File: elements.py

package info (click to toggle)
python-momepy 0.8.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 51,428 kB
  • sloc: python: 11,098; makefile: 35; sh: 11
file content (1067 lines) | stat: -rw-r--r-- 38,990 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
#!/usr/bin/env python

# elements.py
# generating derived elements (street edge, block)
import os
import warnings

import geopandas as gpd
import libpysal
import numpy as np
import pandas as pd
import shapely
from packaging.version import Version
from scipy.spatial import Voronoi
from shapely.geometry.base import BaseGeometry
from shapely.ops import polygonize
from tqdm.auto import tqdm

from .utils import deprecated

__all__ = [
    "Tessellation",
    "Blocks",
    "get_network_id",
    "get_node_id",
    "enclosures",
    "get_network_ratio",
]

GPD_GE_013 = Version(gpd.__version__) >= Version("0.13.0")
GPD_GE_10 = Version(gpd.__version__) >= Version("1.0dev")


class Tessellation:
    """
    Generates tessellation. Three versions of tessellation can be created:

        1. Morphological tessellation around given buildings
            ``gdf`` within set ``limit``.
        2. Proximity bands around given street network ``gdf``
            within set ``limit``.
        3. Enclosed tessellation based on given buildings
            ``gdf`` within ``enclosures``.

    Pass either ``limit`` to create morphological tessellation or proximity bands or
    ``enclosures`` to create enclosed tessellation.

    See :cite:`fleischmann2020` for details of implementation of morphological
    tessellation and :cite:`araldi2019` for proximity bands.

    Tessellation requires data of relatively high level of precision
    and there are three particular patterns causing issues:

        1. Features will collapse into empty polygon - these
            do not have tessellation cell in the end.
        2. Features will split into MultiPolygons - in some cases,
            features with narrow links between parts split into two
            during 'shrinking'. In most cases that is not an issue
            and the resulting tessellation is correct anyway, but
            sometimes this results in a cell being a MultiPolygon,
            which is not correct.
        3. Overlapping features - features which overlap even
            after 'shrinking' cause invalid tessellation geometry.

    All three types can be tested prior :class:`momepy.Tessellation` using
    :class:`momepy.CheckTessellationInput`.

    Parameters
    ----------
    gdf : GeoDataFrame
       A GeoDataFrame containing building footprints or street network.
    unique_id : str
        The name of the column with the unique ID.
    limit : MultiPolygon or Polygon (default None)
        MultiPolygon or Polygon defining the study area limiting morphological
        tessellation or proximity bands (otherwise it could go to infinity).
    shrink : float (default 0.4)
        The distance for negative buffer to generate space between adjacent polygons
        (if geometry type of gdf is (Multi)Polygon).
    segment : float (default 0.5)
        The maximum distance between points after discretization.
    verbose : bool (default True)
        If ``True``, shows progress bars in loops and indication of steps.
    enclosures : GeoDataFrame (default None)
        The enclosures geometry, which can be generated
        using :func:`momepy.enclosures`.
    enclosure_id : str (default 'eID')
        The name of the ``enclosure_id`` containing unique identifer for each row in
        ``enclosures``. Applies only if ``enclosures`` are passed.
    threshold : float (default 0.05)
        The minimum threshold for a building to be considered within an enclosure.
        Threshold is a ratio of building area which needs to be within an enclosure to
        inlude it in the tessellation of that enclosure. Resolves sliver geometry
        issues. Applies only if ``enclosures`` are passed.
    use_dask : bool (default True)
        Use parallelised algorithm based on ``dask.dataframe``. Requires dask.
        Applies only if ``enclosures`` are passed.
    n_chunks : None
        The number of chunks to be used in parallelization. Ideal is one chunk per
        thread. Applies only if ``enclosures`` are passed. Default automatically
        uses ``n == dask.system.cpu_count``.

    Attributes
    ----------
    tessellation : GeoDataFrame
        A GeoDataFrame containing resulting tessellation.
        For enclosed tessellation, gdf contains three columns:

            - ``geometry``,
            - ``unique_id`` matching with parental building,
            - ``enclosure_id`` matching with enclosure integer index

    gdf : GeoDataFrame
        The original GeoDataFrame.
    id : Series
        A Series containing used unique ID.
    limit : MultiPolygon or Polygon
        MultiPolygon or Polygon defining the study area limiting morphological
        tessellation or proximity bands.
    shrink : float
        The distance for negative buffer to generate space between adjacent polygons.
    segment : float
        The maximum distance between points after discretization.
    collapsed : list
        A list of ``unique_id``s of collapsed features (if there are any).
        Applies only if ``limit`` is passed.
    multipolygons : list
        A list of ``unique_id``s of features causing MultiPolygons (if there are any).
        Applies only if ``limit`` is passed.

