elements of `list_of_f_pairs`
        self.make_expensive_asserts and self._asserts()

    def merge(self, list_of_f_pairs):
        """obsolete and replaced by `add_list`. merge in a sorted list of f-pairs.

        The list can contain dominated pairs, which are discarded during
        the merge.

        Return `None`.

        Details: merging 200 into 100_000 takes 3e-4s vs 4e-4s with
        `add_list`. The `discarded` property is not consistent with the
        overall merge.
        """
        raise NotImplementedError()
        """
        # _warnings.warn("merge was never thoroughly tested, use `add_list`")
        for f_pair in list_of_f_pairs:
            if not self.in_domain(f_pair):
                continue
            f_pair = list(f_pair)  # convert array to list
            idx = self.bisect_left(f_pair, idx)
            if self.dominates_with(idx - 1, f_pair) or self.dominates_with(idx, f_pair):
                continue
            self._add_at(idx, f_pair)
        self.make_expensive_asserts and self._asserts()
        """

    def copy(self):
        """return a "deep" copy of `self`"""
        nda = BiobjectiveNondominatedSortedList()
        for d in self.__dict__:
            setattr(nda, d, getattr(self, d))
        # now fix all mutable references as a true copy
        list.__init__(nda, (p[:] for p in self))
        nda.reference_point = [xi for xi in self.reference_point]
        nda._hypervolume = self.hypervolume_final_float_type(self._hypervolume)  # with Fraction not necessary
        nda._contributing_hypervolumes = [hv for hv in self._contributing_hypervolumes]
        return nda

    def bisect_left(self, f_pair, lowest_index=0):
        """return index where `f_pair` may need to be inserted.

        Smaller indices have a strictly better f1 value or they have
        equal f1 and better f2 value.

        `lowest_index` restricts the search from below.

        Details: This method does a binary search in `self` using
        `bisect.bisect_left`.
        """
        try:
            return _bisect.bisect_left(self, f_pair, lowest_index)
        except Exception:
            pass
        try:
            f_pair = f_pair.tolist()
        except Exception:
            f_pair = list(f_pair)
        return _bisect.bisect_left(self, f_pair, lowest_index)

    def dominates(self, f_pair):
        """return `True` if any element of `self` dominates or is equal to `f_pair`.

        Otherwise return `False`.

        >>> from moarchiving import BiobjectiveNondominatedSortedList as NDA
        >>> a = NDA([[0.39, 0.075], [0.0087, 0.14]])
        >>> a.dominates(a[0])  # is always True if `a` is not empty
        True
        >>> a.dominates([-1, 33]) or a.dominates([33, -1])
        False
        >>> a._asserts()

        See also `bisect_left` to find the closest index.
        """
        if len(self) == 0:
            return False
        idx = self.bisect_left(f_pair)
        if self.dominates_with(idx - 1, f_pair) or self.dominates_with(idx, f_pair):
            return True
        return False

    def dominates_with(self, idx, f_pair):
        """return `True` if ``self[idx]`` dominates or is equal to `f_pair`.

        Otherwise return `False` or `None` if `idx` is out-of-range.

        >>> from moarchiving import BiobjectiveNondominatedSortedList as NDA
        >>> NDA().dominates_with(0, [1, 2]) is None  # empty NDA
        True

        """
        if idx < 0 or idx >= len(self):
            return None
        if self[idx][0] <= f_pair[0] and self[idx][1] <= f_pair[1]:
            return True
        return False

    def dominators(self, f_pair, number_only=False):
        """return the list of all `f_pair`-dominating elements in `self`,

        including an equal element. ``len(....dominators(...))`` is
        hence the number of dominating elements which can also be obtained
        without creating the list with ``number_only=True``.

        >>> from moarchiving import BiobjectiveNondominatedSortedList as NDA
        >>> a = NDA([[1.2, 0.1], [0.5, 1]])
        >>> len(a)
        2
        >>> a.dominators([2, 3]) == a
        True
        >>> a.dominators([0.5, 1])
        [[0.5, 1]]
        >>> len(a.dominators([0.6, 3])), a.dominators([0.6, 3], number_only=True)
        (1, 1)
        >>> a.dominators([0.5, 0.9])
        []

        """
        idx = self.bisect_left(f_pair)
        if idx < len(self) and self[idx] == f_pair:
            res = 1 if number_only else [self[idx]]
        else:
            res = 0 if number_only else []
        idx -= 1
        while idx >= 0 and self[idx][1] <= f_pair[1]:
            if number_only:
                res += 1
            else:
                res.insert(0, self[idx])  # keep sorted
            idx -= 1
        return res

    def in_domain(self, f_pair, reference_point=None):
        """return `True` if `f_pair` is dominating the reference point,

        `False` otherwise. `True` means that `f_pair` contributes to
        the hypervolume if not dominated by other elements.

