File: moarchiving_utils.py

package info (click to toggle)
python-moarchiving 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 404 kB
  • sloc: python: 2,989; makefile: 6
file content (486 lines) | stat: -rw-r--r-- 16,073 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
"""This module contains various utility functions and classes for the MOArchiving package."""
import warnings as _warnings
try:
    from sortedcontainers import SortedKeyList
except ImportError:
    _warnings.warn('`sortedcontainers` module not installed, moarchiving for 3 and 4 objectives will not work')
    SortedKeyList = list


class DLNode:
    """ A class to represent a node in a doubly linked list. """
    def __init__(self, x=None, info=None):
        """ Initialize a node with the given x-coordinate and info. """
        self.x = x if x else [None, None, None, None]
        self.closest = [None, None]  # closest in x coordinate, closest in y coordinate
        self.cnext = [None, None]  # current next
        self.next = [None, None, None, None]
        self.prev = [None, None, None, None]
        self.ndomr = 0  # number of dominators
        self.info = info

    def copy(self):
        """ copy the node """
        new_node = DLNode()
        for var in self.__dict__:
            if isinstance(getattr(self, var), list):
                setattr(new_node, var, getattr(self, var).copy())
            else:
                setattr(new_node, var, getattr(self, var))
        return new_node


class ArchiveSortedList(SortedKeyList):
    """ A class to represent a sorted list of nodes, together with additional methods that
     follow the definition in the paper."""
    def __init__(self, iterable=None, key=lambda node: node.x[1]):
        """ Initialize the sorted list with the given iterable and key function. """
        if SortedKeyList is list:
            raise ImportError("`MySortedList `requires `sortedcontainers` to be installed")
        super().__init__(iterable=iterable, key=key)

    def __str__(self):
        """ Return a string representation of the sorted list. """
        return str([node.x for node in self])

    def head_y(self):
        """ Return the point q from the list, with the smallest q_y """
        return self[0]

    def head_x(self):
        """ Return the point q from the list, with the smallest q_x """
        return self[-1]

    def next_y(self, s):
        """ Return the point q from the list, with the smallest q_y > s_y, for a given point s
        from the list """
        return self[self.index(s) + 1]

    def next_x(self, s):
        """ Return the point q from the list, with the smallest q_x > s_x, for a given point s
        from the list """
        return self[self.index(s) - 1]

    def outer_delimiter_y(self, p):
        """ Return the point q from the list, with the smallest q_y > p_y, such that q_x < p_x """
        i = self.bisect_left(p)
        while i < len(self) and self[i].x[0] >= p.x[0]:
            i += 1
        return self[i]

    def outer_delimiter_x(self, p):
        """ Return the point q from the list, with the smallest q_x > p_x, such that q_y < p_y """
        i = self.bisect_left(p) - 1
        while i > 0 and self[i].x[1] >= p.x[1]:
            i -= 1
        return self[i]

    def remove_dominated_y(self, p, s):
        """ For s = outer_delimiter_x(p), remove all points q, such that p* <= q* from the list,
        and return them sorted by ascending order of q_y """
        e = self.next_y(s)
        points_to_remove = []
        while p.x[0] <= e.x[0]:
            points_to_remove.append(e)
            e = self.next_y(e)

        for q in points_to_remove:
            self.remove(q)

        return points_to_remove

    def remove_dominated_x(self, p, s):
        """ For s = outer_delimiter_y(p), remove all points q, such that p* <= q* from the list,
        and return them sorted by ascending order of q_x """
        e = self.next_x(s)
        points_to_remove = []
        while p.x[1] <= e.x[1]:
            points_to_remove.append(e)
            e = self.next_x(e)

        for q in points_to_remove:
            self.remove(q)

        return points_to_remove

    def add_y(self, p, s):
        """ Insert point p into the list, if s_y < p_y < next_y(s)_y or p_y < head_y_y """
        if len(self) == 0:
            self.add(p)
        elif s.x[1] < p.x[1] < self.next_y(s).x[1]:
            self.add(p)
        elif p.x[1] < self.head_y().x[1] and s is None:
            self.add(p)

    def add_x(self, p, s):
        """ Insert point p into the list, if s_x < p_x < next_x(s)_x or p_x < head_x_x """
        if len(self) == 0:
            self.add(p)
        elif s.x[0] < p.x[0] < self.next_x(s).x[0]:
            self.add(p)
        elif p.x[0] < self.head_x().x[0] and s is None:
            self.add(p)


def my_lexsort(keys):
    """ Sort an array of keys in lexicographic order and return the indices.
    Equivalent to np.lexsort """
    idk_key_tuple = list(enumerate([list(x)[::-1] for x in zip(*keys)]))
    idk_key_tuple.sort(key=lambda x: x[1])
    return [x[0] for x in idk_key_tuple]


