1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
|
""" Test the MOArchive3obj class """
from moarchiving.moarchiving3obj import MOArchive3obj
from moarchiving.moarchiving_utils import DLNode, my_lexsort
from moarchiving.moarchiving import BiobjectiveNondominatedSortedList as MOArchive2obj
from moarchiving.tests.point_sampling import (get_non_dominated_points, get_random_points,
get_stacked_points)
import unittest
import math
import random
def list_to_set(lst):
return set([tuple(p) for p in lst])
class TestMOArchiving3obj(unittest.TestCase):
def test_hypervolume_easy(self):
""" test the hypervolume calculation for a simple case """
points = [[1, 2, 3], [2, 3, 1], [3, 1, 2]]
moa = MOArchive3obj(points, reference_point=[4, 4, 4], infos=["A", "B", "C"])
self.assertEqual(moa.hypervolume, 13)
def test_infos_non_dominated(self):
""" test if the infos are stored correctly - if the points are non dominated,
the infos should be the same """
points = [
[1, 2, 3],
[3, 2, 1],
[2, 3, 1],
[1, 3, 2]
]
infos = [str(p) for p in points]
moa = MOArchive3obj(points, [6, 6, 6], infos)
# assert that the infos are stored in the same order as the points
self.assertEqual([str(p[:3]) for p in moa], moa.infos)
# assert that all the points in the archive are non dominated and thus have the same info
self.assertSetEqual(set([str(p) for p in points]), set(moa.infos))
def test_infos_dominated(self):
""" test if the infos about dominated points are removed """
points = [
[1, 2, 3],
[3, 2, 1],
[2, 3, 4],
[2, 1, 0]
]
infos = ["A", "B", "C", "D"]
moa = MOArchive3obj(points, [6, 6, 6], infos)
# assert that only points A and D are stored in the archive
self.assertSetEqual({"A", "D"}, set(moa.infos))
def test_in_domain(self):
""" test if the in_domain function works correctly """
ref_point = [6, 6, 6]
moa = MOArchive3obj([[1, 1, 1]], ref_point)
# test if the points are in the domain
self.assertTrue(moa.in_domain([1, 2, 3]))
self.assertTrue(moa.in_domain([5.9, 5.9, 5.9]))
# test if the point is not in the domain
self.assertFalse(moa.in_domain([7, 8, 9]))
self.assertFalse(moa.in_domain([6, 6, 6]))
self.assertFalse(moa.in_domain([0, 0, 6]))
def test_add(self):
""" test if the add_points function works correctly """
ref_point = [6, 6, 6]
start_points = [[1, 2, 5], [3, 5, 1], [5, 1, 4]]
moa_ref = MOArchive3obj(start_points, ref_point)
moa_no_ref = MOArchive3obj(start_points)
for moa in [moa_ref, moa_no_ref]:
# add point that is not dominated and does not dominate any other point
u1 = [2, 3, 3]
moa.add(u1)
self.assertSetEqual(list_to_set(start_points + [u1]), list_to_set(list(moa)))
# add point that is dominated by another point in the archive
u2 = [4, 5, 2]
moa.add(u2)
self.assertSetEqual(list_to_set(start_points + [u1]), list_to_set(list(moa)))
# add point that dominates another point in the archive
u3 = [3, 1, 2]
moa.add(u3)
self.assertSetEqual(list_to_set(start_points[:2] + [u1, u3]), list_to_set(list(moa)))
def test_hypervolume_after_add(self):
""" Calculate the hypervolume of the archive after adding points and compare it to the
hypervolume obtained by adding the points to a new archive """
ref_point = [1, 1, 1]
pop_size = 20
n_gen = 4
points = get_non_dominated_points(pop_size * n_gen)
for gen in range(1, n_gen + 1):
moa_true = MOArchive3obj(points[:(gen * pop_size)], ref_point)
true_hv = moa_true.hypervolume
moa_add = MOArchive3obj([], ref_point)
for i in range(gen * pop_size):
