File: distribution.py

package info (click to toggle)
python-momepy 0.8.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 51,428 kB
  • sloc: python: 11,098; makefile: 35; sh: 11
file content (930 lines) | stat: -rw-r--r-- 31,437 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
#!/usr/bin/env python

# distribution.py
# definitions of spatial distribution characters
import math
import os
import warnings

import geopandas as gpd
import networkx as nx
import numpy as np
import pandas as pd
import shapely
from packaging.version import Version
from tqdm.auto import tqdm  # progress bar

from .utils import _azimuth, deprecated, removed

__all__ = [
    "Orientation",
    "SharedWalls",
    "SharedWallsRatio",
    "StreetAlignment",
    "CellAlignment",
    "Alignment",
    "NeighborDistance",
    "MeanInterbuildingDistance",
    "NeighboringStreetOrientationDeviation",
    "BuildingAdjacency",
    "Neighbors",
]

GPD_GE_013 = Version(gpd.__version__) >= Version("0.13.0")


@deprecated("orientation")
class Orientation:
    """
    Calculate the orientation of object. The deviation of orientation from cardinal
    directions are captured. Here 'orientation' is defined as an orientation of the
    longest axis of bounding rectangle in range 0 - 45. The orientation of LineStrings
    is represented by the orientation of the line connecting the first and the last
    point of the segment.

    Adapted from :cite:`schirmer2015`.

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing objects to analyse.
    verbose : bool (default True)
        If ``True``, shows progress bars in loops and indication of steps.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    gdf : GeoDataFrame
        The original GeoDataFrame.

    Examples
    --------
    >>> buildings_df['orientation'] = momepy.Orientation(buildings_df).series
    100%|██████████| 144/144 [00:00<00:00, 630.54it/s]
    >>> buildings_df['orientation'][0]
    41.05146788287027
    """

    def __init__(self, gdf, verbose=True):
        self.gdf = gdf
        # define empty list for results
        results_list = []

        def _dist(a, b):
            return math.hypot(b[0] - a[0], b[1] - a[1])

        bboxes = shapely.minimum_rotated_rectangle(gdf.geometry)
        for geom, bbox in tqdm(
            zip(gdf.geometry, bboxes, strict=True),
            total=gdf.shape[0],
            disable=not verbose,
        ):
            if geom.geom_type in ["Polygon", "MultiPolygon", "LinearRing"]:
                bbox = list(bbox.exterior.coords)
                axis1 = _dist(bbox[0], bbox[3])
                axis2 = _dist(bbox[0], bbox[1])

                if axis1 <= axis2:
                    az = _azimuth(bbox[0], bbox[1])
                else:
                    az = _azimuth(bbox[0], bbox[3])
            elif geom.geom_type in ["LineString", "MultiLineString"]:
                coords = geom.coords
                az = _azimuth(coords[0], coords[-1])
            else:
                results_list.append(np.nan)
                continue

            results_list.append(az)

        # get a deviation from cardinal directions
        results = np.abs((np.array(results_list, dtype=float) + 45) % 90 - 45)

        self.series = pd.Series(results, index=gdf.index)


class SharedWalls:
    """
    Calculate the length of shared walls of adjacent elements (typically buildings).

    .. math::
        \\textit{length of shared walls}

    Note that data needs to be topologically correct.
    Overlapping polygons will lead to incorrect results.

    Adapted from :cite:`hamaina2012a`.

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing objects to analyse.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    gdf : GeoDataFrame
        The original GeoDataFrame.

    Examples
    --------
    >>> buildings_df['swr'] = momepy.SharedWalls(buildings_df).series

    See also
    --------
    SharedWallsRatio
    """

    def __init__(self, gdf):
        if os.getenv("ALLOW_LEGACY_MOMEPY", "False").lower() not in (
            "true",
            "1",
            "yes",
        ):
            warnings.warn(
                "Class based API like `momepy.SharedWalls` or `momepy.SharedWallsRatio`"
                " is deprecated. Replace it with `momepy.shared_walls` or explicitly "
                "computing `momepy.shared_walls / gdf.length` respectively to use "
                "functional API instead or pin momepy version <1.0. Class-based API "
                "will be removed in 1.0. ",
                # "See details at https://docs.momepy.org/en/stable/migration.html",
                FutureWarning,
                stacklevel=2,
            )
        self.gdf = gdf

        if GPD_GE_013:
            inp, res = gdf.sindex.query(gdf.geometry, predicate="intersects")
        else:
            inp, res = gdf.sindex.query_bulk(gdf.geometry, predicate="intersects")
        left = gdf.geometry.take(inp).reset_index(drop=True)
        right = gdf.geometry.take(res).reset_index(drop=True)
        intersections = left.intersection(right).length
        results = intersections.groupby(inp).sum().reset_index(
            drop=True
        ) - gdf.geometry.length.reset_index(drop=True)
        results.index = gdf.index

        self.series = results


class SharedWallsRatio(SharedWalls):
    """
    Calculate shared walls ratio of adjacent elements (typically buildings).

