1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
# WebGL Water
# https://madebyevan.com/webgl-water/
# Copyright 2011 Evan Wallace
# Released under the MIT license
import re
import moderngl
from typing import Self
from PIL import Image
import numpy as np
import glm
from typing import Iterator
class Matrices:
def __init__(self, model: glm.mat4 = None, view: glm.mat4 = None, projection: glm.mat4 = None) -> None:
self._model = model or glm.identity(glm.mat4)
self.view = view or glm.lookAt(
(1.0, 1.0, 1.0), (0.0, 0.0, 0.0), (0.0, 1.0, 0.0))
self.projection = projection or glm.perspective(45.0, 1.0, 0.1, 1000.0)
@property
def normal(self) -> glm.mat4:
return glm.transpose(glm.inverse(self._model))
@property
def model_view(self) -> glm.mat4:
return self.view * self._model
@property
def model_view_proj(self) -> glm.mat4:
return self.projection * self.model_view
@property
def eye(self) -> glm.vec3:
m = np.array(self.model_view).T
axis_x: np.ndarray = m[0]
axis_y: np.ndarray = m[1]
axis_z: np.ndarray = m[2]
offset: np.ndarray = m[3]
return glm.vec3(
-offset.dot(axis_x), -offset.dot(axis_y), -offset.dot(axis_z))
def get(self, cap_name: str) -> glm.mat4:
match cap_name:
case "MVM":
return self.model_view
case "MVMI":
return glm.inverse(self.model_view)
case "PM":
return self.projection
case "PMI":
return glm.inverse(self.projection)
case "MVPM":
return self.model_view_proj
case "MVPMI":
return glm.inverse(self.model_view_proj)
case "NM":
return self.normal
class MeshData:
def __init__(self, vertices: np.ndarray, triangles: np.ndarray, coords: np.ndarray = None, normals: np.ndarray = None, color: np.ndarray = None, lines: np.ndarray = None) -> None:
self.vertices = vertices
self.triangles = triangles
self.coords = coords
self.normals = normals
self.color = color
self.lines = lines
class Mesh:
def __init__(self, data: MeshData, ctx: moderngl.Context = None) -> None:
ctx = ctx or moderngl.get_context()
self.vbos = {
"gl_Vertex": Mesh.layout(ctx, data.vertices, '3f'),
"gl_TexCoord": Mesh.layout(ctx, data.coords, '2f'),
"gl_Normal": Mesh.layout(ctx, data.normals, '3f'),
"gl_Color": Mesh.layout(ctx, data.color, '4f'),
}
self.lines_ibo = ctx.buffer(data.lines.astype("i4").tobytes())
if data.triangles is not None:
self.triangles_ibo = ctx.buffer(
data.triangles.astype("i4").tobytes())
self.vaos: dict[int, tuple[moderngl.VertexArray, int]] = {}
def layout(ctx: moderngl.Context, array: np.ndarray, t: str) -> bytes:
if array is not None:
return (ctx.buffer(array.astype("f4").tobytes()), t)
return None
def _layouts(self, prefix: str, used_attributes: set[str]) -> Iterator[tuple]:
for attr_name in self.vbos:
if self.vbos[attr_name] is None:
continue
prefixed_name = prefix + attr_name
if prefixed_name in used_attributes:
yield (*self.vbos[attr_name], prefixed_name)
def build_vao(self, ctx: moderngl.Context, program: moderngl.Program, layouts: list, mode=moderngl.TRIANGLES):
if mode == moderngl.TRIANGLES:
vao = ctx.vertex_array(
program, layouts, self.triangles_ibo, mode=moderngl.TRIANGLES)
else:
vao = ctx.vertex_array(
program, layouts, self.lines_ibo, mode=moderngl.LINES)
self.vaos[program.glo] = (vao, mode)
return vao