moa_add.add(points[i])
moa_add_gen = MOArchive3obj([], ref_point)
for i in range(gen):
moa_add_gen.add_list(points[(i * pop_size):((i + 1) * pop_size)])
self.assertAlmostEqual(moa_add.hypervolume, true_hv, places=6)
self.assertAlmostEqual(moa_add_gen.hypervolume, true_hv, places=6)
self.assertEqual(len(moa_add), len(moa_true))
self.assertEqual(len(moa_add_gen), len(moa_true))
def test_length(self):
""" Test that the length of the archive is correct after adding and removing points """
ref_point = [1, 1, 1]
n_points_add = 100
points = get_stacked_points(n_points_add, ['random', 'random', 'random'])
moa = MOArchive3obj([], ref_point)
# add points one by one
for point in points:
moa.add(point)
self.assertEqual(len(moa), len(list(moa)))
# remove points one by one
points = list(moa)
for point in points:
moa.remove(point)
self.assertEqual(len(moa), len(list(moa)))
def test_dominates(self):
""" Test the dominates function """
ref_point = [6, 6, 6]
points = [[1, 3, 5], [5, 3, 1], [4, 4, 4]]
moa = MOArchive3obj(points, ref_point)
# test that the points that are already in the archive are dominated
for p in points:
self.assertTrue(moa.dominates(p))
# test other dominated points
self.assertTrue(moa.dominates([5, 5, 5]))
self.assertTrue(moa.dominates([2, 4, 5]))
# test non dominated points
self.assertFalse(moa.dominates([3, 3, 3]))
self.assertFalse(moa.dominates([2, 5, 4]))
self.assertFalse(moa.dominates([5, 1, 3]))
def test_dominators(self):
""" Test the dominators function """
ref_point = [6, 6, 6]
points = [[1, 2, 3], [3, 1, 2], [2, 3, 1], [3, 2, 1], [2, 1, 3], [1, 3, 2]]
moa = MOArchive3obj(points, ref_point)
# test that the points that are already in the archive are dominated by itself
for p in points:
self.assertEqual([p], moa.dominators(p))
self.assertEqual(1, moa.dominators(p, number_only=True))
# test other dominated points
self.assertEqual(list_to_set([[1, 2, 3], [2, 3, 1], [2, 1, 3], [1, 3, 2]]),
list_to_set(moa.dominators([2, 3, 4])))
self.assertEqual(4, moa.dominators([2, 3, 4], number_only=True))
self.assertEqual([], moa.dominators([2, 2, 2]))
self.assertEqual(0, moa.dominators([2, 2, 2], number_only=True))
self.assertEqual(list_to_set(points), list_to_set(moa.dominators([3, 3, 3])))
self.assertEqual(6, moa.dominators([3, 3, 3], number_only=True))
def test_distance_to_hypervolume_area(self):
""" Test the distance_to_hypervolume_area function first for a case where the
reference point is not set, then for points in and outside the hypervolume area
"""
moa = MOArchive3obj()
self.assertEqual(0, moa.distance_to_hypervolume_area([1, 1, 1]))
moa.reference_point = [2, 2, 2]
# for points in the hypervolume area, the distance should be 0
self.assertEqual(0, moa.distance_to_hypervolume_area([0, 0, 0]))
self.assertEqual(0, moa.distance_to_hypervolume_area([1, 1, 1]))
self.assertEqual(0, moa.distance_to_hypervolume_area([2, 2, 2]))
self.assertEqual(0, moa.distance_to_hypervolume_area([0, 1, 2]))
# for points outside the hypervolume area, the distance should be the Euclidean distance
# to the hypervolume area
self.assertEqual(1, moa.distance_to_hypervolume_area([2, 2, 3]))
self.assertEqual(1, moa.distance_to_hypervolume_area([2, 0, 3]))
self.assertEqual(10, moa.distance_to_hypervolume_area([0, 0, 12]))
self.assertAlmostEqual(math.sqrt(2), moa.distance_to_hypervolume_area([0, 3, 3]), places=6)
self.assertAlmostEqual(math.sqrt(2), moa.distance_to_hypervolume_area([2, 3, 3]), places=6)