# --------------- Auxiliary Functions ---------------------


def lexicographic_less(a, b):
    """ Returns True if a is lexicographically less than b, False otherwise """
    return a[2] < b[2] or (a[2] == b[2] and (a[1] < b[1] or (a[1] == b[1] and a[0] <= b[0])))


def init_sentinels_new(list_nodes, ref, dim):
    """ Initialize the sentinel nodes for the list of nodes given
    the reference point and the dimensionality """
    s1, s2, s3 = list_nodes[0], list_nodes[1], list_nodes[2]

    # Initialize s1 node
    s1.x = [float('-inf'), ref[1], float('-inf'), float('-inf')]
    s1.closest = [s2, s1]
    s1.next = [None, None, s2, s2]
    s1.cnext = [None, None]
    s1.prev = [None, None, s3, s3]
    s1.ndomr = 0

    # Initialize s2 node
    s2.x = [ref[0], float('-inf'), float('-inf'), float('-inf')]
    s2.closest = [s2, s1]
    s2.next = [None, None, s3, s3]
    s2.cnext = [None, None]
    s2.prev = [None, None, s1, s1]
    s2.ndomr = 0

    # Initialize s3 node
    s3.x = [float('-inf'), float('-inf'), ref[2], ref[3] if dim == 4 else float('-inf')]
    s3.closest = [s2, s1]
    s3.next = [None, None, s1, None]
    s3.cnext = [None, None]
    s3.prev = [None, None, s2, s2]
    s3.ndomr = 0

    return s1


def add_to_z(new):
    """ Add a new node to the list sorted by z """
    new.next[2] = new.prev[2].next[2]
    new.next[2].prev[2] = new
    new.prev[2].next[2] = new


def remove_from_z(old, archive_dim):
    """ Remove a node from the list sorted by z """
    di = archive_dim - 1
    old.prev[di].next[di] = old.next[di]
    old.next[di].prev[di] = old.prev[di]


def setup_z_and_closest(head, new):
    """ Sets up the closest[0] and closest[1] pointers for the new node """
    closest1 = head
    closest0 = head.next[2]

    q = head.next[2].next[2]
    newx = new.x

    while q and lexicographic_less(q.x, newx):
        if q.x[0] <= newx[0] and q.x[1] <= newx[1]:
            new.ndomr += 1
        elif q.x[1] < newx[1] and (
                q.x[0] < closest0.x[0] or (q.x[0] == closest0.x[0] and q.x[1] < closest0.x[1])):
            closest0 = q
        elif q.x[0] < newx[0] and (
                q.x[1] < closest1.x[1] or (q.x[1] == closest1.x[1] and q.x[0] < closest1.x[0])):
            closest1 = q

        q = q.next[2]

    new.closest[0] = new.cnext[0] = closest0
    new.closest[1] = new.cnext[1] = closest1
    new.prev[2] = q.prev[2] if q else None
    new.next[2] = q


def update_links(head, new, p):
    stop = head.prev[2]
    ndom = 0
    all_delimiters_visited = False

    while p != stop and not all_delimiters_visited:
        if p.x[0] <= new.x[0] and p.x[1] <= new.x[1] and (p.x[0] < new.x[0] or p.x[1] < new.x[1]):
            all_delimiters_visited = True
        else:
            if new.x[0] <= p.x[0]:
                if new.x[1] <= p.x[1]:
                    p.ndomr += 1
                    ndom += 1
                    remove_from_z(p, 3)
                elif new.x[0] < p.x[0] and (new.x[1] < p.closest[1].x[1] or (
                        new.x[1] == p.closest[1].x[1] and (new.x[0] < p.closest[1].x[0] or (
                        new.x[0] == p.closest[1].x[0] and new.x[2] < p.closest[1].x[2])))):
                    p.closest[1] = new
            elif new.x[1] < p.x[1] and (new.x[0] < p.closest[0].x[0] or (
                    new.x[0] == p.closest[0].x[0] and (new.x[1] < p.closest[0].x[1] or (
                    new.x[1] == p.closest[0].x[1] and new.x[2] < p.closest[0].x[2])))):
                p.closest[0] = new
        p = p.next[2]
    return ndom


