File: dimension.py

package info (click to toggle)
python-momepy 0.8.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 51,428 kB
  • sloc: python: 11,098; makefile: 35; sh: 11
file content (1014 lines) | stat: -rw-r--r-- 33,339 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
#!/usr/bin/env python

# dimension.py
# definitions of dimension characters

import math

import geopandas as gpd
import numpy as np
import pandas as pd
import scipy as sp
import shapely
from packaging.version import Version
from tqdm.auto import tqdm

from .shape import _circle_radius
from .utils import deprecated, removed

GPD_GE_10 = Version(gpd.__version__) >= Version("1.0dev")


__all__ = [
    "Area",
    "Perimeter",
    "Volume",
    "FloorArea",
    "CourtyardArea",
    "LongestAxisLength",
    "AverageCharacter",
    "StreetProfile",
    "WeightedCharacter",
    "CoveredArea",
    "PerimeterWall",
    "SegmentsLength",
]


@removed("`.area` attribute of a GeoDataFrame")
class Area:
    """
    Calculates the area of each object in a given GeoDataFrame. It can be used for any
    suitable element (building footprint, plot, tessellation, block). It is a simple
    wrapper for GeoPandas ``.area`` for the consistency of momepy.

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing objects to analyse.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    gdf : GeoDataFrame
        The original GeoDataFrame.

    Examples
    --------
    >>> buildings = gpd.read_file(momepy.datasets.get_path('bubenec'),
    ...                           layer='buildings')
    >>> buildings['area'] = momepy.Area(buildings).series
    >>> buildings.area[0]
    728.5574947044363

    """

    def __init__(self, gdf):
        self.gdf = gdf
        self.series = self.gdf.geometry.area


@removed("`.length` attribute of a GeoDataFrame")
class Perimeter:
    """
    Calculates perimeter of each object in a given GeoDataFrame. It can be used for any
    suitable element (building footprint, plot, tessellation, block). It is a simple
    wrapper for GeoPandas ``.length`` for the consistency of momepy.

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing objects to analyse.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    gdf : GeoDataFrame
        The original GeoDataFrame.

    Examples
    --------
    >>> buildings = gpd.read_file(momepy.datasets.get_path('bubenec'),
    ...                           layer='buildings')
    >>> buildings['perimeter'] = momepy.Perimeter(buildings).series
    >>> buildings.perimeter[0]
    137.18630991119903
    """

    def __init__(self, gdf):
        self.gdf = gdf
        self.series = self.gdf.geometry.length


@deprecated("volume")
class Volume:
    """
    Calculates the volume of each object in a
    given GeoDataFrame based on its height and area.

    .. math::
        area * height

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing objects to analyse.
    heights : str, list, np.array, pd.Series
        The name of the dataframe column, ``np.array``, or ``pd.Series``
        where height values are stored.
    areas : str, list, np.array, pd.Series (default None)
        The name of the dataframe column, ``np.array``, or ``pd.Series``
        where area values are stored. If set to ``None``, this will calculate
        areas during the process without saving them separately.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    gdf : GeoDataFrame
        The original GeoDataFrame.
    heights : Series
        A Series containing used heights values.
    areas : GeoDataFrame
        A Series containing used areas values.

    Examples
    --------
    >>> buildings['volume'] = momepy.Volume(buildings, heights='height_col').series
    >>> buildings.volume[0]
    7285.5749470443625

    >>> buildings['volume'] = momepy.Volume(buildings, heights='height_col',
    ...                                     areas='area_col').series
    >>> buildings.volume[0]
    7285.5749470443625
    """

    def __init__(self, gdf, heights, areas=None):
        self.gdf = gdf

        gdf = gdf.copy()
        if not isinstance(heights, str):
            gdf["mm_h"] = heights
            heights = "mm_h"
        self.heights = gdf[heights]

        if areas is not None:
            if not isinstance(areas, str):
                gdf["mm_a"] = areas
                areas = "mm_a"
            self.areas = gdf[areas]
        else:
            self.areas = gdf.geometry.area
        try:
            self.series = self.areas * self.heights

        except KeyError as err:
            raise KeyError(
                "Column not found. Define heights and areas or set areas to None."
            ) from err


@deprecated("floor_area")
class FloorArea:
    """
    Calculates floor area of each object based on height and area. The number of
    floors is simplified into the formula: height / 3. It is assumed that on
    average one floor is approximately 3 metres.