self.assertAlmostEqual(math.sqrt(3), moa.distance_to_hypervolume_area([3, 3, 3]), places=6)
self.assertAlmostEqual(math.sqrt(75), moa.distance_to_hypervolume_area([7, 7, 7]), places=6)
def test_distance_to_pareto_front_simple(self):
""" Test the distance_to_pareto_front function by comparing it to hand calculated values """
points = [[1, 2, 3], [2, 3, 1], [3, 1, 2]]
moa = MOArchive3obj(points, reference_point=[6, 6, 6])
self.assertEqual(0, moa.distance_to_pareto_front([1, 1, 1]))
self.assertEqual(3 ** 0.5, moa.distance_to_pareto_front([4, 4, 4]))
self.assertEqual((1 + 1 + 6 ** 2) ** 0.5, moa.distance_to_pareto_front([7, 7, 7]))
self.assertEqual(0, moa.distance_to_pareto_front([2, 4, 3]))
self.assertEqual(0, moa.distance_to_pareto_front([3, 2, 4]))
self.assertEqual(1, moa.distance_to_pareto_front([3, 3, 4]))
def test_distance_to_pareto_front_compare_2obj(self):
""" Test the distance_to_pareto_front function by comparing it to the 2obj version """
n_points = 100
n_test_points = 100
points = get_stacked_points(n_points, ['random', 'random', 0])
moa3obj = MOArchive3obj(points, reference_point=[1, 1, 1])
moa2obj = MOArchive2obj([[p[0], p[1]] for p in points], reference_point=[1, 1])
new_points = get_stacked_points(n_test_points, ['random', 'random', 1])
for point in new_points:
d2 = moa2obj.distance_to_pareto_front(point[:2])
d3 = moa3obj.distance_to_pareto_front(point)
self.assertAlmostEqual(d2, d3, places=8)
def test_copy_DLNode(self):
""" Test the copy function of the DLNode class """
n1 = DLNode([1, 2, 3, 4], "node 1")
n2 = DLNode([5, 6, 7, 8], "node 2")
n1.closest[1] = n2
n2.closest[0] = n1
n1_copy = n1.copy()
n2_copy = n2.copy()
n2_copy.x = [-1, -2, -3, -4]
n1.x[0] = 10
n1.closest[1] = n1
self.assertEqual(n1_copy.x[0], 1)
self.assertEqual(n1_copy.closest[1].x[0], 5)
self.assertEqual(n2.x[0], 5)
self.assertEqual(n2_copy.x[0], -1)
def test_copy_MOArchive(self):
""" Test the copy function of the MOArchive3obj class """
points = [[1, 2, 3], [2, 3, 1], [3, 1, 2]]
moa = MOArchive3obj(points, reference_point=[6, 6, 6])
moa_copy = moa.copy()
self.assertEqual(moa.hypervolume, moa_copy.hypervolume)
moa.add([2, 2, 2])
self.assertEqual(len(moa), 4)
self.assertEqual(len(moa_copy), 3)
self.assertFalse(moa.hypervolume == moa_copy.hypervolume)
def test_remove(self, n_points=100, n_points_remove=50):
""" Test the remove function, by comparing the archive with 100 points added and then
50 removed, to the with only the other 50 points added """
points = [[1, 2, 3], [2, 3, 1], [3, 1, 2]]
moa_remove = MOArchive3obj(points, reference_point=[6, 6, 6])
moa_remove.remove([1, 2, 3])
self.assertEqual(len(moa_remove), 2)
self.assertSetEqual(list_to_set(list(moa_remove)), list_to_set(points[1:]))
self.assertEqual(moa_remove.hypervolume,
MOArchive3obj(points[1:], reference_point=[6, 6, 6]).hypervolume)
points = get_non_dominated_points(n_points)
remove_idx = list(range(n_points_remove))
keep_idx = [i for i in range(n_points) if i not in remove_idx]
moa_true = MOArchive3obj([points[i] for i in keep_idx], reference_point=[1, 1, 1])
moa_remove = MOArchive3obj(points, reference_point=[1, 1, 1])
for i in remove_idx:
moa_remove.remove(points[i])
self.assertEqual(len(moa_remove), len(list(moa_remove)))
moa_add = MOArchive3obj([], reference_point=[1, 1, 1])
for i in keep_idx:
moa_add.add(points[i])
# assert that the points are the same in all archives and the hypervolume is the same
self.assertEqual(len(moa_add), len(moa_true))