def restart_list_y(head):
    """ Resets the cnext pointers for the y-dimension."""
    head.next[2].cnext[1] = head
    head.cnext[0] = head.next[2]


def compute_area_simple(p, di, s, u, Fc):
    """ Computes the area as described in the paper """
    dj = 1 - di
    area = Fc(0)
    q = s
    area += (Fc(q.x[dj]) - Fc(p[dj])) * (Fc(u.x[di]) - Fc(p[di]))

    while p[dj] < u.x[dj]:
        q = u
        u = u.cnext[di]
        area += (Fc(q.x[dj]) - Fc(p[dj])) * (Fc(u.x[di]) - Fc(q.x[di]))

    return area


def restart_base_setup_z_and_closest(head, new):
    # Sets up closest[0] and closest[1] for the new node
    p = head.next[2].next[2]
    closest1 = head
    closest0 = head.next[2]

    newx = new.x

    restart_list_y(head)

    while p and lexicographic_less(p.x, newx):
        p.cnext[0] = p.closest[0]
        p.cnext[1] = p.closest[1]

        p.cnext[0].cnext[1] = p
        p.cnext[1].cnext[0] = p

        if p.x[0] <= newx[0] and p.x[1] <= newx[1]:
            new.ndomr += 1
        elif p.x[1] < newx[1] and (
                p.x[0] < closest0.x[0] or (p.x[0] == closest0.x[0] and p.x[1] < closest0.x[1])):
            closest0 = p
        elif p.x[0] < newx[0] and (
                p.x[1] < closest1.x[1] or (p.x[1] == closest1.x[1] and p.x[0] < closest1.x[0])):
            closest1 = p

        p = p.next[2]

    new.closest[0] = closest0
    new.closest[1] = closest1
    new.prev[2] = p.prev[2] if p else None
    new.next[2] = p


def one_contribution_3_obj(head, new, Fc):
    """ Computes the contribution of adding a new point to the archive in three dimensions """
    restart_base_setup_z_and_closest(head, new)
    if new.ndomr > 0:
        return 0

    new.cnext[0] = new.closest[0]
    new.cnext[1] = new.closest[1]
    area = compute_area_simple(new.x, 1, new.cnext[0], new.cnext[0].cnext[1], Fc)

    p = new.next[2]
    lastz = Fc(new.x[2])
    volume = Fc(0)

    while p and (p.x[0] > new.x[0] or p.x[1] > new.x[1]):
        volume += area * (Fc(p.x[2]) - lastz)
        p.cnext[0] = p.closest[0]
        p.cnext[1] = p.closest[1]

        if p.x[0] >= new.x[0] and p.x[1] >= new.x[1]:
            area -= compute_area_simple(p.x, 1, p.cnext[0], p.cnext[0].cnext[1], Fc)
            p.cnext[1].cnext[0] = p
            p.cnext[0].cnext[1] = p
        elif p.x[0] >= new.x[0]:
            if p.x[0] <= new.cnext[0].x[0]:
                x = [p.x[0], new.x[1], p.x[2]]
                area -= compute_area_simple(x, 1, new.cnext[0], new.cnext[0].cnext[1], Fc)
                p.cnext[0] = new.cnext[0]
                p.cnext[1].cnext[0] = p
                new.cnext[0] = p
        else:
            if p.x[1] <= new.cnext[1].x[1]:
                x = [new.x[0], p.x[1], p.x[2]]
                area -= compute_area_simple(x, 0, new.cnext[1], new.cnext[1].cnext[0], Fc)
                p.cnext[1] = new.cnext[1]
                p.cnext[0].cnext[1] = p
                new.cnext[1] = p

        lastz = p.x[2]
        p = p.next[2]

    if p:
        volume += area * (Fc(p.x[2]) - Fc(lastz))
    return volume


def setup_cdllist(n_obj, points, ref, infos):
    """ Set up a circular doubly linked list from the given data and reference point """
    points = [p for p in points if strictly_dominates(p, ref, n_obj)]
    n = len(points)

    head = [DLNode(info=info) for info in ["s1", "s2", "s3"] + [None] * n]
    # init_sentinels_new accepts a list at the beginning, therefore we use head[0:3]
    init_sentinels_new(head[0:3], ref, n_obj)
    di = n_obj - 1  # Dimension index for sorting (z-axis in 3D)

    if n > 0:
        # Convert data to a structured format suitable for sorting and linking
        if n_obj == 3:
            # Using lexsort to sort by z, y, x in ascending order
            sorted_indices = my_lexsort(([p[0] for p in points], [p[1] for p in points],
                                         [p[2] for p in points]))
        elif n_obj == 4:
            # Using lexsort to sort by w, z, y, x in ascending order
            sorted_indices = my_lexsort(([p[0] for p in points], [p[1] for p in points],
                                         [p[2] for p in points], [p[3] for p in points]))
        else:
            raise ValueError("Only 3D and 4D points are supported")

