1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
|
#!/usr/bin/env python
# dimension.py
# definitions of dimension characters
import math
import geopandas as gpd
import numpy as np
import pandas as pd
import scipy as sp
import shapely
from packaging.version import Version
from tqdm.auto import tqdm
from .shape import _circle_radius
from .utils import deprecated, removed
GPD_GE_10 = Version(gpd.__version__) >= Version("1.0dev")
__all__ = [
"Area",
"Perimeter",
"Volume",
"FloorArea",
"CourtyardArea",
"LongestAxisLength",
"AverageCharacter",
"StreetProfile",
"WeightedCharacter",
"CoveredArea",
"PerimeterWall",
"SegmentsLength",
]
@removed("`.area` attribute of a GeoDataFrame")
class Area:
"""
Calculates the area of each object in a given GeoDataFrame. It can be used for any
suitable element (building footprint, plot, tessellation, block). It is a simple
wrapper for GeoPandas ``.area`` for the consistency of momepy.
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
Examples
--------
>>> buildings = gpd.read_file(momepy.datasets.get_path('bubenec'),
... layer='buildings')
>>> buildings['area'] = momepy.Area(buildings).series
>>> buildings.area[0]
728.5574947044363
"""
def __init__(self, gdf):
self.gdf = gdf
self.series = self.gdf.geometry.area
@removed("`.length` attribute of a GeoDataFrame")
class Perimeter:
"""
Calculates perimeter of each object in a given GeoDataFrame. It can be used for any
suitable element (building footprint, plot, tessellation, block). It is a simple
wrapper for GeoPandas ``.length`` for the consistency of momepy.
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
Examples
--------
>>> buildings = gpd.read_file(momepy.datasets.get_path('bubenec'),
... layer='buildings')
>>> buildings['perimeter'] = momepy.Perimeter(buildings).series
>>> buildings.perimeter[0]
137.18630991119903
"""
def __init__(self, gdf):
self.gdf = gdf
self.series = self.gdf.geometry.length
@deprecated("volume")
class Volume:
"""
Calculates the volume of each object in a
given GeoDataFrame based on its height and area.
.. math::
area * height
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
heights : str, list, np.array, pd.Series
The name of the dataframe column, ``np.array``, or ``pd.Series``
where height values are stored.
areas : str, list, np.array, pd.Series (default None)
The name of the dataframe column, ``np.array``, or ``pd.Series``
where area values are stored. If set to ``None``, this will calculate
areas during the process without saving them separately.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
heights : Series
A Series containing used heights values.
areas : GeoDataFrame
A Series containing used areas values.
Examples
--------
>>> buildings['volume'] = momepy.Volume(buildings, heights='height_col').series
>>> buildings.volume[0]
7285.5749470443625
>>> buildings['volume'] = momepy.Volume(buildings, heights='height_col',
... areas='area_col').series
>>> buildings.volume[0]
7285.5749470443625
"""
def __init__(self, gdf, heights, areas=None):
self.gdf = gdf
gdf = gdf.copy()
if not isinstance(heights, str):
gdf["mm_h"] = heights
heights = "mm_h"
self.heights = gdf[heights]
if areas is not None:
if not isinstance(areas, str):
gdf["mm_a"] = areas
areas = "mm_a"
self.areas = gdf[areas]
else:
self.areas = gdf.geometry.area
try:
self.series = self.areas * self.heights
except KeyError as err:
raise KeyError(
"Column not found. Define heights and areas or set areas to None."
) from err
@deprecated("floor_area")
class FloorArea:
"""
Calculates floor area of each object based on height and area. The number of
floors is simplified into the formula: height / 3. It is assumed that on
average one floor is approximately 3 metres.
.. math::
area * \\frac{height}{3}
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
heights : str, list, np.array, pd.Series
The name of the dataframe column, ``np.array``, or ``pd.Series``
where height values are stored.
areas : str, list, np.array, pd.Series (default None)
The name of the dataframe column, ``np.array``, or ``pd.Series``
where area values are stored. If set to ``None``, this will calculate
areas during the process without saving them separately.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
heights : Series
A Series containing used heights values.
areas : GeoDataFrame
A Series containing used areas values.
Examples
--------
>>> buildings['floor_area'] = momepy.FloorArea(buildings,
... heights='height_col').series
Calculating floor areas...