    .. math::
        \\textit{length of shared walls} \\over perimeter

    Note that data needs to be topologically correct.
    Overlapping polygons will lead to incorrect results.

    Adapted from :cite:`hamaina2012a`.

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing objects to analyse.
    perimeters : str, list, np.array, pd.Series (default None, optional)
        The name of the dataframe column, ``np.array``, or ``pd.Series``
        where perimeter values are stored.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    gdf : GeoDataFrame
        The original GeoDataFrame.
    perimeters : GeoDataFrame
        A Series containing used perimeters values.

    Examples
    --------
    >>> buildings_df['swr'] = momepy.SharedWallsRatio(buildings_df).series
    >>> buildings_df['swr'][10]
    0.3424804411228673

    See also
    --------
    SharedWalls
    """

    def __init__(self, gdf, perimeters=None):
        super().__init__(gdf)

        if perimeters is None:
            self.perimeters = gdf.geometry.length
        elif isinstance(perimeters, str):
            self.perimeters = gdf[perimeters]
        else:
            self.perimeters = perimeters

        self.series = self.series / self.perimeters


@deprecated("street_alignment")
class StreetAlignment:
    """
    Calculate the difference between street orientation and orientation of
    another object in degrees. The orientation of a street segment is represented
    by the orientation of line connecting the first and the last point of the
    segment. A network ID linking each object to specific street segment is needed,
    and can be generated by :func:`momepy.get_network_id`. Either ``network_id`` or
    both ``left_network_id`` and ``right_network_id`` are required.

    .. math::
        \\left|{\\textit{building orientation} - \\textit{street orientation}}\\right|

    Parameters
    ----------
    left : GeoDataFrame
        A GeoDataFrame containing objects to analyse.
    right : GeoDataFrame
        A GeoDataFrame containing a street network.
    orientations : str, list, np.array, pd.Series
        The name of the dataframe column, ``np.array``, or ``pd.Series`` where
        object orientation values are stored. The object can be calculated
        using :class:`momepy.Orientation`.
    network_id : str (default None)
        The name of the column storing network ID in both left and right.
    left_network_id : str, list, np.array, pd.Series (default None)
        The name of the left dataframe column, ``np.array``, or ``pd.Series`` where
        object network IDs are stored.
    right_network_id : str, list, np.array, pd.Series (default None)
        The name of the right dataframe column, ``np.array``, or ``pd.Series`` of
        streets with unique network IDs. These IDs have to be defined beforehand and
        can be defined using :func:`momepy.unique_id`.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    left : GeoDataFrame
        The original ``left`` GeoDataFrame.
    right : GeoDataFrame
        The original ``right`` GeoDataFrame.
    network_id : str
        The name of the column storing network ID in both ``left`` and ``right``.
    left_network_id : Series
        A Series containing used ``left`` ID.
    right_network_id : Series
        A Series containing used ``right`` ID.

    Examples
    --------
    >>> buildings_df['street_alignment'] = momepy.StreetAlignment(buildings_df,
    ...                                                           streets_df,
    ...                                                           'orientation',
    ...                                                           'nID',
    ...                                                           'nID').series
    >>> buildings_df['street_alignment'][0]
    0.29073888476702336
    """

    def __init__(
        self,
        left,
        right,
        orientations,
        network_id=None,
        left_network_id=None,
        right_network_id=None,
    ):
        self.left = left
        self.right = right
        self.network_id = network_id

        left = left.copy()
        right = right.copy()

        if network_id:
            left_network_id = network_id
            right_network_id = network_id
        else:
            if left_network_id is None and right_network_id is not None:
                raise ValueError("left_network_id not set.")
            if left_network_id is not None and right_network_id is None:
                raise ValueError("right_network_id not set.")
            if left_network_id is None and right_network_id is None:
                raise ValueError(
                    "Network ID not set. Use either network_id or left_network_id "
                    "and right_network_id."
                )

        if not isinstance(orientations, str):
            left["mm_o"] = orientations
            orientations = "mm_o"
        self.orientations = left[orientations]

