File: point_sampling.py

package info (click to toggle)
python-moarchiving 1.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 404 kB
  • sloc: python: 2,989; makefile: 6
file content (221 lines) | stat: -rw-r--r-- 6,806 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
""" This module provides functions to generate non-dominated points for testing purposes """

import math
import random


def get_non_dominated_points(n_points, n_dim=3, mode='spherical'):
    """ Returns a list of non-dominated points:
     - n_points: number of points
     - n_dim: number of dimensions
     - mode: 'spherical' or 'linear' """
    if n_dim == 2:
        if mode == 'spherical':
            return spherical_front_2d(1, n_points, normalized=False)
        elif mode == 'linear':
            return linear_front_2d(1, n_points, normalized=False)
    if n_dim == 3:
        if mode == 'spherical':
            return spherical_front_3d(1, n_points, normalized=False)
        elif mode == 'linear':
            return linear_front_3d(1, n_points, normalized=False)
    elif n_dim == 4:
        if mode == 'spherical':
            return spherical_front_4d(1, n_points, normalized=False)
        elif mode == 'linear':
            return linear_front_4d(1, n_points, normalized=False)
    else:
        raise ValueError("Invalid number of dimensions")


def get_random_points(n_points, n_dim):
    """ Returns a list of random points between 0 and 1, with n_points and n_dim dimensions """
    return [[random.random() for _ in range(n_dim)] for _ in range(n_points)]


def get_stacked_points(n_points, points_definitions):
    """ Returns a list of points with n_points and n_dim dimensions,
    where point from i-th dimension is defined by points_definitions[i]:

        - 'random' for random value between 0 and 1
        - int for a fixed value """
    points = []
    for i in range(n_points):
        points.append([])
        for p_def in points_definitions:
            if p_def == 'random':
                points[-1].append(random.random())
            elif isinstance(p_def, int):
                points[-1].append(p_def)
            else:
                raise ValueError("Invalid point definition")

    return points


def permute_points(points, permutation):
    """ takes a list of points (n x dim) and a permutation (dim)
    and returns the points with the permutation applied """
    return [[point[permutation[i]] for i in range(len(permutation))] for point in points]


def spherical_front_2d(distance, num_points, normalized):
    """ Returns a list of non-dominated points on the 2D spherical front """
    vectors = []

    if normalized:
        v1 = [0, distance]
        v2 = [distance, 0]
        vectors = [v1, v2]

    while len(vectors) < num_points:
        phi = random.random() * math.pi / 2
        vectors.append([distance * math.cos(phi), distance * math.sin(phi)])

    return vectors


def linear_front_2d(distance, num_points, normalized=True):
    """ Returns a list of non-dominated points on the 2D linear front """
    vectors = []

    if normalized:
        v1 = [1, 1 - distance]
        v2 = [1 - distance, 1]
        vectors = [v1, v2]

    while len(vectors) < num_points:
        x = random.random()
        vectors.append([x, 1 - x])

    return vectors


def spherical_front_3d(distance, num_points, normalized=True):
    """ Returns a list of non-dominated points on the 3D spherical front """
    vectors = []

    if normalized:
        v1 = [0, 0, distance]
        v2 = [0, distance, 0]
        v3 = [distance, 0, 0]
        vectors = [v1, v2, v3]

    while len(vectors) < num_points:
        x, y, z = 1, 1, 1

        while (math.sqrt(x * x + y * y + z * z) > 1) or (x < 0.5 and y < 0.5 and z < 0.5):
            x = next_gaussian_double()
            y = next_gaussian_double()
            z = next_gaussian_double()

        r1 = math.sqrt(x * x + y * y + z * z)
        alpha = math.acos(z / r1)
        beta = math.atan2(y, x)

        vect = [distance * math.sin(alpha) * math.cos(beta),
                distance * math.sin(alpha) * math.sin(beta),
                distance * math.cos(alpha)]
        vectors.append(vect)

    return vectors


def linear_front_3d(distance, num_points, normalized):
    """ Returns a list of non-dominated points on the 3D linear front """
    vectors = []

    if normalized:
        v1 = [1, 1, 1 - distance]
        v2 = [1, 1 - distance, 1]
        v3 = [1 - distance, 1, 1]
        vectors = [v1, v2, v3]

    while len(vectors) < num_points:
        array = [0.0]
        for _ in range(2):
            array.append(distance * random.random())
        array.append(distance)
        array.sort()

        x = 1 - (array[1] - array[0])
        y = 1 - (array[2] - array[1])
        z = 1 - (array[3] - array[2])
        vectors.append([x, y, z])

    return vectors


def linear_front_4d(distance, num_points, normalized):
    """ Returns a list of non-dominated points on the 4D linear front """
    vectors = []

    if normalized:
        v1 = [0, 0, 0, distance]
        v2 = [0, 0, distance, 0]
        v3 = [0, distance, 0, 0]
        v4 = [distance, 0, 0, 0]
        vectors = [v1, v2, v3, v4]

    while len(vectors) < num_points:
        array = [0.0] + [distance * random.random() for _ in range(3)] + [distance]
        array.sort()

        x = array[1] - array[0]
        y = array[2] - array[1]
        z = array[3] - array[2]
        w = array[4] - array[3]

        v = [x, y, z, w]
        vectors.append(v)

    return vectors


def spherical_front_4d(distance, num_points, normalized):
    """ Returns a list of non-dominated points on the 4D spherical front """
    vectors = []

    if normalized:
        v1 = [0, 0, 0, distance]
        v2 = [0, 0, distance, 0]
        v3 = [0, distance, 0, 0]
        v4 = [distance, 0, 0, 0]
        vectors = [v1, v2, v3, v4]

    while len(vectors) < num_points:
        x, y, z, w = 1, 1, 1, 1

        while (math.sqrt(x * x + y * y + z * z + w * w) > 1) or (x < 0.5 and y < 0.5 and z < 0.5 and w < 0.5):
            x = next_gaussian_double()
            y = next_gaussian_double()
            z = next_gaussian_double()
            w = next_gaussian_double()

        alpha = math.atan(math.sqrt(y * y + z * z + w * w) / x)
        beta = math.atan(math.sqrt(z * z + w * w) / y)
        gamma = 2 * math.atan(z / (math.sqrt(z * z + w * w) + w))

        v = [
            distance * math.cos(alpha),
            distance * math.sin(alpha) * math.cos(beta),
            distance * math.sin(alpha) * math.sin(beta) * math.cos(gamma),
            distance * math.sin(alpha) * math.sin(beta) * math.sin(gamma)
        ]
        vectors.append(v)
    return vectors


def next_gaussian_double():
    factor = 2.0
    while True:
        result = random.gauss(0, 1)
        if result < -factor:
            continue
        if result > factor:
            continue
        if result >= 0:
            result = result / (2 * factor)
        else:
            result = (2 * factor + result) / (2 * factor)
        return result