Floor areas calculated.
>>> buildings.floor_area[0]
2185.672484113309
>>> buildings['floor_area'] = momepy.FloorArea(buildings, heights='height_col',
... areas='area_col').series
>>> buildings.floor_area[0]
2185.672484113309
"""
def __init__(self, gdf, heights, areas=None):
self.gdf = gdf
gdf = gdf.copy()
if not isinstance(heights, str):
gdf["mm_h"] = heights
heights = "mm_h"
self.heights = gdf[heights]
if areas is not None:
if not isinstance(areas, str):
gdf["mm_a"] = areas
areas = "mm_a"
self.areas = gdf[areas]
else:
self.areas = gdf.geometry.area
try:
self.series = self.areas * (self.heights // 3)
except KeyError as err:
raise KeyError(
"Column not found. Define heights and areas or set areas to None."
) from err
@deprecated("courtyard_area")
class CourtyardArea:
"""
Calculates area of holes within geometry - area of courtyards.
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
areas : str, list, np.array, pd.Series (default None)
The name of the dataframe column, ``np.array``, or ``pd.Series``
where area values are stored. If set to ``None``, this will calculate
areas during the process without saving them separately.
Attributes
----------
series : Series
Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
areas : GeoDataFrame
A Series containing used areas values.
Examples
--------
>>> buildings['courtyard_area'] = momepy.CourtyardArea(buildings).series
>>> buildings.courtyard_area[80]
353.33274206543274
"""
def __init__(self, gdf, areas=None):
self.gdf = gdf
gdf = gdf.copy()
if areas is None:
areas = gdf.geometry.area
if not isinstance(areas, str):
gdf["mm_a"] = areas
areas = "mm_a"
self.areas = gdf[areas]
exts = shapely.area(
shapely.polygons(shapely.get_exterior_ring(gdf.geometry.array))
)
self.series = pd.Series(exts - gdf[areas], index=gdf.index)
@deprecated("longest_axis_length")
class LongestAxisLength:
"""
Calculates the length of the longest axis of object. Axis is defined as a
diameter of minimal circumscribed circle around the convex hull. It does
not have to be fully inside an object.
.. math::
\\max \\left\\{d_{1}, d_{2}, \\ldots, d_{n}\\right\\}
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
Examples
--------
>>> buildings['lal'] = momepy.LongestAxisLength(buildings).series
>>> buildings.lal[0]
40.2655616057102
"""
def __init__(self, gdf):
self.gdf = gdf
hulls = gdf.geometry.convex_hull.exterior
self.series = hulls.apply(lambda g: _circle_radius(list(g.coords))) * 2
@removed("`.describe()` method of libpysal.graph.Graph")
class AverageCharacter:
"""
Calculates the average of a character within a set
neighbourhood defined in ``spatial_weights``. Can be
set to ``mean``, ``median`` or ``mode``. ``mean`` is defined as:
.. math::
\\frac{1}{n}\\left(\\sum_{i=1}^{n} value_{i}\\right)
Adapted from :cite:`hausleitner2017`.
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing a morphological tessellation.
values : str, list, np.array, pd.Series
The name of the dataframe column, ``np.array``, or ``pd.Series``
where character values are stored.
unique_id : str
The name of the column with unique ID used as the ``spatial_weights`` index.
spatial_weights : libpysal.weights
A spatial weights matrix.
rng : tuple, list, optional (default None)
A two-element sequence containing floats between 0 and 100 (inclusive)
that are the percentiles over which to compute the range.
The order of the elements is not important.
mode : str (default 'all')
The mode of average calculation. It can be set to ``'all'``, ``'mean'``,
``'median'``, or ``'mode'`` or a list of any of the options.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Attributes
----------
series : Series
A Series containing resulting mean values.
mean : Series
A Series containing resulting mean values.
median : Series
A Series containing resulting median values.
mode : Series
A Series containing resulting mode values.
gdf : GeoDataFrame
The original GeoDataFrame.
values : GeoDataFrame
A Series containing used values.
sw : libpysal.weights
The spatial weights matrix.
id : Series
A Series containing used unique ID.
rng : tuple
The range.
modes : str
The mode.
