1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
|
#!/usr/bin/env python
# distribution.py
# definitions of spatial distribution characters
import math
import os
import warnings
import geopandas as gpd
import networkx as nx
import numpy as np
import pandas as pd
import shapely
from packaging.version import Version
from tqdm.auto import tqdm # progress bar
from .utils import _azimuth, deprecated, removed
__all__ = [
"Orientation",
"SharedWalls",
"SharedWallsRatio",
"StreetAlignment",
"CellAlignment",
"Alignment",
"NeighborDistance",
"MeanInterbuildingDistance",
"NeighboringStreetOrientationDeviation",
"BuildingAdjacency",
"Neighbors",
]
GPD_GE_013 = Version(gpd.__version__) >= Version("0.13.0")
@deprecated("orientation")
class Orientation:
"""
Calculate the orientation of object. The deviation of orientation from cardinal
directions are captured. Here 'orientation' is defined as an orientation of the
longest axis of bounding rectangle in range 0 - 45. The orientation of LineStrings
is represented by the orientation of the line connecting the first and the last
point of the segment.
Adapted from :cite:`schirmer2015`.
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
Examples
--------
>>> buildings_df['orientation'] = momepy.Orientation(buildings_df).series
100%|██████████| 144/144 [00:00<00:00, 630.54it/s]
>>> buildings_df['orientation'][0]
41.05146788287027
"""
def __init__(self, gdf, verbose=True):
self.gdf = gdf
# define empty list for results
results_list = []
def _dist(a, b):
return math.hypot(b[0] - a[0], b[1] - a[1])
bboxes = shapely.minimum_rotated_rectangle(gdf.geometry)
for geom, bbox in tqdm(
zip(gdf.geometry, bboxes, strict=True),
total=gdf.shape[0],
disable=not verbose,
):
if geom.geom_type in ["Polygon", "MultiPolygon", "LinearRing"]:
bbox = list(bbox.exterior.coords)
axis1 = _dist(bbox[0], bbox[3])
axis2 = _dist(bbox[0], bbox[1])
if axis1 <= axis2:
az = _azimuth(bbox[0], bbox[1])
else:
az = _azimuth(bbox[0], bbox[3])
elif geom.geom_type in ["LineString", "MultiLineString"]:
coords = geom.coords
az = _azimuth(coords[0], coords[-1])
else:
results_list.append(np.nan)
continue
results_list.append(az)
# get a deviation from cardinal directions
results = np.abs((np.array(results_list, dtype=float) + 45) % 90 - 45)
self.series = pd.Series(results, index=gdf.index)
class SharedWalls:
"""
Calculate the length of shared walls of adjacent elements (typically buildings).
.. math::
\\textit{length of shared walls}
Note that data needs to be topologically correct.
Overlapping polygons will lead to incorrect results.
Adapted from :cite:`hamaina2012a`.
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
Examples
--------
>>> buildings_df['swr'] = momepy.SharedWalls(buildings_df).series
See also
--------
SharedWallsRatio
"""
def __init__(self, gdf):
if os.getenv("ALLOW_LEGACY_MOMEPY", "False").lower() not in (
"true",
"1",
"yes",
):
warnings.warn(
"Class based API like `momepy.SharedWalls` or `momepy.SharedWallsRatio`"
" is deprecated. Replace it with `momepy.shared_walls` or explicitly "
"computing `momepy.shared_walls / gdf.length` respectively to use "
"functional API instead or pin momepy version <1.0. Class-based API "
"will be removed in 1.0. ",
# "See details at https://docs.momepy.org/en/stable/migration.html",
FutureWarning,
stacklevel=2,
)
self.gdf = gdf
if GPD_GE_013:
inp, res = gdf.sindex.query(gdf.geometry, predicate="intersects")
else:
inp, res = gdf.sindex.query_bulk(gdf.geometry, predicate="intersects")
left = gdf.geometry.take(inp).reset_index(drop=True)
right = gdf.geometry.take(res).reset_index(drop=True)
intersections = left.intersection(right).length
results = intersections.groupby(inp).sum().reset_index(
drop=True
) - gdf.geometry.length.reset_index(drop=True)
results.index = gdf.index
self.series = results
class SharedWallsRatio(SharedWalls):
"""
Calculate shared walls ratio of adjacent elements (typically buildings).