    .. math::
        area * \\frac{height}{3}

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing objects to analyse.
    heights : str, list, np.array, pd.Series
        The name of the dataframe column, ``np.array``, or ``pd.Series``
        where height values are stored.
    areas : str, list, np.array, pd.Series (default None)
        The name of the dataframe column, ``np.array``, or ``pd.Series``
        where area values are stored. If set to ``None``, this will calculate
        areas during the process without saving them separately.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    gdf : GeoDataFrame
        The original GeoDataFrame.
    heights : Series
        A Series containing used heights values.
    areas : GeoDataFrame
        A Series containing used areas values.

    Examples
    --------
    >>> buildings['floor_area'] = momepy.FloorArea(buildings,
    ...                                            heights='height_col').series
    Calculating floor areas...
    Floor areas calculated.
    >>> buildings.floor_area[0]
    2185.672484113309

    >>> buildings['floor_area'] = momepy.FloorArea(buildings, heights='height_col',
    ...                                            areas='area_col').series
    >>> buildings.floor_area[0]
    2185.672484113309
    """

    def __init__(self, gdf, heights, areas=None):
        self.gdf = gdf

        gdf = gdf.copy()
        if not isinstance(heights, str):
            gdf["mm_h"] = heights
            heights = "mm_h"
        self.heights = gdf[heights]

        if areas is not None:
            if not isinstance(areas, str):
                gdf["mm_a"] = areas
                areas = "mm_a"
            self.areas = gdf[areas]
        else:
            self.areas = gdf.geometry.area
        try:
            self.series = self.areas * (self.heights // 3)

        except KeyError as err:
            raise KeyError(
                "Column not found. Define heights and areas or set areas to None."
            ) from err


@deprecated("courtyard_area")
class CourtyardArea:
    """
    Calculates area of holes within geometry - area of courtyards.

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing objects to analyse.
    areas : str, list, np.array, pd.Series (default None)
        The name of the dataframe column, ``np.array``, or ``pd.Series``
        where area values are stored. If set to ``None``, this will calculate
        areas during the process without saving them separately.

    Attributes
    ----------
    series : Series
        Series containing resulting values.
    gdf : GeoDataFrame
        The original GeoDataFrame.
    areas : GeoDataFrame
        A Series containing used areas values.

    Examples
    --------
    >>> buildings['courtyard_area'] = momepy.CourtyardArea(buildings).series
    >>> buildings.courtyard_area[80]
    353.33274206543274
    """

    def __init__(self, gdf, areas=None):
        self.gdf = gdf

        gdf = gdf.copy()
        if areas is None:
            areas = gdf.geometry.area

        if not isinstance(areas, str):
            gdf["mm_a"] = areas
            areas = "mm_a"
        self.areas = gdf[areas]

        exts = shapely.area(
            shapely.polygons(shapely.get_exterior_ring(gdf.geometry.array))
        )

        self.series = pd.Series(exts - gdf[areas], index=gdf.index)


@deprecated("longest_axis_length")
class LongestAxisLength:
    """
    Calculates the length of the longest axis of object. Axis is defined as a
    diameter of minimal circumscribed circle around the convex hull. It does
    not have to be fully inside an object.

    .. math::
        \\max \\left\\{d_{1}, d_{2}, \\ldots, d_{n}\\right\\}

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing objects to analyse.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    gdf : GeoDataFrame
        The original GeoDataFrame.

    Examples
    --------
    >>> buildings['lal'] = momepy.LongestAxisLength(buildings).series
    >>> buildings.lal[0]
    40.2655616057102
    """

    def __init__(self, gdf):
        self.gdf = gdf
        hulls = gdf.geometry.convex_hull.exterior
        self.series = hulls.apply(lambda g: _circle_radius(list(g.coords))) * 2


@removed("`.describe()` method of libpysal.graph.Graph")
class AverageCharacter:
    """
    Calculates the average of a character within a set
    neighbourhood defined in ``spatial_weights``. Can be
    set to ``mean``, ``median`` or ``mode``. ``mean`` is defined as:

    .. math::
        \\frac{1}{n}\\left(\\sum_{i=1}^{n} value_{i}\\right)

    Adapted from :cite:`hausleitner2017`.