Examples
--------
>>> sw = libpysal.weights.DistanceBand.from_dataframe(tessellation,
... threshold=100,
... silence_warnings=True,
... ids='uID')
>>> tessellation['mean_area'] = momepy.AverageCharacter(tessellation,
... values='area',
... spatial_weights=sw,
... unique_id='uID').mean
100%|██████████| 144/144 [00:00<00:00, 1433.32it/s]
>>> tessellation.mean_area[0]
4823.1334436678835
"""
def __init__(
self,
gdf,
values,
spatial_weights,
unique_id,
rng=None,
mode="all",
verbose=True,
):
self.gdf = gdf
self.sw = spatial_weights
self.id = gdf[unique_id]
self.rng = rng
self.modes = mode
if rng:
from momepy import limit_range
data = gdf.copy()
if values is not None and not isinstance(values, str):
data["mm_v"] = values
values = "mm_v"
self.values = data[values]
data = data.set_index(unique_id)[values]
means = []
medians = []
modes = []
allowed = ["mean", "median", "mode"]
if mode == "all":
mode = allowed
elif isinstance(mode, list):
for m in mode:
if m not in allowed:
raise ValueError(f"{m} is not supported as mode.")
elif isinstance(mode, str):
if mode not in allowed:
raise ValueError(f"{mode} is not supported as mode.")
mode = [mode]
for index in tqdm(data.index, total=data.shape[0], disable=not verbose):
if index in spatial_weights.neighbors:
neighbours = [index]
neighbours += spatial_weights.neighbors[index]
values_list = data.loc[neighbours]
if rng:
values_list = limit_range(values_list.values, rng=rng)
if "mean" in mode:
means.append(np.mean(values_list))
if "median" in mode:
medians.append(np.median(values_list))
if "mode" in mode:
modes.append(sp.stats.mode(values_list, keepdims=False)[0])
else:
if "mean" in mode:
means.append(np.nan)
if "median" in mode:
medians.append(np.nan)
if "mode" in mode:
modes.append(np.nan)
if "mean" in mode:
self.series = self.mean = pd.Series(means, index=gdf.index)
if "median" in mode:
self.median = pd.Series(medians, index=gdf.index)
if "mode" in mode:
self.mode = pd.Series(modes, index=gdf.index)
@deprecated("street_profile")
class StreetProfile:
"""
Calculates the street profile characters. This functions
returns a dictionary with widths, standard deviation of width, openness, heights,
standard deviation of height and ratio height/width. The algorithm generates
perpendicular lines to the ``right`` dataframe features every ``distance`` and
measures values on intersections with features of ``left``. If no feature is
reached within ``tick_length`` its value is set as width (being a theoretical
maximum).
Derived from :cite:`araldi2019`.
Parameters
----------
left : GeoDataFrame
A GeoDataFrame containing streets to analyse.
right : GeoDataFrame
A GeoDataFrame containing buildings along the streets.
Only Polygon geometries are currently supported.
heights: str, list, np.array, pd.Series (default None)
The name of the buildings dataframe column, ``np.array``, or ``pd.Series``
where building height are stored. If set to ``None``,
height and ratio height/width will not be calculated.
distance : int (default 10)
The distance between perpendicular ticks.
tick_length : int (default 50)
The length of ticks.
Attributes
----------
w : Series
A Series containing street profile width values.
wd : Series
A Series containing street profile standard deviation values.
o : Series
A Series containing street profile openness values.
h : Series
A Series containing street profile heights
values that is returned only when ``heights`` is set.
hd : Series
A Series containing street profile heights standard deviation
values that is returned only when ``heights`` is set.
p : Series
A Series containing street profile height/width ratio
values that is returned only when ``heights`` is set.
left : GeoDataFrame
The original left GeoDataFrame.
right : GeoDataFrame
The original right GeoDataFrame.
distance : int
The distance between perpendicular ticks.
tick_length : int
The length of ticks.
heights : GeoDataFrame
A Series containing used height values.