self.assertEqual(len(moa_remove), len(moa_true))
self.assertSetEqual(list_to_set(list(moa_remove)), list_to_set(list(moa_true)))
self.assertSetEqual(list_to_set(list(moa_add)), list_to_set(list(moa_true)))
self.assertEqual(moa_remove.hypervolume, moa_true.hypervolume)
self.assertEqual(moa_add.hypervolume, moa_true.hypervolume)
moa = MOArchive3obj([[1, 2, 3], [2, 3, 1], [3, 1, 2]], reference_point=[6, 6, 6])
moa.add([1, 1, 1])
moa.remove([1, 1, 1])
self.assertEqual(len(moa), 0)
def test_contributing_hypervolume(self):
""" Test the contributing_hypervolume function first for a simple case, and then
compare it to the 2obj version, with one objective set to 0 """
points = [[1, 2, 3], [2, 3, 1], [3, 1, 2]]
moa = MOArchive3obj(points, reference_point=[4, 4, 4])
self.assertEqual(moa.contributing_hypervolume([1, 2, 3]), 3)
self.assertEqual(moa.contributing_hypervolume([2, 3, 1]), 3)
self.assertEqual(moa.contributing_hypervolume([3, 1, 2]), 3)
points = [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
moa = MOArchive3obj(points, reference_point=[4, 4, 4])
for p in points:
self.assertEqual(moa.contributing_hypervolume(list(p)), 1)
points = get_stacked_points(100, ['random', 'random', 0])
moa = MOArchive3obj(points, reference_point=[1, 1, 1])
moa2obj = MOArchive2obj([[p[0], p[1]] for p in points], reference_point=[1, 1])
for p in moa2obj:
self.assertAlmostEqual(moa.contributing_hypervolume(p + [0]),
moa2obj.contributing_hypervolume(p), places=8)
def test_hypervolume_improvement(self):
""" Test the hypervolume_improvement function first for a simple case, and then
compare it to the 2obj version, with one objective set to 0 """
points = [[1, 2, 3], [2, 3, 1], [3, 1, 2]]
moa = MOArchive3obj(points, reference_point=[4, 4, 4])
self.assertEqual(moa.hypervolume_improvement([1, 2, 3]), 0)
self.assertEqual(moa.hypervolume_improvement([2, 3, 1]), 0)
self.assertEqual(moa.hypervolume_improvement([3, 1, 2]), 0)
self.assertEqual(moa.hypervolume_improvement([4, 4, 4]),
-moa.distance_to_pareto_front([4, 4, 4]))
self.assertEqual(moa.hypervolume_improvement([1, 1, 1]), 14)
self.assertEqual(moa.hypervolume_improvement([2, 2, 2]), 1)
points = get_stacked_points(100, ['random', 'random', 0])
moa = MOArchive3obj(points, reference_point=[1, 1, 1])
moa2obj = MOArchive2obj([[p[0], p[1]] for p in points], reference_point=[1, 1])
new_points = get_random_points(100, 2)
hv_start = moa.hypervolume
for p in new_points:
hv_imp2obj = float(moa2obj.hypervolume_improvement(p))
if hv_imp2obj > 0:
self.assertAlmostEqual(hv_imp2obj, moa.hypervolume_improvement(p + [0]), places=8)
else:
self.assertAlmostEqual(hv_imp2obj, moa.hypervolume_improvement(p + [1]), places=8)
# make sure this doesn't change the hypervolume of the archive
hv_end = moa.hypervolume
self.assertAlmostEqual(hv_start, hv_end, places=8)
def test_get_non_dominated_points(self):
""" Test the get_non_dominated_points function:
- check if the number of points is correct
- check if the points are non-dominated and in the [0, 1] range """
n_points = 1000
for mode in ['spherical', 'linear']:
points = get_non_dominated_points(n_points, mode=mode)
self.assertEqual(len(points), n_points)
moa = MOArchive3obj(points, reference_point=[1, 1, 1])
self.assertEqual(len(moa), n_points)
self.assertSetEqual(list_to_set(points), list_to_set(moa))
def test_lexsort(self):