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing a morphological tessellation.
    values : str, list, np.array, pd.Series
        The name of the dataframe column, ``np.array``, or ``pd.Series``
        where character values are stored.
    unique_id : str
        The name of the column with unique ID used as the ``spatial_weights`` index.
    spatial_weights : libpysal.weights
        A spatial weights matrix.
    rng : tuple, list, optional (default None)
        A two-element sequence containing floats between 0 and 100 (inclusive)
        that are the percentiles over which to compute the range.
        The order of the elements is not important.
    mode : str (default 'all')
        The mode of average calculation. It can be set to ``'all'``, ``'mean'``,
        ``'median'``, or ``'mode'`` or a list of any of the options.
    verbose : bool (default True)
        If ``True``, shows progress bars in loops and indication of steps.

    Attributes
    ----------
    series : Series
        A Series containing resulting mean values.
    mean : Series
        A Series containing resulting mean values.
    median : Series
        A Series containing resulting median values.
    mode : Series
        A Series containing resulting mode values.
    gdf : GeoDataFrame
        The original GeoDataFrame.
    values : GeoDataFrame
        A Series containing used values.
    sw : libpysal.weights
        The spatial weights matrix.
    id : Series
        A Series containing used unique ID.
    rng : tuple
        The range.
    modes : str
        The mode.

    Examples
    --------
    >>> sw = libpysal.weights.DistanceBand.from_dataframe(tessellation,
    ...                                                   threshold=100,
    ...                                                   silence_warnings=True,
    ...                                                   ids='uID')
    >>> tessellation['mean_area'] = momepy.AverageCharacter(tessellation,
    ...                                                     values='area',
    ...                                                     spatial_weights=sw,
    ...                                                     unique_id='uID').mean
    100%|██████████| 144/144 [00:00<00:00, 1433.32it/s]
    >>> tessellation.mean_area[0]
    4823.1334436678835
    """

    def __init__(
        self,
        gdf,
        values,
        spatial_weights,
        unique_id,
        rng=None,
        mode="all",
        verbose=True,
    ):
        self.gdf = gdf
        self.sw = spatial_weights
        self.id = gdf[unique_id]
        self.rng = rng
        self.modes = mode

        if rng:
            from momepy import limit_range

        data = gdf.copy()
        if values is not None and not isinstance(values, str):
            data["mm_v"] = values
            values = "mm_v"
        self.values = data[values]

        data = data.set_index(unique_id)[values]

        means = []
        medians = []
        modes = []

        allowed = ["mean", "median", "mode"]

        if mode == "all":
            mode = allowed
        elif isinstance(mode, list):
            for m in mode:
                if m not in allowed:
                    raise ValueError(f"{m} is not supported as mode.")
        elif isinstance(mode, str):
            if mode not in allowed:
                raise ValueError(f"{mode} is not supported as mode.")
            mode = [mode]

        for index in tqdm(data.index, total=data.shape[0], disable=not verbose):
            if index in spatial_weights.neighbors:
                neighbours = [index]
                neighbours += spatial_weights.neighbors[index]

                values_list = data.loc[neighbours]

                if rng:
                    values_list = limit_range(values_list.values, rng=rng)
                if "mean" in mode:
                    means.append(np.mean(values_list))
                if "median" in mode:
                    medians.append(np.median(values_list))
                if "mode" in mode:
                    modes.append(sp.stats.mode(values_list, keepdims=False)[0])

            else:
                if "mean" in mode:
                    means.append(np.nan)
                if "median" in mode:
                    medians.append(np.nan)
                if "mode" in mode:
                    modes.append(np.nan)

        if "mean" in mode:
            self.series = self.mean = pd.Series(means, index=gdf.index)
        if "median" in mode:
            self.median = pd.Series(medians, index=gdf.index)
        if "mode" in mode:
            self.mode = pd.Series(modes, index=gdf.index)


@deprecated("street_profile")
class StreetProfile:
    """
    Calculates the street profile characters. This functions
    returns a dictionary with widths, standard deviation of width, openness, heights,
    standard deviation of height and ratio height/width. The algorithm generates
    perpendicular lines to the ``right`` dataframe features every ``distance`` and
    measures values on intersections with features of ``left``. If no feature is
    reached within ``tick_length`` its value is set as width (being a theoretical
    maximum).