Examples
--------
>>> street_prof = momepy.StreetProfile(streets_df, buildings_df, heights='height')
100%|██████████| 33/33 [00:02<00:00, 15.66it/s]
>>> streets_df['width'] = street_prof.w
>>> streets_df['deviations'] = street_prof.wd
"""
def __init__(
self,
left,
right,
heights=None,
distance=10,
tick_length=50,
):
self.left = left
self.right = right
self.distance = distance
self.tick_length = tick_length
lines = left.geometry.array
list_points = np.empty((0, 2))
ids = []
end_markers = []
lengths = shapely.length(lines)
for ix, (line, length) in enumerate(zip(lines, lengths, strict=True)):
pts = shapely.line_interpolate_point(
line, np.linspace(0, length, num=int((length) // distance))
)
list_points = np.append(list_points, shapely.get_coordinates(pts), axis=0)
if len(pts) > 1:
ids += [ix] * len(pts) * 2
markers = [True] + ([False] * (len(pts) - 2)) + [True]
end_markers += markers
elif len(pts) == 1:
end_markers += [True]
ids += [ix] * 2
ticks = []
for num, (pt, end) in enumerate(zip(list_points, end_markers, strict=True), 1):
if end:
ticks.append([pt, pt])
ticks.append([pt, pt])
else:
angle = self._get_angle(pt, list_points[num])
line_end_1 = self._get_point1(pt, angle, tick_length / 2)
angle = self._get_angle(line_end_1, pt)
line_end_2 = self._get_point2(line_end_1, angle, tick_length)
ticks.append([line_end_1, pt])
ticks.append([line_end_2, pt])
ticks = shapely.linestrings(ticks)
inp, res = shapely.STRtree(right.geometry).query(ticks, predicate="intersects")
intersections = shapely.intersection(ticks[inp], right.geometry.array[res])
distances = shapely.distance(
intersections, shapely.points(list_points[inp // 2])
)
inp_uni, inp_cts = np.unique(inp, return_counts=True)
splitter = np.cumsum(inp_cts)[:-1]
dist_per_res = np.split(distances, splitter)
inp_per_res = np.split(res, splitter)
min_distances = []
min_inds = []
for dis, ind in zip(dist_per_res, inp_per_res, strict=True):
min_distances.append(np.min(dis))
min_inds.append(ind[np.argmin(dis)])
dists = np.zeros((len(ticks),))
dists[:] = np.nan
dists[inp_uni] = min_distances
if heights is not None:
if isinstance(heights, str):
heights = self.heights = right[heights]
elif not isinstance(heights, pd.Series):
heights = self.heights = pd.Series(heights)
blgs = np.zeros((len(ticks),))
blgs[:] = None
blgs[inp_uni] = min_inds
do_heights = True
else:
do_heights = False
ids = np.array(ids)
widths = []
openness = []
deviations = []
heights_list = []
heights_deviations_list = []
for i in range(len(left)):
f = ids == i
s = dists[f]
lefts = s[::2]
rights = s[1::2]
left_mean = np.nanmean(lefts) if ~np.isnan(lefts).all() else tick_length / 2
right_mean = (
np.nanmean(rights) if ~np.isnan(rights).all() else tick_length / 2
)
widths.append(np.mean([left_mean, right_mean]) * 2)
f_sum = (f).sum()
s_nan = np.isnan(s)
openness_score = np.nan if not f_sum else s_nan.sum() / f_sum
openness.append(openness_score)
deviation_score = np.nan if s_nan.all() else np.nanstd(s)
deviations.append(deviation_score)
if do_heights:
b = blgs[f]
h = heights.iloc[b[~np.isnan(b)]]
heights_list.append(h.mean())
heights_deviations_list.append(h.std())
self.w = pd.Series(widths, index=left.index)
self.wd = pd.Series(deviations, index=left.index).fillna(
0
) # fill for empty intersections
self.o = pd.Series(openness, index=left.index).fillna(1)
if do_heights:
self.h = pd.Series(heights_list, index=left.index).fillna(
0
) # fill for empty intersections
self.hd = pd.Series(heights_deviations_list, index=left.index).fillna(
0
) # fill for empty intersections
self.p = self.h / self.w.replace(0, np.nan) # replace to avoid np.inf
# http://wikicode.wikidot.com/get-angle-of-line-between-two-points
# https://glenbambrick.com/tag/perpendicular/
# angle between two points
def _get_angle(self, pt1, pt2):
"""
pt1, pt2 : tuple
"""
x_diff = pt2[0] - pt1[0]
y_diff = pt2[1] - pt1[1]
return math.degrees(math.atan2(y_diff, x_diff))
# start and end points of chainage tick
# get the first end point of a tick
def _get_point1(self, pt, bearing, dist):
"""
pt : tuple
"""
angle = bearing + 90
bearing = math.radians(angle)
x = pt[0] + dist * math.cos(bearing)
y = pt[1] + dist * math.sin(bearing)
return (x, y)
# get the second end point of a tick
def _get_point2(self, pt, bearing, dist):
"""
pt : tuple
"""
bearing = math.radians(bearing)
x = pt[0] + dist * math.cos(bearing)
y = pt[1] + dist * math.sin(bearing)
return (x, y)
@deprecated("weighted_character")
class WeightedCharacter:
"""
Calculates the weighted character. Character weighted by the area
of the objects within neighbors defined in ``spatial_weights``.
