1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
"""
This Python script generates strokes from edge geodataframes, mainly roads.
Author: Pratyush Tripathy
Date: 29 February 2020
Version: 0.2
Adapted for momepy by: Andres Morfin, Niki Patrinopoulou, and Ioannis Daramouskas
Date: May 29, 2021
"""
import collections
import math
import warnings
import geopandas as gpd
import numpy as np
import pandas as pd
import shapely
from shapely.geometry import LineString, MultiLineString
class COINS:
"""
Calculates natural continuity and hierarchy of street networks in a given
GeoDataFrame using the COINS algorithm.
For details on the algorithms refer to the original paper :cite:`tripathy2020open`.
This is a reimplementation of the original script from
https://github.com/PratyushTripathy/COINS
``COINS`` can return final stroke geometry (``.stroke_gdf()``) or a pandas
Series encoding stroke groups onto the original input geometry
(``.stroke_attribute()``).
Parameters
----------
edge_gdf : GeoDataFrame
A GeoDataFrame containing edge geometry of a street network.
``edge_gdf`` cannot contain identical or overlapping LineStrings.
``edge_gdf`` should ideally not contain MultiLineStrings.
angle_threshold : int, float (default 0), units: degrees
The threshold for the interior angle within the COINS algorithm.
Possible values: ``0 <= angle_threshold < 180``, in degrees.
Segments will only be considered part of the same stroke group
if the interior angle between them is above the threshold.
flow_mode : bool, default False
Continuity can be derived based on either visibility (``flow_mode=False``) or
flow (``flow_mode=True``). In the former case, a stroke group break is created
at any angle above the ``angle_threshold``, even at internal nodes within the
LineString (so one LineString can be divided into multiple stroke groups if its
segments connect at an angle above ``angle_threshold``). This corresponds to
visibility-based continuity. In the latter case, stroke group breaks are only
created at the end points of LineStrings, following the "flow" definition of
continuity where the direction of flow can change only at intersections. This
also ensures that each LineString can be assigned only a single stroke group.
Note that this option is not covered by :cite:`tripathy2020open`.
Examples
--------
Initialise a ``COINS`` class. This step will compute the topology.
>>> coins = momepy.COINS(streets)
To get final stroke geometry:
>>> stroke_gdf = coins.stroke_gdf()
To get a Series encoding stroke groups:
>>> stroke_attr = coins.stroke_attribute()
Notes
-----
The LineStrings of the ``edge_gdf`` are not expected to overlap. If you are creating
it using OSMnx, don't forget to cast the graph to undirected using
``osmnx.convert.to_undirected(G)`` prior converting it to a GeoDataFrame.
"""
def __init__(self, edge_gdf, angle_threshold=0, flow_mode=False):
self.edge_gdf = edge_gdf
self.gdf_projection = self.edge_gdf.crs
self.already_merged = False
# get indices of original gdf
self.uv_index = range(len(self.edge_gdf.index))
# get line segments from edge gdf
self.lines = [list(value[1].coords) for value in edge_gdf.geometry.items()]
# split edges into line segments
self._split_lines()
# create unique_id for each individual line segment
self._unique_id()
# compute edge connectivity table
self._get_links()
# find best link at every point for both lines
self._best_link()
# cross check best links and enter angle threshold for connectivity
self._cross_check_links(angle_threshold, flow_mode)
def _premerge(self):
"""
Return a GeoDataFrame containing the individual segments with all underlying
information. The result is useful for debugging purposes.
"""
return self._create_gdf_premerge()
def stroke_gdf(self):
"""Return a GeoDataFrame containing merged final stroke geometry.
Returns
-------
GeoDataFrame
"""
if not self.already_merged:
self._merge_lines()
return self._create_gdf_strokes()
def stroke_attribute(self, return_ends=False):
"""
Return a pandas Series encoding stroke groups onto the original input geometry.
Optionally, (``return_ends=True``), return a tuple of Series with the second
tuple encoding stroke group ends.
"""
if not self.already_merged:
self._merge_lines()
return self._add_gdf_stroke_attributes(return_ends=return_ends)
def _split_lines(self):
out_line = []
self.temp_array = []
n = 0
# Iterate through the lines and split the edges
for idx, line in enumerate(self.lines):
for part in _list_to_pairs(line):
out_line.append(
[
part,
[],
[],
[],
[],
[],
[],
[],
self.uv_index[idx],
]
)
# merge the coordinates as a string, this will help
# in finding adjacent edges in the function below
self.temp_array.append(
[n, f"{part[0][0]}_{part[0][1]}", f"{part[1][0]}_{part[1][1]}"]
)
n += 1
self.split = out_line
def _unique_id(self):
# Loop through split lines, assign unique ID, and
# store inside a list along with the connectivity dictionary
self.unique = dict(enumerate(self.split))
def _get_links(self):
self.temp_array = np.array(self.temp_array, dtype=object)
items = collections.defaultdict(set)
for i, vertex in enumerate(self.temp_array[:, 1]):
items[vertex].add(i)
for i, vertex in enumerate(self.temp_array[:, 2]):
items[vertex].add(i)
p1 = []
for i, vertex in enumerate(self.temp_array[:, 1]):
item = list(items[vertex])
item.remove(i)
p1.append(item)
p2 = []
for i, vertex in enumerate(self.temp_array[:, 2]):
item = list(items[vertex])
item.remove(i)
p2.append(item)
self.result = list(zip(range(len(p1)), p1, p2, strict=True))
for a in self.result:
n = a[0]
self.unique[n][2] = a[1]
self.unique[n][3] = a[2]
def _best_link(self):
self.angle_pairs = {}
for edge in range(0, len(self.unique)):
p1_angle_set = []
p2_angle_set = []