        # Create nodes from sorted points
        for i, index in enumerate(sorted_indices):
            head[i + 3].x = points[index]
            head[i + 3].info = infos[index]
            if n_obj == 3:
                # Add 0.0 for 3d points so that it matches the original C code
                head[i + 3].x.append(0.0)

        # Link nodes
        s = head[0].next[di]
        s.next[di] = head[3]
        head[3].prev[di] = s

        for i in range(3, n + 2):
            head[i].next[di] = head[i + 1] if i + 1 < len(head) else head[0]
            head[i + 1].prev[di] = head[i]

        s = head[0].prev[di]
        s.prev[di] = head[n + 2]
        head[n + 2].next[di] = s

    return head[0]


def weakly_dominates(a, b, n_obj):
    """ Return True if a weakly dominates b, False otherwise

    >>> weakly_dominates([1, 2, 3], [2, 3, 3], n_obj=3)
    True
    >>> weakly_dominates([1, 2, 3], [2, 2, 2], n_obj=3)
    False
    >>> weakly_dominates([1, 2, 3], [1, 2, 3], n_obj=3)
    True
    """
    return all(a[i] <= b[i] for i in range(n_obj))


def strictly_dominates(a, b, n_obj):
    """ Return True if a strictly dominates b, False otherwise

    >>> strictly_dominates([1, 2, 3], [2, 3, 3], n_obj=3)
    True
    >>> strictly_dominates([1, 2, 3], [2, 2, 2], n_obj=3)
    False
    >>> strictly_dominates([1, 2, 3], [1, 2, 3], n_obj=3)
    False
    """
    return (all(a[i] <= b[i] for i in range(n_obj)) and
            any(a[i] < b[i] for i in range(n_obj)))


def hv3dplus(head, Fc):
    """ Computes the hypervolume indicator in d=3 in linear time """
    p = head
    area = Fc(0)
    volume = Fc(0)

    restart_list_y(head)
    p = p.next[2].next[2]

    stop = head.prev[2]

    while p != stop:
        if p.ndomr < 1:
            p.cnext[0] = p.closest[0]
            p.cnext[1] = p.closest[1]

            area += compute_area_simple(p.x, 1, p.cnext[0], p.cnext[0].cnext[1], Fc)
            p.cnext[0].cnext[1] = p
            p.cnext[1].cnext[0] = p
        else:
            remove_from_z(p, 3)

        volume += area * (Fc(p.next[2].x[2]) - Fc(p.x[2]))
        p = p.next[2]

    return volume


def hv4dplusR(head, Fc):
    """ Compute the hypervolume indicator in d=4 by iteratively
    computing the hypervolume indicator in d=3 (using hv3d+) """
    hv = Fc(0)

    stop = head.prev[3]
    new = head.next[3].next[3]

    while new != stop:
        setup_z_and_closest(head, new)  # Compute cx and cy of 'new' and determine next and prev in z
        add_to_z(new)  # Add 'new' to list sorted by z
        update_links(head, new, new.next[2])  # Update cx and cy of the points above 'new' in z
        # and remove dominated points

        volume = hv3dplus(head, Fc)  # Compute hv indicator in d=3 in linear time

        height = Fc(new.next[3].x[3]) - Fc(new.x[3])
        hv += volume * height  # Update hypervolume in d=4

        new = new.next[3]

    return hv


def hv4dplusU(head, Fc):
    """ Compute the hypervolume indicator in d=4 by iteratively
    computing the one contribution problem in d=3.
    """
    volume = Fc(0)
    hv = Fc(0)

    last = head.prev[3]
    new = head.next[3].next[3]

    while new != last:
        volume += one_contribution_3_obj(head, new, Fc)
        add_to_z(new)
        update_links(head, new, new.next[2])

        height = Fc(new.next[3].x[3]) - Fc(new.x[3])
        hv += volume * height

        new = new.next[3]

    return hv