def vertex_array(self, ctx: moderngl.Context, program: moderngl.Program, prefix: str, used_attributes: dict[str, moderngl.Attribute], mode=moderngl.TRIANGLES) -> moderngl.VertexArray:
vao, vao_mode = self.vaos.get(program.glo, (None, None))
if vao is not None:
if vao_mode == mode:
return vao
else:
vao.release()
layouts = list(self._layouts(prefix, used_attributes))
vao = self.build_vao(ctx, program, layouts, mode)
return vao
class MeshBuilder(MeshData):
def __init__(self, vertices: np.ndarray, triangles: np.ndarray, coords: np.ndarray = None, normals: np.ndarray = None, lines: np.ndarray = None) -> None:
super().__init__(vertices, triangles, coords, normals, None, lines)
if self.normals is None:
self.compute_normals()
if self.lines is None:
self.compute_wireframe()
def compute_normals(self):
self.normals = np.zeros(np.shape(self.vertices))
pass
def compute_wireframe(self):
lines = {}
for i in range(len(self.triangles)):
t = self.triangles[i]
for j in range(3):
a = t[j]
b = t[(j+1) % 3]
l = (min(a, b), max(a, b))
k = (l[0] << 16) + l[1]
lines[k] = l
lines = list(lines.values())
self.lines = np.array(lines, dtype=np.int32)
def build(self, ctx: moderngl.Context = None) -> Mesh:
return Mesh(self, ctx)
def seg_lines(*points: glm.vec3):
vertices = list(points)
num_vertices = len(vertices)
num_vertices = num_vertices - (num_vertices % 2)
vertices = np.array(vertices[0:num_vertices])
lines = np.arange(num_vertices, dtype=np.int32)
return MeshBuilder(vertices, None, normals=np.zeros(vertices.shape), lines=lines)
def panel(detail: int = 1, detail_x: int = None, detail_y: int = None) -> Self:
detail_x = detail_x or detail
detail_y = detail_y or detail
vertices = []
coords = []
normals = []
triangles = []
for y in range(detail_y + 1):
t = y / detail_y
for x in range(detail_x + 1):
s = x / detail_x
vertices.append((2.0 * s - 1.0, 2.0 * t - 1.0, 0.0))
coords.append((s, t))
normals.append((0.0, 0.0, 1.0))
if x < detail_x and y < detail_y:
i = x + y * (detail_y + 1)
triangles.append((i, i + 1, i + detail_x + 1))
triangles.append(
(i + detail_x + 1, i + 1, i + detail_x + 2))
return MeshBuilder(np.array(vertices), np.array(triangles, dtype=np.int32), np.array(coords), np.array(normals))
cube_data = [
[0, 4, 2, 6, -1, 0, 0],
[1, 3, 5, 7, +1, 0, 0],
[0, 1, 4, 5, 0, -1, 0],
[2, 6, 3, 7, 0, +1, 0],
[0, 2, 1, 3, 0, 0, -1],
[4, 5, 6, 7, 0, 0, +1]
]
def _pick_octant(i) -> tuple[int, int, int]:
return ((i & 1) * 2 - 1, (i & 2) - 1, (i & 4) / 2 - 1)
def cube() -> Self:
vertices = []
coords = []
normals = []
triangles = []
for i in range(len(MeshBuilder.cube_data)):
data = MeshBuilder.cube_data[i]
v = i * 4
for j in range(4):
d = data[j]
vertices.append(MeshBuilder._pick_octant(d))
coords.append((j & 1, (j & 2) / 2))
normals.append((data[4:7]))
triangles.append((v, v+1, v+2))
triangles.append((v+2, v+1, v+3))
return MeshBuilder(np.array(vertices), np.array(triangles, dtype=np.int32), np.array(coords), np.array(normals))
def _tri(flip: bool, a, b, c):
return (a, c, b) if flip else (a, b, c)
def _fix(x: np.ndarray) -> np.ndarray:
return x + (x - x * x) / 2.0
def _tri_idx(d: int, i: int, j: int) -> int:
return i * d + (i - i * i) // 2 + j
def sphere(detail: int = 6):
detail_2 = detail * 2
detail_22 = detail_2 * detail_2
raw_vertices = []
raw_abc = []