        if not isinstance(left_network_id, str):
            left["mm_nid"] = left_network_id
            left_network_id = "mm_nid"
        self.left_network_id = left[left_network_id]
        if not isinstance(right_network_id, str):
            right["mm_nis"] = right_network_id
            right_network_id = "mm_nis"
        self.right_network_id = right[right_network_id]

        right["_orientation"] = Orientation(right, verbose=False).series

        merged = left[[left_network_id, orientations]].merge(
            right[[right_network_id, "_orientation"]],
            left_on=left_network_id,
            right_on=right_network_id,
            how="left",
        )

        self.series = np.abs(merged[orientations] - merged["_orientation"])
        self.series.index = left.index


@deprecated("cell_alignment")
class CellAlignment:
    """
    Calculate the difference between cell orientation and the orientation of object.

    .. math::
        \\left|{\\textit{building orientation} - \\textit{cell orientation}}\\right|

    Parameters
    ----------
    left : GeoDataFrame
        A GeoDataFrame containing objects to analyse.
    right : GeoDataFrame
        A GeoDataFrame containing tessellation cells (or relevant spatial units).
    left_orientations : str, list, np.array, pd.Series
        The name of the ``left`` dataframe column, ``np.array``, or
        `pd.Series`` where object orientation values are stored. This
        can be calculated using :class:`momepy.Orientation`.
    right_orientations : str, list, np.array, pd.Series
        The name of the ``right`` dataframe column, ``np.array``, or ``pd.Series``
        where object orientation values are stored. This
        can be calculated using :class:`momepy.Orientation`.
    left_unique_id : str
        The name of the ``left`` dataframe column with a unique
        ID shared between the ``left`` and ``right`` GeoDataFrame objects.
    right_unique_id : str
        The name of the ``right`` dataframe column with a unique
        ID shared between the ``left`` and ``right`` GeoDataFrame objects.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    left : GeoDataFrame
        The original ``left`` GeoDataFrame.
    right : GeoDataFrame
        The original ``right`` GeoDataFrame.
    left_orientations : Series
        A Series containing used ``left`` orientations.
    right_orientations : Series
        A Series containing used ``right`` orientations.
    left_unique_id : Series
        A Series containing used ``left`` ID.
    right_unique_id : Series
        A Series containing used ``right`` ID.

    Examples
    --------
    >>> buildings_df['cell_alignment'] = momepy.CellAlignment(buildings_df,
    ...                                                       tessellation_df,
    ...                                                       'bl_orient',
    ...                                                       'tes_orient',
    ...                                                       'uID',
    ...                                                       'uID').series
    >>> buildings_df['cell_alignment'][0]
    0.8795123936951939

    """

    def __init__(
        self,
        left,
        right,
        left_orientations,
        right_orientations,
        left_unique_id,
        right_unique_id,
    ):
        self.left = left
        self.right = right

        left = left.copy()
        right = right.copy()
        if not isinstance(left_orientations, str):
            left["mm_o"] = left_orientations
            left_orientations = "mm_o"
        self.left_orientations = left[left_orientations]
        if not isinstance(right_orientations, str):
            right["mm_o"] = right_orientations
            right_orientations = "mm_o"
        self.right_orientations = right[right_orientations]
        self.left_unique_id = left[left_unique_id]
        self.right_unique_id = right[right_unique_id]

        comp = left[[left_unique_id, left_orientations]].merge(
            right[[right_unique_id, right_orientations]],
            left_on=left_unique_id,
            right_on=right_unique_id,
            how="left",
        )
        if left_orientations == right_orientations:
            left_orientations = left_orientations + "_x"
            right_orientations = right_orientations + "_y"
        self.series = np.absolute(comp[left_orientations] - comp[right_orientations])
        self.series.index = left.index


@deprecated("alignment")
class Alignment:
    """
    Calculate the mean deviation of solar orientation of objects on adjacent cells
    from an object.

    .. math::
        \\frac{1}{n}\\sum_{i=1}^n dev_i=\\frac{dev_1+dev_2+\\cdots+dev_n}{n}

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing objects to analyse.
    spatial_weights : libpysal.weights, optional
        A spatial weights matrix.
    orientations : str, list, np.array, pd.Series
        The name of the left dataframe column, ``np.array``, or ``pd.Series``
        where object orientation values are stored. This
        can be calculated using :class:`momepy.Orientation`.
    unique_id : str
        The name of the unique ID column used as the ``spatial_weights`` index.
    verbose : bool (default True)
        If ``True``, shows progress bars in loops and indication of steps.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    gdf : GeoDataFrame
        The original GeoDataFrame.
    orientations : Series
        A Series containing used orientation values.
    sw : libpysal.weights
        The spatial weights matrix.
    id : Series
        A Series containing used unique ID.