        `f_pair` may also be an index in `self` in which case
        ``self[f_pair]`` is tested to be in-domain.

        >>> from moarchiving import BiobjectiveNondominatedSortedList as NDA
        >>> a = NDA([[2.2, 0.1], [0.5, 1]], reference_point=[2, 2])
        >>> assert len(a) == 1
        >>> a.in_domain([0, 0])
        True
        >>> a.in_domain([2, 1])
        False
        >>> all(a.in_domain(ai) for ai in a)
        True
        >>> a.in_domain(0)
        True

        TODO: improve name?
        """
        if reference_point is None:
            reference_point = self.reference_point
        if reference_point is None:
            return True
        try:
            f_pair = self[f_pair]
        except TypeError:
            pass
        except IndexError:
            raise  # return None
        if (f_pair[0] >= reference_point[0] or
            f_pair[1] >= reference_point[1]):
            return False
        return True

    @property
    def infos(self):
        """`list` of complementary information corresponding to each archive entry"""
        return self._infos or len(self) * [None]  # tuple is slower for len >= 1000

    @property
    def hypervolume(self):
        """hypervolume of the entire list w.r.t. the "initial" reference point.

        Raise `ValueError` when no reference point was given initially.

        >>> from moarchiving import BiobjectiveNondominatedSortedList as NDA
        >>> a = NDA([[0.5, 0.4], [0.3, 0.7]], [2, 2.1])
        >>> a._asserts()
        >>> a.reference_point == [2, 2.1]
        True
        >>> abs(a.hypervolume - a.compute_hypervolume(a.reference_point)) < 1e-11
        True
        >>> a.add([0.2, 0.8])
        0
        >>> a._asserts()
        >>> abs(a.hypervolume - a.compute_hypervolume(a.reference_point)) < 1e-11
        True
        >>> a.add([0.3, 0.6])
        1
        >>> a._asserts()
        >>> abs(a.hypervolume - a.compute_hypervolume(a.reference_point)) < 1e-11
        True

        """
        if self.reference_point is None:
            raise ValueError("to compute the hypervolume a reference"
                             " point is needed (must be given initially)")
        if self.make_expensive_asserts:
            assert abs(self._hypervolume - self.compute_hypervolume(self.reference_point)) < 1e-12
        return self._hypervolume

    @property
    def hypervolume_plus(self):
        """uncrowded hypervolume of the entire list w.r.t. the "initial" reference point.

        `hypervolume_plus` equals to the hypervolume when the archive is
        nonempty, otherwise it is the smallest Euclidean distance to the
        hypervolume area (AKA reference domain) times -1 of any element
        that was previously added but rejected because it did not dominate
        the reference point.

        Raise `ValueError` when no reference point was given initially.

        Details: conceptually, the distance computation is based on the
        nondominated archive as if it was not pruned by the reference
        point.

        >>> from moarchiving import BiobjectiveNondominatedSortedList as NDA
        >>> a = NDA(reference_point=[1, 1])
        >>> a.hypervolume_plus
        -inf
        >>> a.add([1, 2])
        >>> a.hypervolume_plus
        -1.0
        >>> a.add([1, 1])
        >>> a.hypervolume_plus
        -0.0
        >>> a.add([0.5, 0.5])
        0
        >>> float(a.hypervolume_plus)
        0.25
        """
        if self.reference_point is None:
            raise ValueError("to compute the hypervolume_plus a reference"
                             " point is needed (must be given initially)")
        return self._hypervolume_plus


    @property
    def contributing_hypervolumes(self):
        """`list` of contributing hypervolumes.

        Elements in the list are of type
        `self.hypervolume_computation_float_type`.
        Conversion to `float` in a list comprehension should always be
        possible.