vertices = []
coords = []
unique_map = {}
for i in range(detail + 1):
for j in range(detail - i + 1):
raw_abc.append((i, j, detail - i - j))
raw_vertices = MeshBuilder._fix((np.array(raw_abc) / detail))
raw_normal = np.linalg.norm(raw_vertices, axis=1)
raw_vertices = raw_vertices / raw_normal[:, np.newaxis]
triangles = []
for octant in range(8):
scale = MeshBuilder._pick_octant(octant)
flip = scale[0] * scale[1] * scale[2]
data = []
for abc, rv in zip(raw_abc, raw_vertices):
a, b, c = abc
k = a * scale[0] * detail_22 + b * \
scale[1] * detail_2 + c * scale[2]
if k not in unique_map:
unique_map[k] = len(vertices)
vertex = rv * np.array(scale)
coord = (1 - a, c) if scale[1] > 0 else (c, 1 - a)
vertices.append(vertex)
coords.append(coord)
data.append(unique_map[k])
for i in range(1, detail + 1):
for j in range(detail - i + 1):
a = MeshBuilder._tri_idx(detail + 1, i-1, j)
b = MeshBuilder._tri_idx(detail + 1, i, j)
triangles.append(MeshBuilder._tri(
flip, data[a], data[a + 1], data[b]))
if (i + j < detail):
triangles.append(MeshBuilder._tri(
flip, data[b], data[a + 1], data[b+1]))
return MeshBuilder(np.array(vertices), np.array(triangles, dtype=np.int32), np.array(coords))
class Shader:
header = """
uniform mat3 gl_NormalMatrix;
uniform mat4 gl_ModelViewMatrix;
uniform mat4 gl_ProjectionMatrix;
uniform mat4 gl_ModelViewProjectionMatrix;
uniform mat4 gl_ModelViewMatrixInverse;
uniform mat4 gl_ProjectionMatrixInverse;
uniform mat4 gl_ModelViewProjectionMatrixInverse;
"""
_vert_header = """
attribute vec4 gl_Vertex;
attribute vec2 gl_TexCoord;
attribute vec3 gl_Normal;
attribute vec4 gl_Color;
vec4 ftransform() {
return gl_ModelViewProjectionMatrix * gl_Vertex;
}
"""
vert_header = "#version 130\n" + header + _vert_header
frag_header = """
#version 130
precision highp float;
""" + header
matrices_name = list(
map(lambda m: m.groups()[0], re.finditer(r"\b(gl_[^;]*)\b;", header)))
attributes_name = list(
map(lambda m: m.groups()[0], re.finditer(r"\b(gl_[^;]*)\b;", _vert_header)))
def dump_source(emsg: str, vert_shader: str, frag_shader: str):
if emsg.find("vertex_shader") != -1:
lines = vert_shader.splitlines()
for num, line in enumerate(lines):
print(f"{num+1:4d}", line)
if emsg.find("fragment_shader") != -1:
lines = frag_shader.splitlines()
for num, line in enumerate(lines):
print(f"{num+1:4d}", line)
def fix(header: str, source: str, prefix: str) -> str:
replace = {}
source = header + re.sub(r"#extension.*\n", '', source)
all_gl_vars = list(
map(lambda m: m.groups()[0], re.finditer(r"\b(gl_\w+)\b;", header)))
for gl_var_name in all_gl_vars:
if gl_var_name not in replace:
source = re.sub('\\b' + gl_var_name + '\\b',
prefix + gl_var_name, source)
return source
def __init__(self, vert_shader: str, frag_shader: str, ctx: moderngl.Context = None, prefix="LIGHTGL") -> None:
self.ctx = ctx or moderngl.get_context()
source: str = vert_shader + frag_shader
self.use_matrices: dict[str, str] = {}
for name in Shader.matrices_name:
if source.find(name) != -1:
# gl_NormalMatrix -> NM
capitalLetters = re.sub(r"[a-z_]", '', name)
self.use_matrices[capitalLetters] = prefix + name
if source.find('ftransform') != -1:
self.use_matrices['MVPM'] = prefix + "gl_ModelViewProjectionMatrix"
