1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
# Example of shadow rendering (shadow mapping)
# Description: This example shows how you can draw a shadow
# from a single light source.
# Note: The left-hand rule coordinate system is used.
import moderngl as gl
import moderngl_window as glw
import struct
import math
# Create window
window_cls = glw.get_local_window_cls('pyglet')
window = window_cls(
size=(1024, 512), fullscreen=False,
title='Shadow rendering (shadow mapping) example',
resizable=False, vsync=True, gl_version=(3, 3)
)
ctx = window.ctx
glw.activate_context(window, ctx=ctx)
window.clear()
window.swap_buffers()
# Window program
window_program = ctx.program(
vertex_shader='''
#version 330
in vec3 in_vert;
in vec4 in_color;
uniform float camera_aspect_ratio;
uniform vec3 camera_position;
uniform mat3 camera_rotation_matrix;
uniform mat4 camera_projection_matrix;
out vec3 o_vert;
out vec4 o_color;
void main() {
vec3 new_position = camera_rotation_matrix*(in_vert-camera_position);
gl_Position = camera_projection_matrix*vec4(
new_position.x, new_position.y*camera_aspect_ratio,
new_position.z, 1.0
);
o_vert = new_position;
o_color = in_color;
}
''',
fragment_shader='''
#version 330
in vec3 o_vert;
in vec4 o_color;
uniform float light_aspect_ratio;
uniform vec2 light_clip_space;
uniform float light_perspective;
uniform vec3 light_position;
uniform mat3 light_rotation_matrix;
uniform vec3 camera_position;
uniform mat3 camera_revers_rotation_matrix;
uniform float shadow_bias;
uniform sampler2D light_depthI;
out vec4 f_color;
void main() {
f_color = o_color;
// Camera pixels position //
vec3 pixel_coords = o_vert;
////////////
// ROTATION 3D PROG moving prog //
// Convert to light pixel coords //
pixel_coords = camera_revers_rotation_matrix*
pixel_coords;
pixel_coords += camera_position;
vec3 pixel_world_coords = pixel_coords; // Pixel world coordinates
pixel_coords -= light_position;
pixel_coords = light_rotation_matrix*
pixel_coords;
/////////////////
// Convert .xy to 2D coords //
float distance = length(pixel_coords);
// ^^ From light to pixel 3D distance ^^
pixel_coords.y*=light_aspect_ratio;
pixel_coords.xy = vec2(pixel_coords.xy/
(pixel_coords.z+(1.0-pixel_coords.z)*(1.0-light_perspective))+1.0)/2.0;
///////////
// Get depth
float depth = texture(light_depthI, pixel_coords.xy).x;
depth = 2.0 * depth - 1.0;
vec2 lcs = light_clip_space;
depth = (
(2.0*lcs.x*lcs.y/(lcs.y+lcs.x-depth*(lcs.y-lcs.x)))*
light_perspective+
((depth+(lcs.y+lcs.x)/(lcs.y-lcs.x))*(lcs.y - lcs.x))/2*
(1.0-light_perspective)
);
// Compare depth
if (!(
pixel_coords.x > 0.0 && pixel_coords.y > 0.0
&& pixel_coords.x < 1.0 && pixel_coords.y < 1.0
&& pixel_coords.z > 0.0
&& pixel_coords.z < depth+shadow_bias
)) {
f_color.xyz = f_color.xyz*0.3;
}
}
'''
)
# Light program
light_program = ctx.program(
vertex_shader='''
#version 330
in vec3 in_vert;
in vec4 in_color;
uniform float light_aspect_ratio;
uniform vec3 light_position;
uniform mat3 light_rotation_matrix;
uniform mat4 light_projection_matrix;
out vec4 o_color;
void main() {
vec3 new_position = light_rotation_matrix*(in_vert-light_position);
gl_Position = light_projection_matrix*vec4(
new_position.x, new_position.y*light_aspect_ratio,
new_position.z, 1.0
);
o_color = in_color;
}
''',
fragment_shader='''
#version 330
in vec4 o_color;
out vec4 f_color;
void main() {
f_color = o_color;
}
'''
)
# Preparing scene
vertex = [
-.5, -.1, -.5,
-.5, -.1, .5,
.5, -.1, .5,
.5, -.1, -.5,
.5, -.1, .5,
-.5, -.1, -.5,
.2, -.1, -.2,
.2, -.1, .2,
-.2, .05, .2,
]
vertex_buf = ctx.buffer(struct.pack(f'{len(vertex)}f', *vertex))
colors = [
.5, .5, .5, 1,
.5, .5, .5, 1,
.5, .5, .5, 1,
.5, .5, .5, 1,
.5, .5, .5, 1,
.5, .5, .5, 1,
1, 0, 0, 1,
0, 1, 0, 1,
0, 0, 1, 1,
]
colors_buf = ctx.buffer(struct.pack(f'{len(colors)}f', *colors))
# Prepair render
window_vao = ctx.vertex_array(window_program, [
(vertex_buf, '3f', 'in_vert'),
(colors_buf, '4f', 'in_color')
])
window_fbo = ctx.framebuffer(
color_attachments=[ctx.texture(window.size, 4)],
depth_attachment=ctx.depth_texture(window.size)
)
window_fbo.color_attachments[0].repeat_x = False
window_fbo.color_attachments[0].repeat_y = False
window_fbo.depth_attachment.repeat_x = False