""" Test the lexsort function, by comparing it to the output of the numpy implementation """
points = [
[0.16, 0.86, 0.47],
[0.66, 0.37, 0.29],
[0.79, 0.79, 0.04],
[0.28, 0.99, 0.29],
[0.51, 0.37, 0.38],
[0.92, 0.62, 0.07],
[0.16, 0.53, 0.70],
[0.01, 0.98, 0.94],
[0.67, 0.17, 0.54],
[0.79, 0.72, 0.05]
]
my_lexsort_result = my_lexsort(([p[0] for p in points], [p[1] for p in points],
[p[2] for p in points]))
np_lexsort_result = [2, 9, 5, 1, 3, 4, 0, 8, 6, 7]
self.assertEqual(my_lexsort_result, np_lexsort_result)
points = [
[0.6394267984578837, 0.025010755222666936, 0.27502931836911926],
[0.22321073814882275, 0.7364712141640124, 0.6766994874229113],
[0.8921795677048454, 0.08693883262941615, 0.4219218196852704],
[0.029797219438070344, 0.21863797480360336, 0.5053552881033624],
[0.026535969683863625, 0.1988376506866485, 0.6498844377795232],
[0.5449414806032167, 0.2204406220406967, 0.5892656838759087],
[0.8094304566778266, 0.006498759678061017, 0.8058192518328079],
[0.6981393949882269, 0.3402505165179919, 0.15547949981178155],
[0.9572130722067812, 0.33659454511262676, 0.09274584338014791],
[0.09671637683346401, 0.8474943663474598, 0.6037260313668911]
]
my_lexsort_result = my_lexsort(([p[0] for p in points], [p[1] for p in points],
[p[2] for p in points]))
np_lexsort_result = [8, 7, 0, 2, 3, 5, 9, 4, 1, 6]
self.assertEqual(my_lexsort_result, np_lexsort_result)
def test_hypervolume_plus(self):
""" test the hypervolume_plus indicator """
moa = MOArchive3obj(reference_point=[1, 1, 1])
self.assertEqual(moa.hypervolume_plus, -float('inf'))
moa.add([2, 2, 2])
self.assertEqual(moa.hypervolume_plus, -math.sqrt(3))
moa.add_list([[0, 0, 5], [1, 2, 1], [3, 3, 2]])
self.assertEqual(moa.hypervolume_plus, -1)
moa.add([1, 1, 1])
self.assertEqual(moa.hypervolume_plus, 0)
moa.add([0.5, 0.5, 0.5])
self.assertEqual(moa.hypervolume_plus, moa.hypervolume)
moa = MOArchive3obj(reference_point=[1, 1, 1])
prev_hv_plus = moa.hypervolume_plus
for i in range(1000):
point = [10 * random.random(), 10 * random.random(), 10 * random.random()]
moa.add(point)
self.assertLessEqual(prev_hv_plus, moa.hypervolume_plus)
prev_hv_plus = moa.hypervolume_plus
def test_hypervolume(self):
""" test the hypervolume calculation, by comparing to the result of original
implementation in C"""
points = [
[0.16, 0.86, 0.47],
[0.66, 0.37, 0.29],
[0.79, 0.79, 0.04],
[0.28, 0.99, 0.29],
[0.51, 0.37, 0.38],
[0.92, 0.62, 0.07],
[0.16, 0.53, 0.70],
[0.01, 0.98, 0.94],
[0.67, 0.17, 0.54],
[0.79, 0.72, 0.05]
]
moa = MOArchive3obj(points, reference_point=[1, 1, 1])
self.assertAlmostEqual(moa.hypervolume, 0.318694, places=6)
self.assertEqual(moa.hypervolume_plus, moa.hypervolume)
points = [
[0.6394267984578837, 0.025010755222666936, 0.27502931836911926],
[0.22321073814882275, 0.7364712141640124, 0.6766994874229113],
[0.8921795677048454, 0.08693883262941615, 0.4219218196852704],
[0.029797219438070344, 0.21863797480360336, 0.5053552881033624],
[0.026535969683863625, 0.1988376506866485, 0.6498844377795232],
[0.5449414806032167, 0.2204406220406967, 0.5892656838759087],
[0.8094304566778266, 0.006498759678061017, 0.8058192518328079],
[0.6981393949882269, 0.3402505165179919, 0.15547949981178155],
[0.9572130722067812, 0.33659454511262676, 0.09274584338014791],
[0.09671637683346401, 0.8474943663474598, 0.6037260313668911]
]
moa = MOArchive3obj(points, reference_point=[1, 1, 1])
self.assertAlmostEqual(moa.hypervolume, 0.52192086148367, places=6)
self.assertEqual(moa.hypervolume_plus, moa.hypervolume)