.. math::
\\textit{length of shared walls} \\over perimeter
Note that data needs to be topologically correct.
Overlapping polygons will lead to incorrect results.
Adapted from :cite:`hamaina2012a`.
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
perimeters : str, list, np.array, pd.Series (default None, optional)
The name of the dataframe column, ``np.array``, or ``pd.Series``
where perimeter values are stored.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
perimeters : GeoDataFrame
A Series containing used perimeters values.
Examples
--------
>>> buildings_df['swr'] = momepy.SharedWallsRatio(buildings_df).series
>>> buildings_df['swr'][10]
0.3424804411228673
See also
--------
SharedWalls
"""
def __init__(self, gdf, perimeters=None):
super().__init__(gdf)
if perimeters is None:
self.perimeters = gdf.geometry.length
elif isinstance(perimeters, str):
self.perimeters = gdf[perimeters]
else:
self.perimeters = perimeters
self.series = self.series / self.perimeters
@deprecated("street_alignment")
class StreetAlignment:
"""
Calculate the difference between street orientation and orientation of
another object in degrees. The orientation of a street segment is represented
by the orientation of line connecting the first and the last point of the
segment. A network ID linking each object to specific street segment is needed,
and can be generated by :func:`momepy.get_network_id`. Either ``network_id`` or
both ``left_network_id`` and ``right_network_id`` are required.
.. math::
\\left|{\\textit{building orientation} - \\textit{street orientation}}\\right|
Parameters
----------
left : GeoDataFrame
A GeoDataFrame containing objects to analyse.
right : GeoDataFrame
A GeoDataFrame containing a street network.
orientations : str, list, np.array, pd.Series
The name of the dataframe column, ``np.array``, or ``pd.Series`` where
object orientation values are stored. The object can be calculated
using :class:`momepy.Orientation`.
network_id : str (default None)
The name of the column storing network ID in both left and right.
left_network_id : str, list, np.array, pd.Series (default None)
The name of the left dataframe column, ``np.array``, or ``pd.Series`` where
object network IDs are stored.
right_network_id : str, list, np.array, pd.Series (default None)
The name of the right dataframe column, ``np.array``, or ``pd.Series`` of
streets with unique network IDs. These IDs have to be defined beforehand and
can be defined using :func:`momepy.unique_id`.
Attributes
----------
series : Series
A Series containing resulting values.
left : GeoDataFrame
The original ``left`` GeoDataFrame.
right : GeoDataFrame
The original ``right`` GeoDataFrame.
network_id : str
The name of the column storing network ID in both ``left`` and ``right``.
left_network_id : Series
A Series containing used ``left`` ID.
right_network_id : Series
A Series containing used ``right`` ID.
Examples
--------
>>> buildings_df['street_alignment'] = momepy.StreetAlignment(buildings_df,
... streets_df,
... 'orientation',
... 'nID',
... 'nID').series
>>> buildings_df['street_alignment'][0]
0.29073888476702336
"""
def __init__(
self,
left,
right,
orientations,
network_id=None,
left_network_id=None,
right_network_id=None,
):
self.left = left
self.right = right
self.network_id = network_id
left = left.copy()
right = right.copy()
if network_id:
left_network_id = network_id
right_network_id = network_id
else:
if left_network_id is None and right_network_id is not None:
raise ValueError("left_network_id not set.")
if left_network_id is not None and right_network_id is None:
raise ValueError("right_network_id not set.")
if left_network_id is None and right_network_id is None:
raise ValueError(
"Network ID not set. Use either network_id or left_network_id "
"and right_network_id."