    Derived from :cite:`araldi2019`.

    Parameters
    ----------
    left : GeoDataFrame
        A GeoDataFrame containing streets to analyse.
    right : GeoDataFrame
        A GeoDataFrame containing buildings along the streets.
        Only Polygon geometries are currently supported.
    heights: str, list, np.array, pd.Series (default None)
        The name of the buildings dataframe column, ``np.array``, or ``pd.Series``
        where building height are stored. If set to ``None``,
        height and ratio height/width will not be calculated.
    distance : int (default 10)
        The distance between perpendicular ticks.
    tick_length : int (default 50)
        The length of ticks.

    Attributes
    ----------
    w : Series
        A Series containing street profile width values.
    wd : Series
        A Series containing street profile standard deviation values.
    o : Series
        A Series containing street profile openness values.
    h : Series
        A Series containing street profile heights
        values that is returned only when ``heights`` is set.
    hd : Series
        A Series containing street profile heights standard deviation
        values that is returned only when ``heights`` is set.
    p : Series
        A Series containing street profile height/width ratio
        values that is returned only when ``heights`` is set.
    left : GeoDataFrame
        The original left GeoDataFrame.
    right : GeoDataFrame
        The original right GeoDataFrame.
    distance : int
        The distance between perpendicular ticks.
    tick_length : int
        The length of ticks.
    heights : GeoDataFrame
        A Series containing used height values.

    Examples
    --------
    >>> street_prof = momepy.StreetProfile(streets_df, buildings_df, heights='height')
    100%|██████████| 33/33 [00:02<00:00, 15.66it/s]
    >>> streets_df['width'] = street_prof.w
    >>> streets_df['deviations'] = street_prof.wd
    """

    def __init__(
        self,
        left,
        right,
        heights=None,
        distance=10,
        tick_length=50,
    ):
        self.left = left
        self.right = right
        self.distance = distance
        self.tick_length = tick_length

        lines = left.geometry.array

        list_points = np.empty((0, 2))
        ids = []
        end_markers = []

        lengths = shapely.length(lines)
        for ix, (line, length) in enumerate(zip(lines, lengths, strict=True)):
            pts = shapely.line_interpolate_point(
                line, np.linspace(0, length, num=int((length) // distance))
            )
            list_points = np.append(list_points, shapely.get_coordinates(pts), axis=0)
            if len(pts) > 1:
                ids += [ix] * len(pts) * 2
                markers = [True] + ([False] * (len(pts) - 2)) + [True]
                end_markers += markers
            elif len(pts) == 1:
                end_markers += [True]
                ids += [ix] * 2

        ticks = []
        for num, (pt, end) in enumerate(zip(list_points, end_markers, strict=True), 1):
            if end:
                ticks.append([pt, pt])
                ticks.append([pt, pt])

            else:
                angle = self._get_angle(pt, list_points[num])
                line_end_1 = self._get_point1(pt, angle, tick_length / 2)
                angle = self._get_angle(line_end_1, pt)
                line_end_2 = self._get_point2(line_end_1, angle, tick_length)
                ticks.append([line_end_1, pt])
                ticks.append([line_end_2, pt])

        ticks = shapely.linestrings(ticks)

        inp, res = shapely.STRtree(right.geometry).query(ticks, predicate="intersects")
        intersections = shapely.intersection(ticks[inp], right.geometry.array[res])
        distances = shapely.distance(
            intersections, shapely.points(list_points[inp // 2])
        )
        inp_uni, inp_cts = np.unique(inp, return_counts=True)
        splitter = np.cumsum(inp_cts)[:-1]
        dist_per_res = np.split(distances, splitter)
        inp_per_res = np.split(res, splitter)