# Instead of computing the angle between the two segments twice,
# this method calculates it once and stores in a dictionary for
# both the keys. The key is already present in the dictionary so
# it does not calculate a second time.
for link1 in self.unique[edge][2]:
self.angle_pairs[f"{edge}_{link1}"] = _angle_between_two_lines(
self.unique[edge][0], self.unique[link1][0]
)
p1_angle_set.append(self.angle_pairs[f"{edge}_{link1}"])
for link2 in self.unique[edge][3]:
self.angle_pairs[f"{edge}_{link2}"] = _angle_between_two_lines(
self.unique[edge][0], self.unique[link2][0]
)
p2_angle_set.append(self.angle_pairs[f"{edge}_{link2}"])
# Among the adjacent segments deflection angle values, check
# for the maximum value at both the ends. The segment with
# the maximum angle is stored in the attributes to be cross-checked
# later before finalising the segments at both the ends.
if len(p1_angle_set) != 0:
val1, idx1 = max((val, idx) for (idx, val) in enumerate(p1_angle_set))
self.unique[edge][4] = self.unique[edge][2][idx1], val1
else:
self.unique[edge][4] = "dead_end"
if len(p2_angle_set) != 0:
val2, idx2 = max((val, idx) for (idx, val) in enumerate(p2_angle_set))
self.unique[edge][5] = self.unique[edge][3][idx2], val2
else:
self.unique[edge][5] = "dead_end"
def _cross_check_links(self, angle_threshold, flow_mode):
for edge in range(0, len(self.unique)):
best_p1 = self.unique[edge][4][0]
best_p2 = self.unique[edge][5][0]
if (
isinstance(best_p1, int) # not dead_end
and edge in [self.unique[best_p1][4][0], self.unique[best_p1][5][0]]
and self.angle_pairs[f"{edge}_{best_p1}"] > angle_threshold
) or (
flow_mode
and isinstance(best_p1, int) # not dead_end
and edge in [self.unique[best_p1][4][0], self.unique[best_p1][5][0]]
and len(self.unique[edge][2]) == 1 # node degree 2
):
self.unique[edge][6] = best_p1
else:
self.unique[edge][6] = "line_break"
if (
isinstance(best_p2, int)
and edge in [self.unique[best_p2][4][0], self.unique[best_p2][5][0]]
and self.angle_pairs[f"{edge}_{best_p2}"] > angle_threshold
) or (
flow_mode
and isinstance(best_p2, int) # not dead_end
and edge in [self.unique[best_p2][4][0], self.unique[best_p2][5][0]]
and len(self.unique[edge][3]) == 1 # node degree 2
):
self.unique[edge][7] = best_p2
else:
self.unique[edge][7] = "line_break"
def _merge_lines(self):
self.merging_list = []
self.merged = []
self.edge_idx = []
self.result = [
_merge_lines_loop(n, self.unique) for n in range(len(self.unique))
]
for temp_list in self.result:
if temp_list not in self.merging_list:
self.merging_list.append(temp_list)
self.merged.append(
{_list_to_tuple(self.unique[key][0]) for key in temp_list}
)
# assign stroke number to edge from argument
self.edge_idx.append({self.unique[key][8] for key in temp_list})
self.merged = dict(enumerate(self.merged))
self.edge_idx = dict(enumerate(self.edge_idx))
self.already_merged = True
# Export geodataframes, 3 options
def _create_gdf_premerge(self):
my_list = []
for parts in range(0, len(self.unique)):
# get all segment points and make line
line_list = _tuple_to_list(self.unique[parts][0])
geom_line = LineString([(line_list[0]), (line_list[1])])
# get other values for premerged
_unique_id = parts
orientation = self.unique[parts][1]
links_p1 = self.unique[parts][2]
links_p2 = self.unique[parts][3]
best_p1 = self.unique[parts][4]
best_p2 = self.unique[parts][5]
p1_final = self.unique[parts][6]
p2_final = self.unique[parts][7]
my_list.append(
[
_unique_id,
orientation,
links_p1,
links_p2,
best_p1,
best_p2,
p1_final,
p2_final,
geom_line,
]
)
edge_gdf = gpd.GeoDataFrame(
my_list,
columns=[
"_unique_id",
"orientation",
"links_p1",
"links_p2",
"best_p1",
"best_p2",
"p1_final",
"p2_final",
"geometry",
],
crs=self.gdf_projection,
)
edge_gdf.set_index("_unique_id", inplace=True)
return edge_gdf
def _create_gdf_strokes(self):
my_list = []
for a in self.merged:
# get all segment points and make line strings
linelist = _tuple_to_list(list(self.merged[a]))
list_lines_segments = []
for b in linelist:
list_lines_segments.append(LineString(b))
geom_multi_line = shapely.line_merge(MultiLineString(list_lines_segments))