        Changing this list will have unexpected consequences if
        `self.maintain_contributing_hypervolumes`,

        Details: The "initial" reference point is used for the outer
        points. If none is given, `inf` is used as reference.
        For the time being, the contributing hypervolumes are
        computed each time from scratch.

        :See also: `contributing_hypervolume`
        """
        if self.maintain_contributing_hypervolumes:
            if not hasattr(self, '_contributing_hypervolumes'):
                self._contributing_hypervolumes = [
                    self.contributing_hypervolume(i)
                    for i in range(len(self))]
            if len(self._contributing_hypervolumes) == len(self):
                return self._contributing_hypervolumes
            _warnings.warn("contributing hypervolumes seem not consistent")
        return [self.contributing_hypervolume(i)
                for i in range(len(self))]

    def contributing_hypervolume(self, idx):
        """return contributing hypervolume of element `idx`.

        If `idx` is an `f_pair`, return contributing hypervolume of element
        with value `f_pair`. If `f_pair` is not in `self`, return
        `hypervolume_improvement(f_pair)`, i.e., its uncrowded contributing
        hypervolume (which can be negative).

        The return type is ``self.hypervolume_computation_float_type` and
        by default `fractions.Fraction`, which can be converted to `float`
        like ``float(....contributing_hypervolume(idx))``.
        """
        try:
            len(idx)
        except TypeError:
            pass
        else:  # idx is a pair
            if idx in self:
                idx = self.index(idx)
            else:
                return self.hypervolume_improvement(idx)
        if idx == 0:
            y = self.reference_point[1] if self.reference_point else inf
        else:
            y = self[idx - 1][1]
        if idx in (len(self) - 1, -1):
            x = self.reference_point[0] if self.reference_point else inf
        else:
            x = self[idx + 1][0]
        if inf in (x, y):
            return inf
        Fc = self.hypervolume_computation_float_type
        dHV = (Fc(x) - Fc(self[idx][0])) * (Fc(y) - Fc(self[idx][1]))
        assert dHV >= 0
        return dHV

    def distance_to_pareto_front(self, f_pair, ref_factor=1):
        """of a dominated `f_pair` also considering the reference domain.

        Non-dominated points have (by definition) a distance of zero,
        unless the archive is empty and the point does not dominate the
        reference point.

        The implementation assumes that all points of the archive are in
        the reference domain (and more extreme points have been pruned, as
        it is the default behavior).

        Details: the distance for dominated points is computed by
        iterating over the relevant kink points ``(self[i+1][0],
        self[i][1])``. In case of minimization, the boundary with two
        non-dominated points can be depicted like::

            ...______.      . <- reference point
                     |
                     x__. <- kink point
                        |
                        x___. <- kink point
                            |
                            |
                            :
                            :

        The three kink points which are possibly used for the computations
        are denoted by a dot. The outer kink points use one coordinate of
        the reference point.
        """
        if self.in_domain(f_pair) and not self.dominates(f_pair):
            return 0  # return minimum distance

        if self.reference_point:
            ref_d0 = ref_factor * max((0, f_pair[0] - self.reference_point[0]))
            ref_d1 = ref_factor * max((0, f_pair[1] - self.reference_point[1]))
        else:
            ref_d0 = 0
            ref_d1 = 0

        if len(self) == 0:  # otherwise we get an index error below
            return (ref_d0**2 + ref_d1**2)**0.5

        # distances to the two outer kink points, given by the extreme
        # points and the respective the reference point coordinate, for
        # the left (and up) most point:
        squared_distances = [max((0, f_pair[0] - self[0][0]))**2 +
                              ref_d1**2]
        # and the right most (and lowest) point
        squared_distances += [ref_d0**2 +
                             max((0, f_pair[1] - self[-1][1]))**2]
        if len(self) == 1:
            return min(squared_distances)**0.5
        for idx in range(self.bisect_left(f_pair), 0, -1):
            if idx == len(self):
                continue
            squared_distances.append(
                max((0, f_pair[1] - self[idx - 1][1]))**2 +
                max((0, f_pair[0] - self[idx][0]))**2)
            if self[idx][1] >= f_pair[1] or idx == 1:
                break
        if self.make_expensive_asserts and len(squared_distances) > 2:
            assert min(squared_distances[2:]) == min(
                        [max((0, f_pair[0] - self[i + 1][0]))**2 +
                         max((0, f_pair[1] - self[i][1]))**2
                         for i in range(len(self) - 1)])
        return min(squared_distances)**0.5

    def distance_to_hypervolume_area(self, f_pair):
        return (max((0, f_pair[0] - self.reference_point[0]))**2
                + max((0, f_pair[1] - self.reference_point[1]))**2)**0.5 \
               if self.reference_point else 0

    def _hypervolume_improvement0(self, f_pair):
        """deprecated and only used for testing: return how much `f_pair` would improve the hypervolume.