)
if not isinstance(orientations, str):
left["mm_o"] = orientations
orientations = "mm_o"
self.orientations = left[orientations]
if not isinstance(left_network_id, str):
left["mm_nid"] = left_network_id
left_network_id = "mm_nid"
self.left_network_id = left[left_network_id]
if not isinstance(right_network_id, str):
right["mm_nis"] = right_network_id
right_network_id = "mm_nis"
self.right_network_id = right[right_network_id]
right["_orientation"] = Orientation(right, verbose=False).series
merged = left[[left_network_id, orientations]].merge(
right[[right_network_id, "_orientation"]],
left_on=left_network_id,
right_on=right_network_id,
how="left",
)
self.series = np.abs(merged[orientations] - merged["_orientation"])
self.series.index = left.index
@deprecated("cell_alignment")
class CellAlignment:
"""
Calculate the difference between cell orientation and the orientation of object.
.. math::
\\left|{\\textit{building orientation} - \\textit{cell orientation}}\\right|
Parameters
----------
left : GeoDataFrame
A GeoDataFrame containing objects to analyse.
right : GeoDataFrame
A GeoDataFrame containing tessellation cells (or relevant spatial units).
left_orientations : str, list, np.array, pd.Series
The name of the ``left`` dataframe column, ``np.array``, or
`pd.Series`` where object orientation values are stored. This
can be calculated using :class:`momepy.Orientation`.
right_orientations : str, list, np.array, pd.Series
The name of the ``right`` dataframe column, ``np.array``, or ``pd.Series``
where object orientation values are stored. This
can be calculated using :class:`momepy.Orientation`.
left_unique_id : str
The name of the ``left`` dataframe column with a unique
ID shared between the ``left`` and ``right`` GeoDataFrame objects.
right_unique_id : str
The name of the ``right`` dataframe column with a unique
ID shared between the ``left`` and ``right`` GeoDataFrame objects.
Attributes
----------
series : Series
A Series containing resulting values.
left : GeoDataFrame
The original ``left`` GeoDataFrame.
right : GeoDataFrame
The original ``right`` GeoDataFrame.
left_orientations : Series
A Series containing used ``left`` orientations.
right_orientations : Series
A Series containing used ``right`` orientations.
left_unique_id : Series
A Series containing used ``left`` ID.
right_unique_id : Series
A Series containing used ``right`` ID.
Examples
--------
>>> buildings_df['cell_alignment'] = momepy.CellAlignment(buildings_df,
... tessellation_df,
... 'bl_orient',
... 'tes_orient',
... 'uID',
... 'uID').series
>>> buildings_df['cell_alignment'][0]
0.8795123936951939
"""
def __init__(
self,
left,
right,
left_orientations,
right_orientations,
left_unique_id,
right_unique_id,
):
self.left = left
self.right = right
left = left.copy()
right = right.copy()
if not isinstance(left_orientations, str):
left["mm_o"] = left_orientations
left_orientations = "mm_o"
self.left_orientations = left[left_orientations]
if not isinstance(right_orientations, str):
right["mm_o"] = right_orientations
right_orientations = "mm_o"
self.right_orientations = right[right_orientations]
self.left_unique_id = left[left_unique_id]
self.right_unique_id = right[right_unique_id]
comp = left[[left_unique_id, left_orientations]].merge(
right[[right_unique_id, right_orientations]],
left_on=left_unique_id,
right_on=right_unique_id,
how="left",
)
if left_orientations == right_orientations:
left_orientations = left_orientations + "_x"
right_orientations = right_orientations + "_y"
self.series = np.absolute(comp[left_orientations] - comp[right_orientations])
self.series.index = left.index
@deprecated("alignment")
class Alignment:
"""
Calculate the mean deviation of solar orientation of objects on adjacent cells
from an object.