    Examples
    --------
    >>> buildings_df['alignment'] = momepy.Alignment(buildings_df,
    ...                                              sw,
    ...                                              'uID',
    ...                                              bl_orient).series
    100%|██████████| 144/144 [00:01<00:00, 140.84it/s]
    >>> buildings_df['alignment'][0]
    18.299481296455237
    """

    def __init__(self, gdf, spatial_weights, unique_id, orientations, verbose=True):
        self.gdf = gdf
        self.sw = spatial_weights
        self.id = gdf[unique_id]

        # define empty list for results
        results_list = []
        gdf = gdf.copy()
        if not isinstance(orientations, str):
            gdf["mm_o"] = orientations
            orientations = "mm_o"
        self.orientations = gdf[orientations]

        data = gdf.set_index(unique_id)[orientations]

        # iterating over rows one by one
        for index, orient in tqdm(
            data.items(), total=data.shape[0], disable=not verbose
        ):
            if index in spatial_weights.neighbors:
                neighbours = spatial_weights.neighbors[index]
                if neighbours:
                    orientation = data.loc[neighbours]
                    results_list.append(abs(orientation - orient).mean())
                else:
                    results_list.append(np.nan)
            else:
                results_list.append(np.nan)

        self.series = pd.Series(results_list, index=gdf.index)


@deprecated("neighbor_distance")
class NeighborDistance:
    """
    Calculate the mean distance to adjacent buildings (based on ``spatial_weights``).
    If no neighbours are found, return ``np.nan``.

    .. math::
        \\frac{1}{n}\\sum_{i=1}^n dist_i=\\frac{dist_1+dist_2+\\cdots+dist_n}{n}

    Adapted from :cite:`schirmer2015`.

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing objects to analyse.
    spatial_weights : libpysal.weights
        A spatial weights matrix based on ``unique_id``.
    unique_id : str
        The name of the unique ID column used as the ``spatial_weights`` index.
    verbose : bool (default True)
        If ``True``, shows progress bars in loops and indication of steps.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    gdf : GeoDataFrame
        The original GeoDataFrame.
    sw : libpysal.weights
        The spatial weights matrix.
    id : Series
        A Series containing used unique ID.

    Examples
    --------
    >>> buildings_df['neighbour_distance'] = momepy.NeighborDistance(buildings_df,
    ...                                                              sw,
    ...                                                              'uID').series
    100%|██████████| 144/144 [00:00<00:00, 345.78it/s]
    >>> buildings_df['neighbour_distance'][0]
    29.18589019096464
    """

    def __init__(self, gdf, spatial_weights, unique_id, verbose=True):
        self.gdf = gdf
        self.sw = spatial_weights
        self.id = gdf[unique_id]
        # define empty list for results
        results_list = []

        data = gdf.set_index(unique_id).geometry

        # iterating over rows one by one
        for index, geom in tqdm(data.items(), total=data.shape[0], disable=not verbose):
            if geom is not None and index in spatial_weights.neighbors:
                neighbours = spatial_weights.neighbors[index]
                building_neighbours = data.loc[neighbours]
                if len(building_neighbours):
                    results_list.append(
                        building_neighbours.geometry.distance(geom).mean()
                    )
                else:
                    results_list.append(np.nan)
            else:
                results_list.append(np.nan)

        self.series = pd.Series(results_list, index=gdf.index)


@deprecated("mean_interbuilding_distance")
class MeanInterbuildingDistance:
    """
    Calculate the mean interbuilding distance. Interbuilding distances are
    calculated between buildings on adjacent cells based on
    ``spatial_weights``, while the extent is defined as order of contiguity.

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing objects to analyse.
    unique_id : str
        The name of the unique ID column used as the ``spatial_weights`` index.
    spatial_weights : libpysal.weights
        A spatial weights matrix.
    order : int
        The order of contiguity defining the extent.
    verbose : bool (default True)
        If ``True``, shows progress bars in loops and indication of steps.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    gdf : GeoDataFrame
        The original GeoDataFrame.
    sw : libpysal.weights
        The spatial weights matrix.
    id : Series
        A Series containing used unique ID.
    sw_higher : libpysal.weights
        The spatial weights matrix of higher order.
    order : int
        Order of contiguity.