        If dominated, return the distance to the empirical pareto front
        multiplied by -1.
        Else if not in domain, return distance to the reference point
        dominating area times -1.

        Overall this amounts to the uncrowded hypervolume improvement,
        see https://arxiv.org/abs/1904.08823
        """
        save_infos = self._infos.copy() if self._infos is not None else None
        save_hypervolume_plus = self._hypervolume_plus
        dist = self.distance_to_pareto_front(f_pair)
        if dist:
            return -dist
        hv0 = self.hypervolume
        state = self._state()
        removed = self.discarded  # to get back previous state
        added = self.add(f_pair) is not None
        if added and self.discarded is not removed:
            add_back = self.discarded
        else:
            add_back = []
        assert len(add_back) + len(self) - added == state[0]
        hv1 = self.hypervolume
        if added:
            self.remove(f_pair)
        if add_back:
            self.add_list(add_back)
        self._removed = removed
        if self.hypervolume_computation_float_type is not float and (
            self.hypervolume_final_float_type is not float):
            assert state == self._state()
        if hv0 != self.hypervolume:
            _warnings.warn("HV changed from %f to %f while computing hypervolume_improvement" %
                           (hv0, self.hypervolume))
        self._infos = save_infos
        self._hypervolume_plus = save_hypervolume_plus
        return self.hypervolume_computation_float_type(hv1) - self.hypervolume

    def hypervolume_improvement(self, f_pair):
        """return how much `f_pair` would improve the hypervolume.

        If dominated, return the distance to the empirical pareto front
        multiplied by -1.
        Else if not in domain, return distance to the reference point
        dominating area times -1.

        Overall this amounts to the uncrowded hypervolume improvement,
        see https://arxiv.org/abs/1904.08823

        Details: when ``self.reference_point is None`` and `f_pair` is
        a new extreme point, the returned hypervolume improvement is
        ``float('inf')``.

        This method extracts a sublist first and thereby tries
        to circumentvent to compute small differences between large
        hypervolumes.
        """
        dist = self.distance_to_pareto_front(f_pair)
        if dist:
            return -dist
        if self.reference_point is None:
            if f_pair[0] < self[0][0] or f_pair[1] < self[-1][1]:
                return inf
        # find sublist that suffices to get the contributing volume
        i0 = self.bisect_left(f_pair)
        i1 = i0
        while i1 < len(self) and f_pair[1] <= self[i1][1]:
            # f_pair also dominates self[i1]
            i1 += 1
        r0 = self[i1][0] if i1 < len(self) else self.reference_point[0]
        r1 = self[i0-1][1] if i0 > 0 else self.reference_point[1]
        assaved = BiobjectiveNondominatedSortedList.make_expensive_asserts
        BiobjectiveNondominatedSortedList.make_expensive_asserts = False  # prevent infinite recursion
        sub = BiobjectiveNondominatedSortedList(self[i0:i1], reference_point=[r0, r1], sort=None)
        BiobjectiveNondominatedSortedList.make_expensive_asserts = assaved
        hv0 = sub.hypervolume
        sub.add(f_pair)
        res = self.hypervolume_computation_float_type(sub.hypervolume) - hv0
        if BiobjectiveNondominatedSortedList.make_expensive_asserts:
            assert abs(res - self._hypervolume_improvement0(f_pair)) < 1e-9 * (0.1 + res), (
                        res, self._hypervolume_improvement0(f_pair))
        return res

    def _set_HV(self):
        """set current hypervolume value using `self.reference_point`.

        Raise `ValueError` if `self.reference_point` is `None`.