.. math::
\\frac{1}{n}\\sum_{i=1}^n dev_i=\\frac{dev_1+dev_2+\\cdots+dev_n}{n}
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
spatial_weights : libpysal.weights, optional
A spatial weights matrix.
orientations : str, list, np.array, pd.Series
The name of the left dataframe column, ``np.array``, or ``pd.Series``
where object orientation values are stored. This
can be calculated using :class:`momepy.Orientation`.
unique_id : str
The name of the unique ID column used as the ``spatial_weights`` index.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
orientations : Series
A Series containing used orientation values.
sw : libpysal.weights
The spatial weights matrix.
id : Series
A Series containing used unique ID.
Examples
--------
>>> buildings_df['alignment'] = momepy.Alignment(buildings_df,
... sw,
... 'uID',
... bl_orient).series
100%|██████████| 144/144 [00:01<00:00, 140.84it/s]
>>> buildings_df['alignment'][0]
18.299481296455237
"""
def __init__(self, gdf, spatial_weights, unique_id, orientations, verbose=True):
self.gdf = gdf
self.sw = spatial_weights
self.id = gdf[unique_id]
# define empty list for results
results_list = []
gdf = gdf.copy()
if not isinstance(orientations, str):
gdf["mm_o"] = orientations
orientations = "mm_o"
self.orientations = gdf[orientations]
data = gdf.set_index(unique_id)[orientations]
# iterating over rows one by one
for index, orient in tqdm(
data.items(), total=data.shape[0], disable=not verbose
):
if index in spatial_weights.neighbors:
neighbours = spatial_weights.neighbors[index]
if neighbours:
orientation = data.loc[neighbours]
results_list.append(abs(orientation - orient).mean())
else:
results_list.append(np.nan)
else:
results_list.append(np.nan)
self.series = pd.Series(results_list, index=gdf.index)
@deprecated("neighbor_distance")
class NeighborDistance:
"""
Calculate the mean distance to adjacent buildings (based on ``spatial_weights``).
If no neighbours are found, return ``np.nan``.
.. math::
\\frac{1}{n}\\sum_{i=1}^n dist_i=\\frac{dist_1+dist_2+\\cdots+dist_n}{n}
Adapted from :cite:`schirmer2015`.
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
spatial_weights : libpysal.weights
A spatial weights matrix based on ``unique_id``.
unique_id : str
The name of the unique ID column used as the ``spatial_weights`` index.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
sw : libpysal.weights
The spatial weights matrix.
id : Series
A Series containing used unique ID.
Examples
--------
>>> buildings_df['neighbour_distance'] = momepy.NeighborDistance(buildings_df,
... sw,
... 'uID').series
100%|██████████| 144/144 [00:00<00:00, 345.78it/s]
>>> buildings_df['neighbour_distance'][0]
29.18589019096464
"""
def __init__(self, gdf, spatial_weights, unique_id, verbose=True):
self.gdf = gdf
self.sw = spatial_weights
self.id = gdf[unique_id]
# define empty list for results
results_list = []
data = gdf.set_index(unique_id).geometry
# iterating over rows one by one
for index, geom in tqdm(data.items(), total=data.shape[0], disable=not verbose):
if geom is not None and index in spatial_weights.neighbors:
neighbours = spatial_weights.neighbors[index]
building_neighbours = data.loc[neighbours]
if len(building_neighbours):
results_list.append(
building_neighbours.geometry.distance(geom).mean()
)
else:
results_list.append(np.nan)
else:
results_list.append(np.nan)
self.series = pd.Series(results_list, index=gdf.index)
@deprecated("mean_interbuilding_distance")
class MeanInterbuildingDistance:
"""
Calculate the mean interbuilding distance. Interbuilding distances are
calculated between buildings on adjacent cells based on
``spatial_weights``, while the extent is defined as order of contiguity.
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
unique_id : str
The name of the unique ID column used as the ``spatial_weights`` index.
spatial_weights : libpysal.weights
A spatial weights matrix.
order : int
The order of contiguity defining the extent.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
sw : libpysal.weights
The spatial weights matrix.
id : Series
A Series containing used unique ID.
sw_higher : libpysal.weights
The spatial weights matrix of higher order.
order : int
Order of contiguity.
Notes
-----
Fix UserWarning.