# get other values for gdf
id_value = a
n_segments = len(self.merged[a])
my_list.append([id_value, n_segments, geom_multi_line])
edge_gdf = gpd.GeoDataFrame(
my_list,
columns=["stroke_group", "n_segments", "geometry"],
crs=self.gdf_projection,
)
edge_gdf.set_index("stroke_group", inplace=True)
return edge_gdf
def _add_gdf_stroke_attributes(self, return_ends=False):
# Invert self.edge_idx to get a dictionary where the key is
# the original edge index and the value is the group
inv_edges = {
value: key for key in self.edge_idx for value in self.edge_idx[key]
}
stroke_group_attributes = []
for edge in self.uv_index:
stroke_group_attributes.append(inv_edges[edge])
if return_ends:
ends_bool = {k: False for k in self.uv_index}
for vals in self.unique.values():
if isinstance(vals[6], str) or isinstance(vals[7], str):
ends_bool[vals[8]] = True
return (
pd.Series(stroke_group_attributes, index=self.edge_gdf.index),
pd.Series(ends_bool.values(), index=self.edge_gdf.index),
)
return pd.Series(stroke_group_attributes, index=self.edge_gdf.index)
def _tuple_to_list(line):
"""
The imported shapefile lines comes as tuple, whereas the export requires list,
this function converts tuples inside lines to lists.
"""
return [list(point) for point in line]
def _list_to_tuple(line):
return tuple(tuple(point) for point in line)
def _list_to_pairs(in_list):
"""Split a line at every point."""
tmp_list = [list(point) for point in in_list]
return [list(pair) for pair in zip(tmp_list[:-1], tmp_list[1:], strict=True)]
def _angle_between_two_lines(line1, line2):
"""
Computes interior angle between 2 lines.
input: line<x> ... list of 2 tuples (x,y);
line1 and line2 by definition share one unique tuple
(overlap in 1 point)
returns: interior angle in degrees 0<alpha<=180
(we assume that line1!=line2, so alpha=0 not possible)
"""
# extract points
a, b = tuple(line1[0]), tuple(line1[1])
c, d = tuple(line2[0]), tuple(line2[1])
# assertion: we expect exactly 2 of the 4 points to be identical
# (lines touch in this point)
points = collections.Counter([a, b, c, d])
# make sure lines are not identical
if len(points) == 2:
warnings.warn(
f"Lines are between points {points.keys()} identical. Please revise input "
"data to ensure no lines are identical or overlapping. "
"You can check for duplicates using `gdf.geometry.duplicated()`. Assuming"
"an angle of 0 degrees.",
UserWarning,
stacklevel=3,
)
return 0
# make sure lines do touch
if len(points) == 4:
raise ValueError("Lines do not touch.")
# points where line touch = "origin" (for vector-based angle calculation)
origin = [k for k, v in points.items() if v == 2][0]
# other 2 unique points (one on each line)
point1, point2 = (k for k, v in points.items() if v == 1)
# translate lines into vectors (numpy arrays)
v1 = [point1[0] - origin[0], point1[1] - origin[1]]
v2 = [point2[0] - origin[0], point2[1] - origin[1]]
# compute angle between 2 vectors in degrees
dot_product = v1[0] * v2[0] + v1[1] * v2[1]
norm_v1 = math.sqrt(v1[0] ** 2 + v1[1] ** 2)
norm_v2 = math.sqrt(v2[0] ** 2 + v2[1] ** 2)
cos_theta = round(dot_product / (norm_v1 * norm_v2), 6) # precision issues fix
angle = math.degrees(math.acos(cos_theta))
return angle
def _merge_lines_loop(n, unique_dict):
outlist = set()
current_edge1 = n
outlist.add(current_edge1)
while True:
if (
isinstance(unique_dict[current_edge1][6], int)
and unique_dict[current_edge1][6] not in outlist
):
current_edge1 = unique_dict[current_edge1][6]
outlist.add(current_edge1)
elif (
isinstance(unique_dict[current_edge1][7], int)
and unique_dict[current_edge1][7] not in outlist
):
current_edge1 = unique_dict[current_edge1][7]
outlist.add(current_edge1)
else:
break
current_edge1 = n
while True:
if (
isinstance(unique_dict[current_edge1][7], int)
and unique_dict[current_edge1][7] not in outlist
):
current_edge1 = unique_dict[current_edge1][7]
outlist.add(current_edge1)
elif (
isinstance(unique_dict[current_edge1][6], int)
and unique_dict[current_edge1][6] not in outlist
):
current_edge1 = unique_dict[current_edge1][6]
outlist.add(current_edge1)
else:
break
outlist = list(outlist)
outlist.sort()
return outlist
|