        TODO: we may need to store the list of _contributing_ hypervolumes
        to handle numerical rounding errors later.
        """
        if self.reference_point is None:
            return None
        self._hypervolume = self.compute_hypervolume(self.reference_point)
        if self._hypervolume > 0:
            self._hypervolume_plus = self._hypervolume
        return self._hypervolume

    def compute_hypervolume(self, reference_point):
        """return hypervolume w.r.t. `reference_point`"""
        if reference_point is None:
            raise ValueError("to compute the hypervolume a reference"
                             " point is needed (was `None`)")
        Fc = self.hypervolume_computation_float_type
        Ff = self.hypervolume_final_float_type
        hv = Ff(0.0)
        idx = 0
        while idx < len(self) and not self.in_domain(self[idx], reference_point):
            idx += 1
        if idx < len(self):
            hv += Ff((Fc(reference_point[0]) - Fc(self[idx][0])) * (Fc(reference_point[1]) - Fc(self[idx][1])))
            idx += 1
        while idx < len(self) and self.in_domain(self[idx], reference_point):
            hv += Ff((Fc(reference_point[0]) - Fc(self[idx][0])) * (Fc(self[idx - 1][1]) - Fc(self[idx][1])))
            idx += 1
        return hv

    def compute_hypervolumes(self, reference_point):
        """depricated, subject to removal, see `compute_hypervolume` and `contributing_hypervolumes`.

        Never implemented: return list of contributing hypervolumes w.r.t.
        reference_point
        """
        # Old/experimental code (in a string to suppress pylint warnings):
        """
        # construct self._hypervolumes_list
        # keep sum of different size elements separate,
        # say, a dict of index lists as indices[1e12] indices[1e6], indices[1], indices[1e-6]...
        hv = {}
        for key in indices:
            hv[key] = sum(_hypervolumes_list[i] for i in indices[key])
        # we may use decimal.Decimal to compute the sum of hv
        decimal.getcontext().prec = 88
        hv_sum = sum([decimal.Decimal(hv[key]) for key in hv])
        """
        raise NotImplementedError()

    def _subtract_HV(self, idx0, idx1=None):
        """remove contributing hypervolumes of elements ``self[idx0] to self[idx1 - 1]``.

        TODO: also update list of contributing hypervolumes in case.
        """
        if self.maintain_contributing_hypervolumes:
            """Old or experimental:
            del self._contributing_hypervolumes[idx]
            # we also need to update the contributing HVs of the neighbors
            """
            raise NotImplementedError("update list of hypervolumes")
        if self.reference_point is None:
            return None
        if idx1 is None:
            idx1 = idx0 + 1
        if idx1 - idx0 == len(self):  # subtract HV of all points
            assert idx0 == 0
            dHV = -self._hypervolume
            self._hypervolume *= 0  # keep type
            return dHV
        if idx0 == 0:
            y = self.reference_point[1]
        else:
            y = self[idx0 - 1][1]
        Fc = self.hypervolume_computation_float_type
        Ff = self.hypervolume_final_float_type
        dHV = Fc(0.0)
        for idx in range(idx0, idx1):
            if idx == len(self) - 1:
                assert idx < len(self)
                x = self.reference_point[0]
            else:
                x = self[idx + 1][0]
            dHV -= (Fc(x) - Fc(self[idx][0])) * (Fc(y) - Fc(self[idx][1]))
        assert dHV <= 0  # and without loss of precision strictly smaller
        if ((Ff in (float, int) or isinstance(self._hypervolume, (float, int)))
                and self._hypervolume != 0 and abs(dHV) / self._hypervolume < 1e-9):
            _warnings.warn("_subtract_HV: subtracting {:.16e} from {:.16e} loses many digits of precision"
                          "\nSelf info: {}\nTraceback: {}".format(
                               -dHV,
                               self._hypervolume,
                               self._debug_info(),
                               _debug_trace()))
        self._hypervolume += Ff(dHV)
        if self._hypervolume < 0:
            _warnings.warn("subtracting {:.16e} from the hypervolume lead to a"
                          " negative hypervolume value of {:.16e}"
                          "\nSelf info: {}\nTraceback: {}".format(
                               -dHV,
                               self._hypervolume,
                               self._debug_info(),
                               _debug_trace()))
        # assert self._hypervolume >= 0
        return dHV

    def _add_HV(self, idx):
        """add contributing hypervolume of ``self[idx]`` to hypervolume.