        min_distances = []
        min_inds = []
        for dis, ind in zip(dist_per_res, inp_per_res, strict=True):
            min_distances.append(np.min(dis))
            min_inds.append(ind[np.argmin(dis)])

        dists = np.zeros((len(ticks),))
        dists[:] = np.nan
        dists[inp_uni] = min_distances

        if heights is not None:
            if isinstance(heights, str):
                heights = self.heights = right[heights]
            elif not isinstance(heights, pd.Series):
                heights = self.heights = pd.Series(heights)

            blgs = np.zeros((len(ticks),))
            blgs[:] = None
            blgs[inp_uni] = min_inds
            do_heights = True
        else:
            do_heights = False

        ids = np.array(ids)
        widths = []
        openness = []
        deviations = []
        heights_list = []
        heights_deviations_list = []

        for i in range(len(left)):
            f = ids == i
            s = dists[f]
            lefts = s[::2]
            rights = s[1::2]
            left_mean = np.nanmean(lefts) if ~np.isnan(lefts).all() else tick_length / 2
            right_mean = (
                np.nanmean(rights) if ~np.isnan(rights).all() else tick_length / 2
            )
            widths.append(np.mean([left_mean, right_mean]) * 2)

            f_sum = (f).sum()
            s_nan = np.isnan(s)

            openness_score = np.nan if not f_sum else s_nan.sum() / f_sum
            openness.append(openness_score)

            deviation_score = np.nan if s_nan.all() else np.nanstd(s)
            deviations.append(deviation_score)

            if do_heights:
                b = blgs[f]
                h = heights.iloc[b[~np.isnan(b)]]
                heights_list.append(h.mean())
                heights_deviations_list.append(h.std())

        self.w = pd.Series(widths, index=left.index)
        self.wd = pd.Series(deviations, index=left.index).fillna(
            0
        )  # fill for empty intersections
        self.o = pd.Series(openness, index=left.index).fillna(1)

        if do_heights:
            self.h = pd.Series(heights_list, index=left.index).fillna(
                0
            )  # fill for empty intersections
            self.hd = pd.Series(heights_deviations_list, index=left.index).fillna(
                0
            )  # fill for empty intersections
            self.p = self.h / self.w.replace(0, np.nan)  # replace to avoid np.inf

    # http://wikicode.wikidot.com/get-angle-of-line-between-two-points
    # https://glenbambrick.com/tag/perpendicular/
    # angle between two points
    def _get_angle(self, pt1, pt2):
        """
        pt1, pt2 : tuple
        """
        x_diff = pt2[0] - pt1[0]
        y_diff = pt2[1] - pt1[1]
        return math.degrees(math.atan2(y_diff, x_diff))

    # start and end points of chainage tick
    # get the first end point of a tick
    def _get_point1(self, pt, bearing, dist):
        """
        pt : tuple
        """
        angle = bearing + 90
        bearing = math.radians(angle)
        x = pt[0] + dist * math.cos(bearing)
        y = pt[1] + dist * math.sin(bearing)
        return (x, y)

    # get the second end point of a tick
    def _get_point2(self, pt, bearing, dist):
        """
        pt : tuple
        """
        bearing = math.radians(bearing)
        x = pt[0] + dist * math.cos(bearing)
        y = pt[1] + dist * math.sin(bearing)
        return (x, y)


@deprecated("weighted_character")
class WeightedCharacter:
    """
    Calculates the weighted character. Character weighted by the area
    of the objects within neighbors defined in ``spatial_weights``.

    .. math::
        \\frac{\\sum_{i=1}^{n} {character_{i} * area_{i}}}{\\sum_{i=1}^{n} area_{i}}

    Adapted from :cite:`dibble2017`.

    Parameters
    ----------
    gdf : GeoDataFrame
        The GeoDataFrame containing objects to analyse.
    values : str, list, np.array, pd.Series
        The name of the ``gdf`` dataframe column, ``np.array``, or
        ``pd.Series`` where the characters to be weighted are stored.
    spatial_weights : libpysal.weights
        A spatial weights matrix. If ``None``, Queen contiguity matrix
        of set order will be calculated based on left.
    unique_id : str
        The name of the column with unique ID used as ``spatial_weights`` index.
    areas : str, list, np.array, pd.Series (default None)
        The name of the left dataframe column, ``np.array``, or ``pd.Series``
        where the area values are stored.
    verbose : bool (default True)
        If ``True``, shows progress bars in loops and indication of steps.