.. math::
\\frac{\\sum_{i=1}^{n} {character_{i} * area_{i}}}{\\sum_{i=1}^{n} area_{i}}
Adapted from :cite:`dibble2017`.
Parameters
----------
gdf : GeoDataFrame
The GeoDataFrame containing objects to analyse.
values : str, list, np.array, pd.Series
The name of the ``gdf`` dataframe column, ``np.array``, or
``pd.Series`` where the characters to be weighted are stored.
spatial_weights : libpysal.weights
A spatial weights matrix. If ``None``, Queen contiguity matrix
of set order will be calculated based on left.
unique_id : str
The name of the column with unique ID used as ``spatial_weights`` index.
areas : str, list, np.array, pd.Series (default None)
The name of the left dataframe column, ``np.array``, or ``pd.Series``
where the area values are stored.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
A original GeoDataFrame.
values : GeoDataFrame
A Series containing used values.
areas : GeoDataFrame
Series containing used areas.
sw : libpysal.weights
The spatial weights matrix.
id : Series
A Series containing used unique ID.
Examples
--------
>>> sw = libpysal.weights.DistanceBand.from_dataframe(tessellation_df,
... threshold=100,
... silence_warnings=True)
>>> buildings_df['w_height_100'] = momepy.WeightedCharacter(buildings_df,
... values='height',
... spatial_weights=sw,
... unique_id='uID').series
100%|██████████| 144/144 [00:00<00:00, 361.60it/s]
"""
def __init__(
self, gdf, values, spatial_weights, unique_id, areas=None, verbose=True
):
self.gdf = gdf
self.sw = spatial_weights
self.id = gdf[unique_id]
data = gdf.copy()
if areas is None:
areas = gdf.geometry.area
if not isinstance(areas, str):
data["mm_a"] = areas
areas = "mm_a"
if not isinstance(values, str):
data["mm_vals"] = values
values = "mm_vals"
self.areas = data[areas]
self.values = data[values]
data = data.set_index(unique_id)[[values, areas]]
results_list = []
for index in tqdm(data.index, total=data.shape[0], disable=not verbose):
if index in spatial_weights.neighbors:
neighbours = [index]
neighbours += spatial_weights.neighbors[index]
subset = data.loc[neighbours]
results_list.append(
(sum(subset[values] * subset[areas])) / (sum(subset[areas]))
)
else:
results_list.append(np.nan)
self.series = pd.Series(results_list, index=gdf.index)
@removed("`.describe()` method of libpysal.graph.Graph")
class CoveredArea:
"""
Calculates the area covered by neighbours, which is total area covered
by neighbours defined in ``spatial_weights`` and the element itself.
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing Polygon geometries.
spatial_weights : libpysal.weights
A spatial weights matrix.
unique_id : str
The name of the column with unique ID used as ``spatial_weights`` index.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
sw : libpysal.weights
The spatial weights matrix.
id : Series
A Series containing used unique ID.
Examples
--------
>>> sw = momepy.sw_high(k=3, gdf=tessellation_df, ids='uID')
>>> tessellation_df['covered'] = mm.CoveredArea(tessellation_df, sw, 'uID').series
100%|██████████| 144/144 [00:00<00:00, 549.15it/s]
"""
def __init__(self, gdf, spatial_weights, unique_id, verbose=True):
self.gdf = gdf
self.sw = spatial_weights
self.id = gdf[unique_id]
data = gdf
area = data.set_index(unique_id).geometry.area
results_list = []
for index in tqdm(area.index, total=area.shape[0], disable=not verbose):
if index in spatial_weights.neighbors:
neighbours = [index]
neighbours += spatial_weights.neighbors[index]
areas = area.loc[neighbours]
results_list.append(sum(areas))
else:
results_list.append(np.nan)
self.series = pd.Series(results_list, index=gdf.index)
@deprecated("perimeter_wall")
class PerimeterWall:
"""
Calculate the perimeter wall length of the joined structure.