        TODO: also update list of contributing hypervolumes in case.
        """
        if self.maintain_contributing_hypervolumes:
            """Exerimental code:
            self._contributing_hypervolumes.insert(idx, dHV)
            if idx > 0:
                self._contributing_hypervolumes[idx - 1] = self.contributing_hypervolume(idx - 1)
            if idx < len(self) - 1:
                self._contributing_hypervolumes[idx + 1] = self.contributing_hypervolume(idx + 1)
            # TODO: proof read
            """
            raise NotImplementedError("update list of hypervolumes")
        if self.reference_point is None:
            return None
        dHV = self.contributing_hypervolume(idx)
        Ff = self.hypervolume_final_float_type
        if self._hypervolume and (
                        Ff in (float, int) or isinstance(self._hypervolume, (float, int))) \
                and abs(dHV) / self._hypervolume < 1e-9:
            _warnings.warn("_add_HV: adding {} to HV={} loses many digits of precision"
                           "\nSelf info: {}\nTraceback: {}".format(
                               dHV,
                               self._hypervolume,
                               self._debug_info(),
                               _debug_trace()))
        self._hypervolume += Ff(dHV)
        self._hypervolume_plus = self._hypervolume
        return dHV

    def prune(self):
        """remove dominated or equal entries assuming that the list is sorted.

        Return number of dropped elements.

        Implementation details: pruning from right to left may be
        preferable, because list.insert(0) is O(n) while list.append is
        O(1), however it is not possible with the given sorting: in
        principle, the first element may dominate all others, which can
        only be discovered in the last step when traversing from right
        to left. This suggests that reverse sort may be better for
        pruning or we should inherit from `collections.deque` instead
        from `list`, but `deque` seems not to support deletion of slices.
        """
        nb = len(self)
        removed = []
        i = 0
        while i < len(self):
            if self.in_domain(self[i]):
                break
            i += 1
        removed += self[0:i]
        del self[0:i]
        if self._infos:
            del self._infos[0:i]
        i = 1
        while i < len(self):
            i0 = i
            while i < len(self) and (self[i][1] >= self[i0 - 1][1] or
                                         not self.in_domain(self[i])):
                i += 1
                # self.pop(i + 1)  # about 10x slower in notebook test
            # prepare indices for the removed list
            i0r = i0
            if i0 > 0:
                while i0r < i:
                    if self[i0r] == self[i0 - 1]:
                        i0r += 1  # skip self[i0r] as removed because it is still in self
                    else:
                        break
            ir = i
            if i + 1 < len(self):
                while ir > i0r:
                    if self[ir] == self[i + 1]:
                        ir -= 1  # skip self[ir] as removed as it is in self
                    else:
                        break
            removed += self[i0r:ir]
            del self[i0:i]
            if self._infos:
                del self._infos[i0:i]
            i = i0 + 1
        self._removed = removed  # [p for p in removed if p not in self]
        if self.maintain_contributing_hypervolumes:
            # Old or experimental code:
            """
            ::

                self._contributing_hypervolumes = [  # simple solution
                    self.contributing_hypervolume(i)
                    for i in range(len(self))]

            """
            raise NotImplementedError
        return nb - len(self)

    @property
    def discarded(self):
        """`list` of f-pairs discarded in the last relevant method call.

        Methods covered are `__init__`, `prune`, `add`, and `add_list`.
        Removed duplicates are not element of the discarded list except with
        `__init__`. When not inserted and not already in `self` also the
        input argument(s) show(s) up in `discarded`.

        Example to create a list of rank-k-non-dominated fronts:

        >>> from moarchiving import BiobjectiveNondominatedSortedList as NDA
        >>> all_ = [[0.1, 1], [-2, 3], [-4, 5], [-4, 5], [-4, 4.9]]
        >>> nda_list = NDA(all_)  # rank-0-non-dominated
        >>> assert nda_list.discarded == [[-4, 5], [-4, 5]]

        """
        try:
            return self._removed
        except AttributeError:
            return []

    def _state(self):
        return len(self), self.discarded, self.hypervolume, self.reference_point

    @staticmethod
    def _random_archive(max_size=500, p_ref_point=0.5):
        from numpy import random as npr
        N = npr.randint(max_size)
        ref_point = list(npr.randn(2) + 1) if npr.rand() < p_ref_point else None
        return BiobjectiveNondominatedSortedList(
            [list(0.01 * npr.randn(2) + npr.rand(1) * [i, -i])
             for i in range(N)],
            reference_point=ref_point)

    def _asserts(self):
        """make all kind of consistency assertions.