    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    gdf : GeoDataFrame
        A original GeoDataFrame.
    values : GeoDataFrame
        A Series containing used values.
    areas : GeoDataFrame
        Series containing used areas.
    sw : libpysal.weights
        The spatial weights matrix.
    id : Series
        A Series containing used unique ID.

    Examples
    --------
    >>> sw = libpysal.weights.DistanceBand.from_dataframe(tessellation_df,
    ...                                                   threshold=100,
    ...                                                   silence_warnings=True)
    >>> buildings_df['w_height_100'] = momepy.WeightedCharacter(buildings_df,
    ...                                                         values='height',
    ...                                                         spatial_weights=sw,
    ...                                                         unique_id='uID').series
    100%|██████████| 144/144 [00:00<00:00, 361.60it/s]
    """

    def __init__(
        self, gdf, values, spatial_weights, unique_id, areas=None, verbose=True
    ):
        self.gdf = gdf
        self.sw = spatial_weights
        self.id = gdf[unique_id]

        data = gdf.copy()
        if areas is None:
            areas = gdf.geometry.area

        if not isinstance(areas, str):
            data["mm_a"] = areas
            areas = "mm_a"
        if not isinstance(values, str):
            data["mm_vals"] = values
            values = "mm_vals"

        self.areas = data[areas]
        self.values = data[values]

        data = data.set_index(unique_id)[[values, areas]]

        results_list = []
        for index in tqdm(data.index, total=data.shape[0], disable=not verbose):
            if index in spatial_weights.neighbors:
                neighbours = [index]
                neighbours += spatial_weights.neighbors[index]

                subset = data.loc[neighbours]
                results_list.append(
                    (sum(subset[values] * subset[areas])) / (sum(subset[areas]))
                )
            else:
                results_list.append(np.nan)

        self.series = pd.Series(results_list, index=gdf.index)


@removed("`.describe()` method of libpysal.graph.Graph")
class CoveredArea:
    """
    Calculates the area covered by neighbours, which is total area covered
    by neighbours defined in ``spatial_weights`` and the element itself.

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing Polygon geometries.
    spatial_weights : libpysal.weights
        A spatial weights matrix.
    unique_id : str
        The name of the column with unique ID used as ``spatial_weights`` index.
    verbose : bool (default True)
        If ``True``, shows progress bars in loops and indication of steps.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    gdf : GeoDataFrame
        The original GeoDataFrame.
    sw : libpysal.weights
        The spatial weights matrix.
    id : Series
        A Series containing used unique ID.

    Examples
    --------
    >>> sw = momepy.sw_high(k=3, gdf=tessellation_df, ids='uID')
    >>> tessellation_df['covered'] = mm.CoveredArea(tessellation_df, sw, 'uID').series
    100%|██████████| 144/144 [00:00<00:00, 549.15it/s]

    """

    def __init__(self, gdf, spatial_weights, unique_id, verbose=True):
        self.gdf = gdf
        self.sw = spatial_weights
        self.id = gdf[unique_id]

        data = gdf
        area = data.set_index(unique_id).geometry.area

        results_list = []
        for index in tqdm(area.index, total=area.shape[0], disable=not verbose):
            if index in spatial_weights.neighbors:
                neighbours = [index]
                neighbours += spatial_weights.neighbors[index]

                areas = area.loc[neighbours]
                results_list.append(sum(areas))
            else:
                results_list.append(np.nan)

        self.series = pd.Series(results_list, index=gdf.index)


@deprecated("perimeter_wall")
class PerimeterWall:
    """
    Calculate the perimeter wall length of the joined structure.

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing objects to analyse.
    spatial_weights : libpysal.weights, optional
        A spatial weights matrix. If ``None``, Queen contiguity matrix will
        be calculated based on ``gdf``. It is to denote adjacent buildings.
    verbose : bool (default True)
        If ``True``, shows progress bars in loops and indication of steps.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    gdf : GeoDataFrame
        The original GeoDataFrame.
    sw : libpysal.weights
        The spatial weights matrix.