points = [
[0.6394267984578837, 0.025010755222666936, 0.27502931836911926],
[0.22321073814882275, 0.7364712141640124, 0.6766994874229113],
[0.8921795677048454, 0.08693883262941615, 0.4219218196852704],
[0.029797219438070344, 0.21863797480360336, 0.5053552881033624],
[0.026535969683863625, 0.1988376506866485, 0.6498844377795232],
[0.5449414806032167, 0.2204406220406967, 0.5892656838759087],
[0.8094304566778266, 0.006498759678061017, 0.8058192518328079],
[0.6981393949882269, 0.3402505165179919, 0.15547949981178155],
[0.9572130722067812, 0.33659454511262676, 0.09274584338014791],
[0.09671637683346401, 0.8474943663474598, 0.6037260313668911],
[0.8071282732743802, 0.7297317866938179, 0.5362280914547007],
[0.9731157639793706, 0.3785343772083535, 0.552040631273227],
[0.8294046642529949, 0.6185197523642461, 0.8617069003107772],
[0.577352145256762, 0.7045718362149235, 0.045824383655662215],
[0.22789827565154686, 0.28938796360210717, 0.0797919769236275],
[0.23279088636103018, 0.10100142940972912, 0.2779736031100921],
[0.6356844442644002, 0.36483217897008424, 0.37018096711688264],
[0.2095070307714877, 0.26697782204911336, 0.936654587712494],
[0.6480353852465935, 0.6091310056669882, 0.171138648198097],
[0.7291267979503492, 0.1634024937619284, 0.3794554417576478],
[0.9895233506365952, 0.6399997598540929, 0.5569497437746462],
[0.6846142509898746, 0.8428519201898096, 0.7759999115462448],
[0.22904807196410437, 0.03210024390403776, 0.3154530480590819],
[0.26774087597570273, 0.21098284358632646, 0.9429097143350544],
[0.8763676264726689, 0.3146778807984779, 0.65543866529488],
[0.39563190106066426, 0.9145475897405435, 0.4588518525873988],
[0.26488016649805246, 0.24662750769398345, 0.5613681341631508],
[0.26274160852293527, 0.5845859902235405, 0.897822883602477],
[0.39940050514039727, 0.21932075915728333, 0.9975376064951103],
[0.5095262936764645, 0.09090941217379389, 0.04711637542473457],
[0.10964913035065915, 0.62744604170309, 0.7920793643629641],
[0.42215996679968404, 0.06352770615195713, 0.38161928650653676],
[0.9961213802400968, 0.529114345099137, 0.9710783776136181],
[0.8607797022344981, 0.011481021942819636, 0.7207218193601946],
[0.6817103690265748, 0.5369703304087952, 0.2668251899525428],
[0.6409617985798081, 0.11155217359587644, 0.434765250669105],
[0.45372370632920644, 0.9538159275210801, 0.8758529403781941],
[0.26338905075109076, 0.5005861130502983, 0.17865188053013137],
[0.9126278393448205, 0.8705185698367669, 0.2984447914486329],
[0.6389494948660052, 0.6089702114381723, 0.1528392685496348],
[0.7625108000751513, 0.5393790301196257, 0.7786264786305582],
[0.5303536721951775, 0.0005718961279435053, 0.3241560570046731],
[0.019476742385832302, 0.9290986162646171, 0.8787218778231842],
[0.8316655293611794, 0.30751412540266143, 0.05792516649418755],
[0.8780095992040405, 0.9469494452979941, 0.08565345206787878],
[0.4859904633166138, 0.06921251846838361, 0.7606021652572316],
[0.7658344293069878, 0.1283914644997628, 0.4752823780987313],
[0.5498035934949439, 0.2650566289400591, 0.8724330410852574],
[0.4231379402008869, 0.21179820544208205, 0.5392960887794583],
[0.7299310690899762, 0.2011510633896959, 0.31171629130089495],
[0.9951493566608947, 0.6498780576394535, 0.43810008391450406],
[0.5175758410355906, 0.12100419586826572, 0.22469733703155736],
[0.33808556214745533, 0.5883087184572333, 0.230114732596577],
[0.22021738445155947, 0.07099308600903254, 0.6311029572700989],