window_fbo.depth_attachment.repeat_y = False
window_fbo.depth_attachment.compare_func = ''
light_vao = ctx.vertex_array(light_program, [
(vertex_buf, '3f', 'in_vert'),
(colors_buf, '4f', 'in_color')
])
light_fbo = ctx.framebuffer(
color_attachments=[ctx.texture(window.size, 4)],
depth_attachment=ctx.depth_texture(window.size)
)
light_fbo.color_attachments[0].repeat_x = False
light_fbo.color_attachments[0].repeat_y = False
light_fbo.depth_attachment.repeat_x = False
light_fbo.depth_attachment.repeat_y = False
light_fbo.depth_attachment.filter = gl.LINEAR, gl.LINEAR_MIPMAP_LINEAR
light_fbo.depth_attachment.compare_func = ''
# Define matrix methods
def get_projection_matrix(near, far, perspective=1):
perspective_projection = (
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, (far+near)/(far-near), 1,
0, 0, -(2*far*near)/(far-near), 0
)
orthographic_projection = (
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 2/(far-near), 0,
0, 0, -(far+near)/(far-near), 1
)
result_projection = []
for x, y in zip(perspective_projection, orthographic_projection):
result_projection.append(x*perspective+y*(1-perspective))
return result_projection
def get_rotation_matrix(rx, ry, rz, revers=True):
rx *= (math.pi / 180)
ry *= (math.pi / 180)
rz *= (math.pi / 180)
if not revers:
srx, crx = math.sin(rx), math.cos(rx)
sry, cry = math.sin(-ry), math.cos(-ry)
srz, crz = math.sin(-rz), math.cos(-rz)
rotation_matrix = (
cry * crz - sry * srx * srz,
cry * srz + sry * srx * crz,
-sry * crx,
-crx * srz,
crx * crz,
srx,
sry * crz + cry * srx * srz,
sry * srz - cry * srx * crz,
cry * crx
)
else:
srx, crx = math.sin(-rx), math.cos(-rx)
sry, cry = math.sin(ry), math.cos(ry)
srz, crz = math.sin(rz), math.cos(rz)
rotation_matrix = (
crz * cry + srz * srx * sry,
srz * crx,
srz * srx * cry - crz * sry,
crz * srx * sry - srz * cry,
crz * crx,
srz * sry + crz * srx * cry,
crx * sry,
-srx,
crx * cry
)
return rotation_matrix
#####################################################################
# Define constants
far = 10 # Camera projection far
near = 0.001 # Camera projection near
perpective = 1 # Select perpective/orthographic projection
position = [0., 0.1, -0.4] # Camera position
rotate = [-20, 0, 0] # Camera angle
light_far = 10 # Light projection far
light_near = 0.001 # Light projection near
light_perspective = 0 # Select perpective/orthographic projection
light_position = [0, 0.4, 0] # Light position
light_rotate = [-90, 0, 0] # Light angle
shadow_bias = 0.001 # Allowed shadow offset
view_as_light = False # Show what the light sees
#####################################################################
# Filling uniforms
window_vao.program['camera_aspect_ratio'] = \
window_fbo.size[0]/window_fbo.size[1]
window_vao.program['camera_position'] = position
window_vao.program['camera_projection_matrix'] = \
get_projection_matrix(near, far, perpective)
window_vao.program['camera_rotation_matrix'] = \
get_rotation_matrix(*rotate, revers=False)
window_vao.program['light_aspect_ratio'] = light_fbo.size[0]/light_fbo.size[1]
window_vao.program['light_clip_space'] = light_near, light_far
window_vao.program['light_perspective'] = light_perspective
window_vao.program['light_position'] = light_position
window_vao.program['light_rotation_matrix'] = \
get_rotation_matrix(*light_rotate, revers=False)
window_vao.program['camera_revers_rotation_matrix'] = \
get_rotation_matrix(*rotate, revers=True)
light_vao.program['light_aspect_ratio'] = light_fbo.size[0]/light_fbo.size[1]
light_vao.program['light_position'] = light_position
light_vao.program['light_projection_matrix'] = \
get_projection_matrix(light_near, light_far, light_perspective)
light_vao.program['light_rotation_matrix'] = \
get_rotation_matrix(*light_rotate, revers=False)
window_vao.program['shadow_bias'] = shadow_bias
# Render loop
ctx.enable(gl.DEPTH_TEST)
ctx.depth_func = '<'
while not window.is_closing:
light_fbo.use()
light_fbo.clear()
light_vao.render(vertices=vertex_buf.size // 4 // 3)
window_fbo.use()
window_fbo.clear()
light_fbo.depth_attachment.use(location=0)
window_vao.render(vertices=vertex_buf.size // 4 // 3)
ctx.copy_framebuffer(
window.fbo,
light_fbo if view_as_light else window_fbo
)
window.swap_buffers()
|