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
spatial_weights : libpysal.weights, optional
A spatial weights matrix. If ``None``, Queen contiguity matrix will
be calculated based on ``gdf``. It is to denote adjacent buildings.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
sw : libpysal.weights
The spatial weights matrix.
Examples
--------
>>> buildings_df['wall_length'] = mm.PerimeterWall(buildings_df).series
Calculating spatial weights...
Spatial weights ready...
100%|██████████| 144/144 [00:00<00:00, 4171.39it/s]
Notes
-----
The ``spatial_weights`` keyword argument should be
based on *position*, not unique ID.
It might take a while to compute this character.
"""
def __init__(self, gdf, spatial_weights=None, verbose=True):
self.gdf = gdf
if spatial_weights is None:
print("Calculating spatial weights...") if verbose else None
from libpysal.weights import Queen
spatial_weights = Queen.from_dataframe(
gdf, silence_warnings=True, use_index=False
)
print("Spatial weights ready...") if verbose else None
self.sw = spatial_weights
# dict to store walls for each uID
walls = {}
components = pd.Series(spatial_weights.component_labels, index=range(len(gdf)))
geom = gdf.geometry
for i in tqdm(range(gdf.shape[0]), total=gdf.shape[0], disable=not verbose):
# if the id is already present in walls, continue (avoid repetition)
if i in walls:
continue
else:
comp = spatial_weights.component_labels[i]
to_join = components[components == comp].index
joined = geom.iloc[to_join]
# buffer to avoid multipolygons where buildings touch by corners only
dissolved = (
joined.buffer(0.01).union_all()
if GPD_GE_10
else joined.buffer(0.01).unary_union
)
for b in to_join:
walls[b] = dissolved.exterior.length
results_list = []
for i in tqdm(range(gdf.shape[0]), total=gdf.shape[0], disable=not verbose):
results_list.append(walls[i])
self.series = pd.Series(results_list, index=gdf.index)
@removed("`.describe()` or `.lag()` methods of libpysal.graph.Graph")
class SegmentsLength:
"""
Calculate the cummulative and/or mean length of segments. Length of segments
within set topological distance from each of them. Reached topological distance
should be captured by ``spatial_weights``. If ``mean=False`` it will compute
sum of length, if ``mean=True`` it will compute sum and mean.
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing streets (edges) to analyse.
spatial_weights : libpysal.weights, optional
A spatial weights matrix. If ``None``, Queen contiguity
matrix will be calculated based on streets.
mean : bool, optional
If ``mean=False`` it will compute sum of length, if ``mean=True``
it will compute sum and mean.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Attributes
----------
series : Series
A Series containing resulting total lengths.
mean : Series
A Series containing resulting total lengths.
sum : Series
A Series containing resulting total lengths.
gdf : GeoDataFrame
The original GeoDataFrame
sw : libpysal.weights
The spatial weights matrix.
Examples
--------
>>> streets_df['length_neighbours'] = mm.SegmentsLength(streets_df, mean=True).mean
Calculating spatial weights...
Spatial weights ready...
Notes
-----
The ``spatial_weights`` keyword argument should be based on *index*, not unique ID.
"""
def __init__(self, gdf, spatial_weights=None, mean=False, verbose=True):
self.gdf = gdf
if spatial_weights is None:
print("Calculating spatial weights...") if verbose else None
from libpysal.weights import Queen
spatial_weights = Queen.from_dataframe(
gdf, silence_warnings=True, use_index=False
)
print("Spatial weights ready...") if verbose else None
self.sw = spatial_weights
lenghts = gdf.geometry.length
sums = []
means = []
for index in tqdm(gdf.index, total=gdf.shape[0], disable=not verbose):
neighbours = [index]
neighbours += spatial_weights.neighbors[index]
dims = lenghts.iloc[neighbours]
if mean:
means.append(np.mean(dims))
sums.append(sum(dims))
self.series = self.sum = pd.Series(sums, index=gdf.index)
if mean:
self.mean = pd.Series(means, index=gdf.index)
|