[0.22894178381115438, 0.905420013006128, 0.8596354002537465],
[0.07085734988865344, 0.23800463436899522, 0.6689777782962806],
[0.2142368073704386, 0.132311848725025, 0.935514240580671],
[0.5710430933252845, 0.47267102631179414, 0.7846194242907534],
[0.8074969977666434, 0.1904099143618777, 0.09693081422882333],
[0.4310511824063775, 0.4235786230199208, 0.467024668036675],
[0.7290758494598506, 0.6733645472933015, 0.9841652113659661],
[0.09841787115195888, 0.4026212821022688, 0.33930260539496315],
[0.8616725363527911, 0.24865633392028563, 0.1902089084408115],
[0.4486135478331319, 0.4218816398344042, 0.27854514466694047],
[0.2498064478821005, 0.9232655992760128, 0.44313074505345695],
[0.8613491047618306, 0.5503253124498481, 0.05058832952488124],
[0.9992824684127266, 0.8360275850799519, 0.9689962572847513],
[0.9263669830081276, 0.8486957344143055, 0.16631111060391401],
[0.48564112545071847, 0.21374729919918167, 0.4010402925494526],
[0.058635399972178925, 0.3789731189769161, 0.9853088437797259],
[0.26520305817215195, 0.7840706019485694, 0.4550083673391433],
[0.4230074859901629, 0.9573176408596732, 0.9954226894927138],
[0.5557683234056182, 0.718408275296326, 0.15479682527406413],
[0.2967078254945642, 0.9687093649691588, 0.5791802908162562],
[0.5421952013742742, 0.7479755603790641, 0.05716527290748308],
[0.5841775944589712, 0.5028503829195136, 0.8527198920482854],
[0.15743272793948326, 0.9607789032744504, 0.08011146524058688],
[0.1858249609807232, 0.5950351064500277, 0.6752125536040902],
[0.2352038950009312, 0.11988661394712419, 0.8902873141294375],
[0.24621534778862486, 0.5945191535334412, 0.6193815103321031],
[0.4192249153358725, 0.5836722892912247, 0.5227827155319589],
[0.9347062577364272, 0.20425919942353643, 0.7161918007894148],
[0.23868595261584602, 0.3957858467912545, 0.6716902229599713],
[0.2999970797987622, 0.31617719627185403, 0.7518644924144021],
[0.07254311449315731, 0.4582855226185861, 0.9984544408544423],
[0.9960964478550944, 0.073260721099633, 0.2131543122670404],
[0.26520041475040135, 0.9332593779937091, 0.8808641736864395],
[0.8792702424845428, 0.36952708873888396, 0.15774683235723197],
[0.833744954639807, 0.703539925087371, 0.6116777657259501],
[0.9872330636315043, 0.6539763177107326, 0.007823107152157949],
[0.8171041351154616, 0.2993787521999779, 0.6633887149660773],
[0.9389300039271039, 0.13429111439336772, 0.11542867041910221],
[0.10703597770941764, 0.5532236408848159, 0.2723482123148163],
[0.6048298270302239, 0.7176121871387979, 0.20359731232745293],
[0.6342379588850797, 0.2639839016304094, 0.48853185214937656],
[0.9053364910793232, 0.8461037132948555, 0.09229846771273342],
[0.42357577256372636, 0.27668022397225167, 0.0035456890877823],
[0.7711192230196271, 0.6371133773013796, 0.2619552624343482],
[0.7412309083479308, 0.5516804211263913, 0.42768691898067934],
[0.009669699608339966, 0.07524386007376704, 0.883106393300143]
]
moa = MOArchive3obj(points, reference_point=[1, 1, 1])
self.assertAlmostEqual(moa.hypervolume, 0.812479094965706, places=8)
moa = MOArchive3obj([[p[0] - 1, p[1] - 1, p[2] - 1] for p in points], reference_point=[0, 0, 0])
self.assertAlmostEqual(moa.hypervolume, 0.812479094965706, places=8)
moa = MOArchive3obj(points, reference_point=[1, 2, 3])
self.assertAlmostEqual(moa.hypervolume, 5.61969774713577, places=8)
self.assertEqual(moa.hypervolume_plus, moa.hypervolume)
if __name__ == '__main__':
unittest.main()
|