self.prefix = prefix
vertex_shader = Shader.fix(Shader.vert_header, vert_shader, prefix)
fragment_shader = Shader.fix(Shader.frag_header, frag_shader, prefix)
try:
self.program = self.ctx.program(vertex_shader, fragment_shader)
except moderngl.Error as e:
Shader.dump_source(e.args[0], vertex_shader, fragment_shader)
print(e)
exit(-1)
self.use_attributes = {name: self.program[name] for name in self.program
if isinstance(self.program[name], moderngl.Attribute)}
def draw_mesh(self, mesh: Mesh, matrices: Matrices = None, unifroms: dict = {}, mode=moderngl.TRIANGLES):
if matrices is not None:
for m_cap_name in self.use_matrices:
self.program[self.use_matrices[m_cap_name]].write(
matrices.get(m_cap_name))
for k in unifroms:
self.program[k] = unifroms[k]
vao = mesh.vertex_array(self.ctx, self.program,
self.prefix, self.use_attributes, mode)
vao.render(mode)
class Texture:
def __init__(self, texture: moderngl.Texture = None, sampler: moderngl.Sampler = None) -> None:
self.texture: moderngl.Texture = texture
self.sampler: moderngl.Sampler = sampler
self.framebuffer: moderngl.Framebuffer = None
def use(self, location=0):
if self.sampler:
self.sampler.use(location)
else:
self.texture.use(location)
def draw_to(self, ctx: moderngl.Context = None):
if self.framebuffer is None:
ctx = ctx or moderngl.get_context()
self.framebuffer = ctx.framebuffer(
self.texture, ctx.depth_renderbuffer(self.texture.size))
self.framebuffer.use()
def swap_with(self, other: Self):
tmp_texture = self.texture
tmp_sampler = self.sampler
tmp_framebuffer = self.framebuffer
self.texture = other.texture
self.sampler = other.sampler
self.framebuffer = other.framebuffer
other.texture = tmp_texture
other.sampler = tmp_sampler
other.framebuffer = tmp_framebuffer
class RawTexture(Texture):
def __init__(self, size: tuple[int, int], data: bytes = None, pixel_fmt='RGBA', ctx: moderngl.Context = None, repeat=(False, False, False), filter=(moderngl.LINEAR, moderngl.LINEAR), mipmaps=False, dtype="f1") -> None:
ctx = ctx or moderngl.get_context()
texture = ctx.texture(size, len(pixel_fmt), data, dtype=dtype)
sampler = ctx.sampler(
repeat_x=repeat[0], repeat_y=repeat[1], repeat_z=repeat[2], filter=filter, texture=texture)
if mipmaps:
texture.build_mipmaps()
super().__init__(texture, sampler)
class ImageTexture(RawTexture):
def __init__(self, image_path: str, pixel_fmt='RGBA', ctx: moderngl.Context = None, repeat=(False, False, False), filter=(moderngl.LINEAR, moderngl.LINEAR), mipmaps=False) -> None:
img = Image.open(image_path).transpose(
Image.FLIP_TOP_BOTTOM).convert(pixel_fmt)
super().__init__(img.size, img.tobytes(),
pixel_fmt, ctx, repeat, filter, mipmaps)
def Cubemap(pos_x: str, neg_x: str, pos_y: str, neg_y: str, pos_z: str, neg_z: str, ctx: moderngl.Context = None) -> moderngl.TextureCube:
ctx = ctx or moderngl.get_context()
images_path = (pos_x, neg_x, pos_y, neg_y, pos_z, neg_z)
images: list[Image.Image] = list(map(lambda p: Image.open(p).transpose(
Image.FLIP_TOP_BOTTOM).convert("RGB"), images_path))
image_size = images[0].size
image_len = image_size[0] * image_size[1] * 3
data = bytearray(image_len * 6)
for i in range(6):
data[i * image_len:] = images[i].tobytes()
return ctx.texture_cube(image_size, 3, data)
|