    Examples
    --------
    >>> tess = mm.Tessellation(
    ... buildings_df, 'uID', limit=mm.buffered_limit(buildings_df)
    ... )
    Inward offset...
    Generating input point array...
    Generating Voronoi diagram...
    Generating GeoDataFrame...
    Dissolving Voronoi polygons...
    >>> tess.tessellation.head()
        uID	geometry
    0	1	POLYGON ((1603586.677274485 6464344.667944215,...
    1	2	POLYGON ((1603048.399497852 6464176.180701573,...
    2	3	POLYGON ((1603071.342637536 6464158.863329805,...
    3	4	POLYGON ((1603055.834005827 6464093.614718676,...
    4	5	POLYGON ((1603106.417554705 6464130.215958447,...

    >>> enclosures = mm.enclosures(streets, admin_boundary, [railway, rivers])
    >>> encl_tess = mm.Tessellation(
    ... buildings_df, 'uID', enclosures=enclosures
    ... )
    >>> encl_tess.tessellation.head()
         uID                                           geometry  eID
    0  109.0  POLYGON ((1603369.789 6464340.661, 1603368.754...    0
    1  110.0  POLYGON ((1603368.754 6464340.097, 1603369.789...    0
    2  111.0  POLYGON ((1603458.666 6464332.614, 1603458.332...    0
    3  112.0  POLYGON ((1603462.235 6464285.609, 1603454.795...    0
    4  113.0  POLYGON ((1603524.561 6464388.609, 1603532.241...    0
    """

    def __init__(
        self,
        gdf,
        unique_id,
        limit=None,
        shrink=0.4,
        segment=0.5,
        verbose=True,
        enclosures=None,
        enclosure_id="eID",
        threshold=0.05,
        use_dask=True,
        n_chunks=None,
    ):
        if os.getenv("ALLOW_LEGACY_MOMEPY", "False").lower() not in (
            "true",
            "1",
            "yes",
        ):
            warnings.warn(
                "Class based API like `momepy.Tessellation` is deprecated. "
                "Replace it with `momepy.morphological_tessellation` or "
                "`momepy.enclosed_tessellation` to use functional API instead "
                "or pin momepy version <1.0. Class-based API will be removed in "
                "1.0. "
                # "See details at https://docs.momepy.org/en/stable/migration.html",
                "",
                FutureWarning,
                stacklevel=2,
            )
        self.gdf = gdf
        self.id = gdf[unique_id]
        self.limit = limit
        self.shrink = shrink
        self.segment = segment
        self.enclosure_id = enclosure_id

        if gdf.crs and gdf.crs.is_geographic:
            raise ValueError(
                "Geometry is in a geographic CRS. "
                "Use 'GeoDataFrame.to_crs()' to re-project geometries to a "
                "projected CRS before using Tessellation.",
            )

        if limit is not None and enclosures is not None:
            raise ValueError(
                "Both `limit` and `enclosures` cannot be passed together. "
                "Pass `limit` for morphological tessellation or `enclosures` "
                "for enclosed tessellation."
            )

        gdf = gdf.copy()

        if enclosures is not None:
            enclosures = enclosures.copy()

            bounds = enclosures.total_bounds
            centre_x = (bounds[0] + bounds[2]) / 2
            centre_y = (bounds[1] + bounds[3]) / 2

            gdf.geometry = gdf.geometry.translate(xoff=-centre_x, yoff=-centre_y)
            enclosures.geometry = enclosures.geometry.translate(
                xoff=-centre_x, yoff=-centre_y
            )

            self.tessellation = self._enclosed_tessellation(
                gdf,
                enclosures,
                unique_id,
                threshold,
                use_dask,
                n_chunks,
            )
        else:
            if isinstance(limit, gpd.GeoSeries | gpd.GeoDataFrame):
                limit = limit.union_all() if GPD_GE_10 else limit.unary_union

            bounds = shapely.bounds(limit)
            centre_x = (bounds[0] + bounds[2]) / 2
            centre_y = (bounds[1] + bounds[3]) / 2
            gdf.geometry = gdf.geometry.translate(xoff=-centre_x, yoff=-centre_y)