        >>> import moarchiving
        >>> a = moarchiving.BiobjectiveNondominatedSortedList(
        ...    [[-0.749, -1.188], [-0.557, 1.1076],
        ...    [0.2454, 0.4724], [-1.146, -0.110]], [10, 10])
        >>> a._asserts()
        >>> for i in range(len(a)):
        ...    assert a.contributing_hypervolume(i) == a.contributing_hypervolumes[i]
        >>> assert all(map(lambda x, y: x - 1e-9 < y < x + 1e-9,
        ...               a.contributing_hypervolumes,
        ...               [4.01367, 11.587422]))
        >>> len(a), a.add([-0.8, -1], info={'solution': None}), len(a)
        (2, 1, 3)
        >>> len(a) == len(a.infos) == 3
        True
        >>> for i, p in enumerate(list(a)):
        ...     a.remove(p)
        ...     assert len(a) == len(a.infos) == 2 - i
        >>> assert len(a) == len(a.infos) == 0
        >>> try: a.remove([0, 0])
        ... except ValueError: pass
        ... else: raise AssertionError("remove did not raise ValueError")

        >>> import numpy as np
        >>> randn = np.random.randn
        >>> for _ in range(120):
        ...     a = moarchiving.BiobjectiveNondominatedSortedList._random_archive()
        ...     a.make_expensive_asserts = True
        ...     if a.reference_point:
        ...         for i, f_pair in enumerate([randn(2) + [i, -i] for i in range(10)] +
        ...                                    [randn(2) / randn(2) + [i, -i] for i in range(10)]):
        ...             if i % 4 == 1:
        ...                 _ = a.add(f_pair)
        ...             h0 = a.hypervolume
        ...             hi = a.hypervolume_improvement(list(f_pair))
        ...             hi_org = a._hypervolume_improvement0(list(f_pair))
        ...             assert hi == hi_org  # didn't raise with rand instead of randn
        ...             assert a.hypervolume == h0, (a.hypervolume, h0)  # works OK with Fraction
        ...             a._asserts()

        """
        assert sorted(self) == self
        for pair in self:
            assert self.count(pair) == 1
        tmp = BiobjectiveNondominatedSortedList.make_expensive_asserts
        BiobjectiveNondominatedSortedList.make_expensive_asserts = False
        assert BiobjectiveNondominatedSortedList(self) == self
        BiobjectiveNondominatedSortedList.make_expensive_asserts = tmp
        for pair in self:
            assert self.dominates(pair)
            assert not self.dominates([v - 0.001 for v in pair])
        if self.reference_point is not None:
            assert abs(self._hypervolume - self.compute_hypervolume(self.reference_point)) < 1e-11
            assert sum(self.contributing_hypervolumes) < self.hypervolume + 1e-11
        if self.maintain_contributing_hypervolumes:
            assert len(self) == len(self._contributing_hypervolumes)
        assert len(self) == len(self.contributing_hypervolumes)
        # for i in range(len(self)):
        #     assert self.contributing_hypervolume(i) == self.contributing_hypervolumes[i]

        if self.reference_point:
            tmp, self.make_expensive_asserts = self.make_expensive_asserts, False
            self.hypervolume_improvement([0, 0])  # does state assert
            self.make_expensive_asserts = tmp

        assert self._infos is None or len(self._infos) == len(self.infos) == len(self), (
            self._infos, len(self._infos), len(self))
        # assert len(self.infos) == len(self), (len(self.infos), len(self), self.infos, self._infos)
        # caveat: len(self.infos) creates a list if self._infos is None

        # asserts using numpy for convenience
        try:
            import numpy as np
        except ImportError:
            _warnings.warn("asserts using numpy omitted")
        else:
            if len(self) > 1:
                diffs = np.diff(self, 1, 0)
                assert all(diffs[:, 0] > 0)
                assert all(diffs[:, 1] < 0)


if __name__ == "__main__":
    import doctest
    print('doctest.testmod() in moarchiving.py')
    print(doctest.testmod())