Examples
--------
>>> buildings_df['mean_interbuilding_distance'] = momepy.MeanInterbuildingDistance(
... buildings_df,
... sw,
... 'uID'
... ).series
Computing mean interbuilding distances...
100%|██████████| 144/144 [00:00<00:00, 317.42it/s]
>>> buildings_df['mean_interbuilding_distance'][0]
29.305457092042744
"""
def __init__(
self,
gdf,
spatial_weights,
unique_id,
order=3,
verbose=True,
):
self.gdf = gdf
self.sw = spatial_weights
self.id = gdf[unique_id]
data = gdf.set_index(unique_id).geometry
# define empty list for results
results_list = []
# define adjacency list from lipysal
adj_list = spatial_weights.to_adjlist(drop_islands=True)
adj_list["weight"] = (
data.loc[adj_list.focal]
.reset_index(drop=True)
.distance(data.loc[adj_list.neighbor].reset_index(drop=True))
.values
)
# generate graph
graph = nx.from_pandas_edgelist(
adj_list, source="focal", target="neighbor", edge_attr="weight"
)
print("Computing mean interbuilding distances...") if verbose else None
# iterate over subgraphs to get the final values
for uid in tqdm(data.index, total=data.shape[0], disable=not verbose):
try:
sub = nx.ego_graph(graph, uid, radius=order)
results_list.append(
np.nanmean([x[-1] for x in list(sub.edges.data("weight"))])
)
except Exception:
results_list.append(np.nan)
self.series = pd.Series(results_list, index=gdf.index)
@removed("mean_deviation")
class NeighboringStreetOrientationDeviation:
"""
Calculate the mean deviation of solar orientation of adjacent streets. The
orientation of a street segment is represented by the orientation of the line
connecting the first and last point of the segment.
.. math::
\\frac{1}{n}\\sum_{i=1}^n dev_i=\\frac{dev_1+dev_2+\\cdots+dev_n}{n}
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
orientation : Series
A Series containing used street orientation values.
Examples
--------
>>> streets_df['orient_dev'] = momepy.NeighboringStreetOrientationDeviation(
... streets_df
... ).series
>>> streets_df['orient_dev'][6]
7.043096518688273
"""
def __init__(self, gdf):
self.gdf = gdf
self.orientation = gdf.geometry.apply(self._orient)
if GPD_GE_013:
inp, res = gdf.sindex.query(gdf.geometry, predicate="intersects")
else:
inp, res = gdf.sindex.query_bulk(gdf.geometry, predicate="intersects")
itself = inp == res
inp = inp[~itself]
res = res[~itself]
left = self.orientation.take(inp).reset_index(drop=True)
right = self.orientation.take(res).reset_index(drop=True)
deviations = (left - right).abs()
results = deviations.groupby(inp).mean()
match = gdf.iloc[list(results.index)]
match["result"] = results.to_list()
self.series = match.result
def _orient(self, geom):
start = geom.coords[0]
end = geom.coords[-1]
az = _azimuth(start, end)
if 90 > az >= 45:
diff = az - 45
az = az - 2 * diff
elif 135 > az >= 90:
diff = az - 90
az = az - 2 * diff
diff = az - 45
az = az - 2 * diff
elif 181 > az >= 135:
diff = az - 135
az = az - 2 * diff
diff = az - 90
az = az - 2 * diff
diff = az - 45
az = az - 2 * diff
return az
@deprecated("building_adjacency")
class BuildingAdjacency:
"""
Calculate the level of building adjacency. Building adjacency reflects how much
buildings tend to join together into larger structures. It is calculated as a
ratio of joined built-up structures and buildings within the extent defined
in ``spatial_weights_higher``.
Adapted from :cite:`vanderhaegen2017`.