            # add convex hull buffered large distance to eliminate infinity issues
            limit = (
                gpd.GeoSeries(limit, crs=gdf.crs)
                .translate(xoff=-centre_x, yoff=-centre_y)
                .array[0]
            )

            self.tessellation = self._morphological_tessellation(
                gdf, unique_id, limit, shrink, segment, verbose
            )

        self.tessellation["geometry"] = self.tessellation["geometry"].translate(
            xoff=centre_x, yoff=centre_y
        )

    def _morphological_tessellation(
        self, gdf, unique_id, limit, shrink, segment, verbose, check=True
    ):
        objects = gdf

        if shrink != 0:
            print("Inward offset...") if verbose else None
            mask = objects.geom_type.isin(["Polygon", "MultiPolygon"])
            objects.loc[mask, objects.geometry.name] = objects[mask].buffer(
                -shrink, cap_style=2, join_style=2
            )
        objects = objects.reset_index(drop=True).explode(ignore_index=True)
        objects = objects.set_index(unique_id)

        print("Generating input point array...") if verbose else None
        points, ids = self._dense_point_array(
            objects.geometry.array, distance=segment, index=objects.index
        )

        hull = shapely.convex_hull(limit)
        bounds = shapely.bounds(hull)
        width = bounds[2] - bounds[0]
        leng = bounds[3] - bounds[1]
        hull = shapely.buffer(hull, 2 * width if width > leng else 2 * leng)

        hull_p, hull_ix = self._dense_point_array(
            [hull], distance=shapely.length(hull) / 100, index=[0]
        )
        points = np.append(points, hull_p, axis=0)
        ids = ids + ([-1] * len(hull_ix))

        print("Generating Voronoi diagram...") if verbose else None
        voronoi_diagram = Voronoi(np.array(points))

        print("Generating GeoDataFrame...") if verbose else None
        regions_gdf = self._regions(voronoi_diagram, unique_id, ids, crs=gdf.crs)

        print("Dissolving Voronoi polygons...") if verbose else None
        morphological_tessellation = regions_gdf[[unique_id, "geometry"]].dissolve(
            by=unique_id, as_index=False
        )

        morphological_tessellation = gpd.clip(
            morphological_tessellation, gpd.GeoSeries(limit, crs=gdf.crs)
        )

        if check:
            self._check_result(morphological_tessellation, gdf, unique_id=unique_id)

        return morphological_tessellation

    def _dense_point_array(self, geoms, distance, index):
        """
        geoms : array of shapely lines
        """
        # interpolate lines to represent them as points for Voronoi
        points = []
        ids = []

        if shapely.get_type_id(geoms[0]) not in [1, 2, 5]:
            lines = shapely.boundary(geoms)
        else:
            lines = geoms
        lengths = shapely.length(lines)
        for ix, line, length in zip(index, lines, lengths, strict=True):
            if length > distance:  # some polygons might have collapsed
                pts = shapely.line_interpolate_point(
                    line,
                    np.linspace(0.1, length - 0.1, num=int((length - 0.1) // distance)),
                )  # .1 offset to keep a gap between two segments
                points.append(shapely.get_coordinates(pts))
                ids += [ix] * len(pts)

        points = np.vstack(points)

        return points, ids

        # here we might also want to append original coordinates of each line
        # to get a higher precision on the corners

    def _regions(self, voronoi_diagram, unique_id, ids, crs):
        """Generate GeoDataFrame of Voronoi regions from scipy.spatial.Voronoi."""
        vertices = pd.Series(voronoi_diagram.regions).take(voronoi_diagram.point_region)
        polygons = []
        for region in vertices:
            if -1 not in region:
                polygons.append(shapely.polygons(voronoi_diagram.vertices[region]))
            else:
                polygons.append(None)

        regions_gdf = gpd.GeoDataFrame(
            {unique_id: ids}, geometry=polygons, crs=crs
        ).dropna()
        regions_gdf = regions_gdf.loc[
            regions_gdf[unique_id] != -1
        ]  # delete hull-based cells

        return regions_gdf

    def _check_result(self, tesselation, orig_gdf, unique_id):
        """Check whether result matches buildings and contains only Polygons."""
        # check against input layer
        ids_original = list(orig_gdf[unique_id])
        ids_generated = list(tesselation[unique_id])
        if len(ids_original) != len(ids_generated):
            self.collapsed = set(ids_original).difference(ids_generated)
            warnings.warn(
                message=(
                    "Tessellation does not fully match buildings. "
                    f"{len(self.collapsed)} element(s) collapsed "
                    f"during generation - unique_id: {self.collapsed}."
                ),
                category=UserWarning,
                stacklevel=4,
            )

        # check MultiPolygons - usually caused by error in input geometry
        self.multipolygons = tesselation[
            tesselation.geometry.geom_type == "MultiPolygon"
        ][unique_id]
        if len(self.multipolygons) > 0:
            warnings.warn(
                message=(
                    "Tessellation contains MultiPolygon elements. Initial "
                    "objects should  be edited. `unique_id` of affected "
                    f"elements: {list(self.multipolygons)}."
                ),
                category=UserWarning,
                stacklevel=4,
            )

    def _enclosed_tessellation(
        self,
        buildings,
        enclosures,
        unique_id,
        threshold=0.05,
        use_dask=True,
        n_chunks=None,
        **kwargs,
    ):
        """
        Generate enclosed tessellation based on barriers
        defining enclosures and building footprints.