    Notes
    -----
    Fix UserWarning.

    Examples
    --------
    >>> buildings_df['mean_interbuilding_distance'] = momepy.MeanInterbuildingDistance(
    ...     buildings_df,
    ...     sw,
    ...     'uID'
    ... ).series
    Computing mean interbuilding distances...
    100%|██████████| 144/144 [00:00<00:00, 317.42it/s]
    >>> buildings_df['mean_interbuilding_distance'][0]
    29.305457092042744
    """

    def __init__(
        self,
        gdf,
        spatial_weights,
        unique_id,
        order=3,
        verbose=True,
    ):
        self.gdf = gdf
        self.sw = spatial_weights
        self.id = gdf[unique_id]

        data = gdf.set_index(unique_id).geometry

        # define empty list for results
        results_list = []

        # define adjacency list from lipysal
        adj_list = spatial_weights.to_adjlist(drop_islands=True)
        adj_list["weight"] = (
            data.loc[adj_list.focal]
            .reset_index(drop=True)
            .distance(data.loc[adj_list.neighbor].reset_index(drop=True))
            .values
        )

        # generate graph
        graph = nx.from_pandas_edgelist(
            adj_list, source="focal", target="neighbor", edge_attr="weight"
        )

        print("Computing mean interbuilding distances...") if verbose else None
        # iterate over subgraphs to get the final values
        for uid in tqdm(data.index, total=data.shape[0], disable=not verbose):
            try:
                sub = nx.ego_graph(graph, uid, radius=order)
                results_list.append(
                    np.nanmean([x[-1] for x in list(sub.edges.data("weight"))])
                )
            except Exception:
                results_list.append(np.nan)
        self.series = pd.Series(results_list, index=gdf.index)


@removed("mean_deviation")
class NeighboringStreetOrientationDeviation:
    """
    Calculate the mean deviation of solar orientation of adjacent streets. The
    orientation of a street segment is represented by the orientation of the line
    connecting the first and last point of the segment.

    .. math::
        \\frac{1}{n}\\sum_{i=1}^n dev_i=\\frac{dev_1+dev_2+\\cdots+dev_n}{n}

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing objects to analyse.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    gdf : GeoDataFrame
        The original GeoDataFrame.
    orientation : Series
        A Series containing used street orientation values.

    Examples
    --------
    >>> streets_df['orient_dev'] = momepy.NeighboringStreetOrientationDeviation(
    ...     streets_df
    ... ).series
    >>> streets_df['orient_dev'][6]
    7.043096518688273
    """

    def __init__(self, gdf):
        self.gdf = gdf
        self.orientation = gdf.geometry.apply(self._orient)

        if GPD_GE_013:
            inp, res = gdf.sindex.query(gdf.geometry, predicate="intersects")
        else:
            inp, res = gdf.sindex.query_bulk(gdf.geometry, predicate="intersects")
        itself = inp == res
        inp = inp[~itself]
        res = res[~itself]

        left = self.orientation.take(inp).reset_index(drop=True)
        right = self.orientation.take(res).reset_index(drop=True)
        deviations = (left - right).abs()

        results = deviations.groupby(inp).mean()

        match = gdf.iloc[list(results.index)]
        match["result"] = results.to_list()

        self.series = match.result

    def _orient(self, geom):
        start = geom.coords[0]
        end = geom.coords[-1]
        az = _azimuth(start, end)
        if 90 > az >= 45:
            diff = az - 45
            az = az - 2 * diff
        elif 135 > az >= 90:
            diff = az - 90
            az = az - 2 * diff
            diff = az - 45
            az = az - 2 * diff
        elif 181 > az >= 135:
            diff = az - 135
            az = az - 2 * diff
            diff = az - 90
            az = az - 2 * diff
            diff = az - 45
            az = az - 2 * diff
        return az


@deprecated("building_adjacency")
class BuildingAdjacency:
    """
    Calculate the level of building adjacency. Building adjacency reflects how much
    buildings tend to join together into larger structures. It is calculated as a
    ratio of joined built-up structures and buildings within the extent defined
    in ``spatial_weights_higher``.

    Adapted from :cite:`vanderhaegen2017`.

