1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
'''
simple raymarching demo with moderngl
author: minu jeong
'''
import numpy as np
from _example import Example
class Raymarching(Example):
gl_version = (3, 3)
window_size = (500, 500)
aspect_ratio = 1.0
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.vaos = []
program = self.ctx.program(
vertex_shader=VERTEX_SHADER,
fragment_shader=FRAGMENT_SHADER
)
vertex_data = np.array([
# x, y, z, u, v
-1.0, -1.0, 0.0, 0.0, 0.0,
+1.0, -1.0, 0.0, 1.0, 0.0,
-1.0, +1.0, 0.0, 0.0, 1.0,
+1.0, +1.0, 0.0, 1.0, 1.0,
]).astype(np.float32)
content = [(
self.ctx.buffer(vertex_data),
'3f 2f',
'in_vert', 'in_uv'
)]
idx_data = np.array([
0, 1, 2,
1, 2, 3
]).astype(np.int32)
idx_buffer = self.ctx.buffer(idx_data)
self.vao = self.ctx.vertex_array(program, content, idx_buffer)
self.u_time = program.get("T", 0.0)
def render(self, time: float, frame_time: float):
self.u_time.value = time
self.vao.render()
VERTEX_SHADER = '''
#version 430
in vec3 in_vert;
in vec2 in_uv;
out vec2 v_uv;
void main()
{
gl_Position = vec4(in_vert.xyz, 1.0);
v_uv = in_uv;
}
'''
FRAGMENT_SHADER = '''
#version 430
#define FAR 80.0
#define MARCHING_MINSTEP 0
#define MARCHING_STEPS 128
#define MARCHING_CLAMP 0.000001
#define NRM_OFS 0.001
#define AO_OFS 0.01
#define PI 3.141592
#define FOG_DIST 2.5
#define FOG_DENSITY 0.32
#define FOG_COLOR vec3(0.35, 0.37, 0.42)
layout(location=0) uniform float T;
// in vec2 v_uv: screen space coordniate
in vec2 v_uv;
// out color
out vec4 out_color;
// p: sample position
// r: rotation in Euler angles (radian)
vec3 rotate(vec3 p, vec3 r)
{
vec3 c = cos(r);
vec3 s = sin(r);
mat3 rx = mat3(
1, 0, 0,
0, c.x, -s.x,
0, s.x, c.s
);
mat3 ry = mat3(
c.y, 0, s.y,
0, 1, 0,
-s.y, 0, c.y
);
mat3 rz = mat3(
c.z, -s.z, 0,
s.z, c.z, 0,
0, 0, 1
);
return rz * ry * rx * p;
}
// p: sample position
// t: tiling distance
vec3 tile(vec3 p, vec3 t)
{
return mod(p, t) - 0.5 * t;
}
// p: sample position
// r: radius
float sphere(vec3 p, float r)
{
return length(p) - r;
}
// p: sample position
// b: width, height, length (scalar along x, y, z axis)
float box(vec3 p, vec3 b)
{
return length(max(abs(p) - b, 0.0));
}
// c.x, c.y: offset
// c.z: radius
float cylinder(vec3 p, vec3 c)
{
return length(p.xz - c.xy) - c.z;
}
// a, b: capsule position from - to
// r: radius r
float capsule(vec3 p, vec3 a, vec3 b, float r)
{
vec3 dp = p - a;
vec3 db = b - a;
float h = clamp(dot(dp, db) / dot(db, db), 0.0, 1.0);
return length(dp - db * h) - r;
}
// p: sample position
// c: cylinder c
// b: box b
float clamp_cylinder(vec3 p, vec3 c, vec3 b)
{
return max(cylinder(p, c), box(p, b));
}
// a: primitive a
// b: primitive b
// k: blending amount
float blend(float a, float b, float k)
{
float h = clamp(0.5 + 0.5 * (a - b) / k, 0.0, 1.0);
return mix(a, b, h) - k * h * (1.0 - h);
}
float displace(vec3 p, float m, float s)
{
return sin(p.x * m) * sin(p.y * m) * sin(p.z * m) * s;
}
// world
float sample_world(vec3 p, inout vec3 c)
{
vec3 b_left_pos = p - vec3(-0.8, -0.25, 0.0);
b_left_pos = rotate(b_left_pos, vec3(T, 0.0, 0.0));
float d_box_left = box(b_left_pos, vec3(0.4));
vec3 b_right_pos = p - vec3(+0.8, -0.25, 0.0);
b_right_pos = rotate(b_right_pos, vec3(0.0, 0.0, T));
float d_box_right = box(b_right_pos, vec3(0.4));
vec3 b_up_pos = p - vec3(0.0, 1.05, 0.0);
b_up_pos = rotate(b_up_pos, vec3(0.0, T, 0.0));
float d_box_up = box(b_up_pos, vec3(0.4));
float d_box = FAR;
d_box = min(d_box, d_box_left);
d_box = min(d_box, d_box_right);
d_box = min(d_box, d_box_up);
vec3 s_pos = p - vec3(0.0, 0.2, 0.0);
float d_sphere = sphere(s_pos, 0.65);
float result = blend(d_sphere, d_box, 0.3);
if (result < FAR)
{
c.x = 0.5;
c.y = 0.75;
c.z = 0.25;
}
return result;
}
// o: origin
// r: ray
// c: color
float raymarch(vec3 o, vec3 r, inout vec3 c)
{
float t = 0.0;
vec3 p = vec3(0);
float d = 0.0;
for (int i = MARCHING_MINSTEP; i < MARCHING_STEPS; i++)
{
p = o + r * t;
d = sample_world(p, c);
if (abs(d) < MARCHING_CLAMP)
{
return t;
}
t += d;
}
return FAR;
}
// p: sample surface
vec3 norm(vec3 p)
{
vec2 o = vec2(NRM_OFS, 0.0);
vec3 dump_c = vec3(0);
return normalize(vec3(
sample_world(p + o.xyy, dump_c) - sample_world(p - o.xyy, dump_c),
sample_world(p + o.yxy, dump_c) - sample_world(p - o.yxy, dump_c),
sample_world(p + o.yyx, dump_c) - sample_world(p - o.yyx, dump_c)
));
}
void main()
{
// o: origin
vec3 o = vec3(0.0, 0.5, -6.0);
// r: ray
vec3 r = normalize(vec3(v_uv - vec2(0.5, 0.5), 1.001));
// l: light
vec3 l = normalize(vec3(-0.5, -0.2, 0.1));
// c: albedo
vec3 c = vec3(0.125);
float d = raymarch(o, r, c);
// pixel color
vec3 color = vec3(0);
if (d < FAR)
{
vec3 p = o + r * d;
vec3 n = norm(p);
float lambert = dot(n, l);
lambert = clamp(lambert, 0.1, 1.0);
#define SPEC_COLOR vec3(0.85, 0.75, 0.5)
vec3 h = normalize(o + l);
float ndh = clamp(dot(n, h), 0.0, 1.0);
float ndv = clamp(dot(n, -o), 0.0, 1.0);
float spec = pow((ndh + ndv) + 0.01, 64.0) * 0.25;
color = c * lambert + SPEC_COLOR * spec;
}
// add simple fog
color = mix(FOG_COLOR, color, clamp(pow(FOG_DIST / abs(d), FOG_DENSITY), 0.0, 1.0));
out_color = vec4(color, 1.0);
}
'''
if __name__ == '__main__':
Raymarching.run()
|