    Examples
    --------
    >>> buildings_df['wall_length'] = mm.PerimeterWall(buildings_df).series
    Calculating spatial weights...
    Spatial weights ready...
    100%|██████████| 144/144 [00:00<00:00, 4171.39it/s]

    Notes
    -----
    The ``spatial_weights`` keyword argument should be
    based on *position*, not unique ID.

    It might take a while to compute this character.
    """

    def __init__(self, gdf, spatial_weights=None, verbose=True):
        self.gdf = gdf

        if spatial_weights is None:
            print("Calculating spatial weights...") if verbose else None
            from libpysal.weights import Queen

            spatial_weights = Queen.from_dataframe(
                gdf, silence_warnings=True, use_index=False
            )
            print("Spatial weights ready...") if verbose else None
        self.sw = spatial_weights

        # dict to store walls for each uID
        walls = {}
        components = pd.Series(spatial_weights.component_labels, index=range(len(gdf)))
        geom = gdf.geometry

        for i in tqdm(range(gdf.shape[0]), total=gdf.shape[0], disable=not verbose):
            # if the id is already present in walls, continue (avoid repetition)
            if i in walls:
                continue
            else:
                comp = spatial_weights.component_labels[i]
                to_join = components[components == comp].index
                joined = geom.iloc[to_join]
                # buffer to avoid multipolygons where buildings touch by corners only
                dissolved = (
                    joined.buffer(0.01).union_all()
                    if GPD_GE_10
                    else joined.buffer(0.01).unary_union
                )
                for b in to_join:
                    walls[b] = dissolved.exterior.length

        results_list = []
        for i in tqdm(range(gdf.shape[0]), total=gdf.shape[0], disable=not verbose):
            results_list.append(walls[i])
        self.series = pd.Series(results_list, index=gdf.index)


@removed("`.describe()` or `.lag()` methods of libpysal.graph.Graph")
class SegmentsLength:
    """
    Calculate the cummulative and/or mean length of segments. Length of segments
    within set topological distance from each of them. Reached topological distance
    should be captured by ``spatial_weights``.  If ``mean=False`` it will compute
    sum of length, if ``mean=True`` it will compute sum and mean.

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing streets (edges) to analyse.
    spatial_weights : libpysal.weights, optional
        A spatial weights matrix. If ``None``, Queen contiguity
        matrix will be calculated based on streets.
    mean : bool, optional
        If ``mean=False`` it will compute sum of length, if ``mean=True``
         it will compute sum and mean.
    verbose : bool (default True)
        If ``True``, shows progress bars in loops and indication of steps.

    Attributes
    ----------
    series : Series
        A Series containing resulting total lengths.
    mean : Series
        A Series containing resulting total lengths.
    sum : Series
        A Series containing resulting total lengths.
    gdf : GeoDataFrame
        The original GeoDataFrame
    sw : libpysal.weights
        The spatial weights matrix.

    Examples
    --------
    >>> streets_df['length_neighbours'] = mm.SegmentsLength(streets_df, mean=True).mean
    Calculating spatial weights...
    Spatial weights ready...

    Notes
    -----
    The ``spatial_weights`` keyword argument should be based on *index*, not unique ID.
    """

    def __init__(self, gdf, spatial_weights=None, mean=False, verbose=True):
        self.gdf = gdf

        if spatial_weights is None:
            print("Calculating spatial weights...") if verbose else None
            from libpysal.weights import Queen

            spatial_weights = Queen.from_dataframe(
                gdf, silence_warnings=True, use_index=False
            )
            print("Spatial weights ready...") if verbose else None
        self.sw = spatial_weights

        lenghts = gdf.geometry.length

        sums = []
        means = []
        for index in tqdm(gdf.index, total=gdf.shape[0], disable=not verbose):
            neighbours = [index]
            neighbours += spatial_weights.neighbors[index]

            dims = lenghts.iloc[neighbours]
            if mean:
                means.append(np.mean(dims))
            sums.append(sum(dims))

        self.series = self.sum = pd.Series(sums, index=gdf.index)
        if mean:
            self.mean = pd.Series(means, index=gdf.index)