File: compute_shader_render_texture.py

package info (click to toggle)
python-moderngl 5.12.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,700 kB
  • sloc: python: 15,758; cpp: 14,665; makefile: 14
file content (98 lines) | stat: -rw-r--r-- 3,002 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
"""
Compute shader renders a 32 x 32 grid to a 512, 512 texture
"""
import moderngl as mgl
from _example import Example
from moderngl_window import geometry


class RenderTextureCompute(Example):
    title = "Render Texture Using Compute Shader"
    gl_version = (4, 3)
    aspect_ratio = 1.0

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        # reference compute shader: http://wili.cc/blog/opengl-cs.html
        self.compute = self.ctx.compute_shader('''
            #version 430

            layout (local_size_x = 16, local_size_y = 16) in;
            // match the input texture format!
            layout(rgba8, location=0) writeonly uniform image2D destTex;

            uniform float time;

            void main() {
                // texel coordinate we are writing to
                ivec2 texelPos = ivec2(gl_GlobalInvocationID.xy);
                // Calculate 1.0 - distance from the center in each work group
                float local = 1.0 - length(vec2(ivec2(gl_LocalInvocationID.xy) - 8) / 8.0);
                // Wave covering the screen diagonally
                float global = sin(float(gl_WorkGroupID.x + gl_WorkGroupID.y) * 0.1 + time) / 2.0 + 0.5;
                imageStore(
                    destTex,
                    texelPos,
                    vec4(
                        local,
                        global,
                        0.0,
                        1.0
                    )
                );
            }
        ''')
        self.compute['destTex'] = 0

        # For rendering a simple textured quad
        self.quad_program = self.ctx.program(
            vertex_shader="""
            #version 330
            in vec3 in_position;
            in vec2 in_texcoord_0;
            out vec2 uv;

            void main() {
                gl_Position = vec4(in_position, 1.0);
                uv = in_texcoord_0;
            }
            """,
            fragment_shader="""
            #version 330
            uniform sampler2D texture0;
            out vec4 fragColor;
            in vec2 uv;

            void main() {
                fragColor = texture(texture0, uv);
            }
            """,
        )

        # RGB_8 texture
        self.texture = self.ctx.texture((256, 256), 4)
        self.texture.filter = mgl.NEAREST, mgl.NEAREST
        self.quad_fs = geometry.quad_fs()

    def render(self, time, frame_time):
        self.ctx.clear(0.3, 0.3, 0.3)

        w, h = self.texture.size
        gw, gh = 16, 16
        nx, ny, nz = int(w/gw), int(h/gh), 1

        try:
            self.compute['time'] = time
        except Exception:
            pass
        # Automatically binds as a GL_R32F / r32f (read from the texture)
        self.texture.bind_to_image(0, read=False, write=True)
        self.compute.run(nx, ny, nz)

        # Render texture
        self.texture.use(location=0)
        self.quad_fs.render(self.quad_program)


if __name__ == '__main__':
    RenderTextureCompute.run()