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing objects to analyse.
    spatial_weights_higher : libpysal.weights
        A spatial weights matrix.
    unique_id : str
        The name of the unique ID column used as the ``spatial_weights`` index.
    spatial_weights : libpysal.weights, optional
        A spatial weights matrix. If ``None``, a Queen contiguity matrix will
        be calculated based on ``gdf``. It is to denote adjacent buildings
        and is based on ``unique_id``.
    verbose : bool (default True)
        If ``True``, shows progress bars in loops and indication of steps.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    gdf : GeoDataFrame
        The original GeoDataFrame.
    sw_higher : libpysal.weights
        A higher order spatial weights matrix.
    id : Series
        A Series containing used unique IDs.
    sw : libpysal.weights
        The spatial weights matrix.

    Examples
    --------
    >>> buildings_df['adjacency'] = momepy.BuildingAdjacency(buildings_df,
    ...                                                      swh,
    ...                                                      unique_id='uID').series
    Calculating spatial weights...
    Spatial weights ready...
    Calculating adjacency: 100%|██████████| 144/144 [00:00<00:00, 335.55it/s]
    >>> buildings_df['adjacency'][10]
    0.23809523809523808
    """

    def __init__(
        self, gdf, spatial_weights_higher, unique_id, spatial_weights=None, verbose=True
    ):
        self.gdf = gdf
        self.sw_higher = spatial_weights_higher
        self.id = gdf[unique_id]
        results_list = []

        # if weights matrix is not passed, generate it from gdf
        if spatial_weights is None:
            print("Calculating spatial weights...") if verbose else None
            from libpysal.weights import Queen

            spatial_weights = Queen.from_dataframe(
                gdf, silence_warnings=True, ids=unique_id
            )
            print("Spatial weights ready...") if verbose else None

        self.sw = spatial_weights
        patches = dict(
            zip(gdf[unique_id], spatial_weights.component_labels, strict=True)
        )

        for uid in tqdm(
            self.id,
            total=gdf.shape[0],
            disable=not verbose,
            desc="Calculating adjacency",
        ):
            if uid in spatial_weights_higher.neighbors:
                neighbours = spatial_weights_higher.neighbors[uid].copy()
                if neighbours:
                    neighbours.append(uid)

                    patches_sub = [patches[x] for x in neighbours]
                    patches_nr = len(set(patches_sub))

                    results_list.append(patches_nr / len(neighbours))
                else:
                    results_list.append(np.nan)
            else:
                results_list.append(np.nan)

        self.series = pd.Series(results_list, index=gdf.index)


@deprecated("neighbors")
class Neighbors:
    """
    Calculate the number of neighbours captured by ``spatial_weights``. If
    ``weighted=True``, the number of neighbours will be divided by the perimeter of
    the object to return relative value.

    Adapted from :cite:`hermosilla2012`.

    Parameters
    ----------
    gdf : GeoDataFrame
        A GeoDataFrame containing objects to analyse.
    spatial_weights : libpysal.weights
        A spatial weights matrix.
    unique_id : str
        The name of the unique ID column used as the ``spatial_weights`` index.
    weighted : bool (default False)
        If ``True``, the number of neighbours will be divided
        by the perimeter of object, to return the relative value.
    verbose : bool (default True)
        If ``True``, shows progress bars in loops and indication of steps.

    Attributes
    ----------
    series : Series
        A Series containing resulting values.
    gdf : GeoDataFrame
        The original GeoDataFrame.
    values : Series
        A Series containing used values.
    sw : libpysal.weights
        The spatial weights matrix.
    id : Series
        A Series containing used unique ID.
    weighted : bool
        Whether object is weighted or not.

    Examples
    --------
    >>> sw = libpysal.weights.contiguity.Queen.from_dataframe(tessellation_df,
    ...                                                       ids='uID')
    >>> tessellation_df['neighbours'] = momepy.Neighbors(tessellation_df,
    ...                                                  sw,
    ...                                                  'uID').series
    100%|██████████| 144/144 [00:00<00:00, 6909.50it/s]
    >>> tessellation_df['neighbours'][0]
    4
    """

    def __init__(self, gdf, spatial_weights, unique_id, weighted=False, verbose=True):
        self.gdf = gdf
        self.sw = spatial_weights
        self.id = gdf[unique_id]
        self.weighted = weighted

        neighbours = []
        for index, geom in tqdm(
            gdf.set_index(unique_id).geometry.items(),
            total=gdf.shape[0],
            disable=not verbose,
        ):
            if index in spatial_weights.neighbors:
                if weighted is True:
                    neighbours.append(
                        spatial_weights.cardinalities[index] / geom.length
                    )
                else:
                    neighbours.append(spatial_weights.cardinalities[index])
            else:
                neighbours.append(np.nan)

        self.series = pd.Series(neighbours, index=gdf.index)