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
spatial_weights_higher : libpysal.weights
A spatial weights matrix.
unique_id : str
The name of the unique ID column used as the ``spatial_weights`` index.
spatial_weights : libpysal.weights, optional
A spatial weights matrix. If ``None``, a Queen contiguity matrix will
be calculated based on ``gdf``. It is to denote adjacent buildings
and is based on ``unique_id``.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
sw_higher : libpysal.weights
A higher order spatial weights matrix.
id : Series
A Series containing used unique IDs.
sw : libpysal.weights
The spatial weights matrix.
Examples
--------
>>> buildings_df['adjacency'] = momepy.BuildingAdjacency(buildings_df,
... swh,
... unique_id='uID').series
Calculating spatial weights...
Spatial weights ready...
Calculating adjacency: 100%|██████████| 144/144 [00:00<00:00, 335.55it/s]
>>> buildings_df['adjacency'][10]
0.23809523809523808
"""
def __init__(
self, gdf, spatial_weights_higher, unique_id, spatial_weights=None, verbose=True
):
self.gdf = gdf
self.sw_higher = spatial_weights_higher
self.id = gdf[unique_id]
results_list = []
# if weights matrix is not passed, generate it from gdf
if spatial_weights is None:
print("Calculating spatial weights...") if verbose else None
from libpysal.weights import Queen
spatial_weights = Queen.from_dataframe(
gdf, silence_warnings=True, ids=unique_id
)
print("Spatial weights ready...") if verbose else None
self.sw = spatial_weights
patches = dict(
zip(gdf[unique_id], spatial_weights.component_labels, strict=True)
)
for uid in tqdm(
self.id,
total=gdf.shape[0],
disable=not verbose,
desc="Calculating adjacency",
):
if uid in spatial_weights_higher.neighbors:
neighbours = spatial_weights_higher.neighbors[uid].copy()
if neighbours:
neighbours.append(uid)
patches_sub = [patches[x] for x in neighbours]
patches_nr = len(set(patches_sub))
results_list.append(patches_nr / len(neighbours))
else:
results_list.append(np.nan)
else:
results_list.append(np.nan)
self.series = pd.Series(results_list, index=gdf.index)
@deprecated("neighbors")
class Neighbors:
"""
Calculate the number of neighbours captured by ``spatial_weights``. If
``weighted=True``, the number of neighbours will be divided by the perimeter of
the object to return relative value.
Adapted from :cite:`hermosilla2012`.
Parameters
----------
gdf : GeoDataFrame
A GeoDataFrame containing objects to analyse.
spatial_weights : libpysal.weights
A spatial weights matrix.
unique_id : str
The name of the unique ID column used as the ``spatial_weights`` index.
weighted : bool (default False)
If ``True``, the number of neighbours will be divided
by the perimeter of object, to return the relative value.
verbose : bool (default True)
If ``True``, shows progress bars in loops and indication of steps.
Attributes
----------
series : Series
A Series containing resulting values.
gdf : GeoDataFrame
The original GeoDataFrame.
values : Series
A Series containing used values.
sw : libpysal.weights
The spatial weights matrix.
id : Series
A Series containing used unique ID.
weighted : bool
Whether object is weighted or not.
Examples
--------
>>> sw = libpysal.weights.contiguity.Queen.from_dataframe(tessellation_df,
... ids='uID')
>>> tessellation_df['neighbours'] = momepy.Neighbors(tessellation_df,
... sw,
... 'uID').series
100%|██████████| 144/144 [00:00<00:00, 6909.50it/s]
>>> tessellation_df['neighbours'][0]
4
"""
def __init__(self, gdf, spatial_weights, unique_id, weighted=False, verbose=True):
self.gdf = gdf
self.sw = spatial_weights
self.id = gdf[unique_id]
self.weighted = weighted
neighbours = []
for index, geom in tqdm(
gdf.set_index(unique_id).geometry.items(),
total=gdf.shape[0],
disable=not verbose,
):
if index in spatial_weights.neighbors:
if weighted is True:
neighbours.append(
spatial_weights.cardinalities[index] / geom.length
)
else:
neighbours.append(spatial_weights.cardinalities[index])
else:
neighbours.append(np.nan)
self.series = pd.Series(neighbours, index=gdf.index)
|