        Parameters
        ----------
        buildings : GeoDataFrame
            A GeoDataFrame containing building footprints.
            Expects (Multi)Polygon geometry.
        enclosures : GeoDataFrame
            Enclosures geometry. Can  be generated using :func:`momepy.enclosures`.
        unique_id : str
            The name of the column with the unique ID of ``buildings`` gdf.
        threshold : float (default 0.05)
            The minimum threshold for a building to be considered within an enclosure.
            Threshold is a ratio of building area which needs to be within an enclosure
            to inlude it in the tessellation of that enclosure.
            Resolves sliver geometry issues.
        use_dask : bool (default True)
            Use parallelised algorithm based on ``dask.dataframe``. Requires dask.
        n_chunks : None
            The number of chunks to be used in parallelization. Ideal is one chunk per
            thread. Applies only if ``enclosures`` are passed. Default automatically
            uses ``n == dask.system.cpu_count``.
        **kwargs : dict
            Keyword arguments passed to Tessellation algorithm
            (such as ``'shrink'`` or ``'segment'``).

        Returns
        -------
        tessellation : GeoDataFrame
            A GeoDataFrame containing three columns:

                - ``geometry``,
                - ``unique_id`` matching with parent building,
                - ``enclosure_id`` matching with enclosure integer index

        Examples
        --------
        >>> enclosures = mm.enclosures(streets, admin_boundary, [railway, rivers])
        >>> enclosed_tess = mm.enclosed_tessellation(buildings, enclosures)
        """
        enclosures = enclosures.reset_index(drop=True)
        enclosures["position"] = range(len(enclosures))

        # determine which polygons should be split
        if GPD_GE_013:
            inp, res = buildings.sindex.query(
                enclosures.geometry, predicate="intersects"
            )
        else:
            inp, res = buildings.sindex.query_bulk(
                enclosures.geometry, predicate="intersects"
            )
        unique, counts = np.unique(inp, return_counts=True)
        splits = unique[counts > 1]
        single = unique[counts == 1]

        if use_dask:
            try:
                import dask.bag as db
                from dask.system import cpu_count
            except ImportError:
                use_dask = False

                warnings.warn(
                    message=(
                        "dask.dataframe could not be imported. "
                        f"Setting `use_dask={use_dask}`."
                    ),
                    category=UserWarning,
                    stacklevel=3,
                )

        if use_dask:
            if n_chunks is None:
                n_chunks = cpu_count() - 1 if cpu_count() > 1 else 1
            # initialize dask.bag
            bag = db.from_sequence(splits, npartitions=n_chunks)
            # generate enclosed tessellation using dask
            new = bag.map(
                self._tess,
                enclosures,
                buildings,
                inp,
                res,
                threshold,
                unique_id,
            ).compute()

        else:
            new = [
                self._tess(
                    i,
                    enclosures,
                    buildings,
                    inp,
                    res,
                    threshold=threshold,
                    unique_id=unique_id,
                    **kwargs,
                )
                for i in splits
            ]

        # finalise the result
        clean_blocks = enclosures.drop(splits)
        clean_blocks.loc[single, unique_id] = clean_blocks.loc[
            single, "position"
        ].apply(lambda ix: buildings.iloc[res[inp == ix][0]][unique_id])
        return pd.concat(new + [clean_blocks.drop(columns="position")]).reset_index(
            drop=True
        )

    def _tess(
        self,
        ix,
        enclosure,
        buildings,
        query_inp,
        query_res,
        threshold,
        unique_id,
    ):
        poly = enclosure.geometry.array[ix]
        blg = buildings.iloc[query_res[query_inp == ix]]
        within = blg[
            shapely.area(shapely.intersection(blg.geometry.array, poly))
            > (shapely.area(blg.geometry.array) * threshold)
        ].copy()
        if len(within) > 1:
            tess = self._morphological_tessellation(
                within,
                unique_id,
                poly,
                shrink=self.shrink,
                segment=self.segment,
                verbose=False,
                check=False,
            )
            tess[self.enclosure_id] = enclosure[self.enclosure_id].iloc[ix]
            return tess
        return gpd.GeoDataFrame(
            {self.enclosure_id: enclosure[self.enclosure_id].iloc[ix], unique_id: None},
            geometry=[poly],
            index=[0],
        )


@deprecated("generate_blocks")
class Blocks:
    """
    Generate blocks based on buildings, tessellation, and street network.
    Dissolves tessellation cells based on street-network based polygons.
    Links resulting ID to ``buildings`` and ``tessellation`` as attributes.

    Parameters
    ----------
    tessellation : GeoDataFrame
        A GeoDataFrame containing morphological tessellation.
    edges : GeoDataFrame
        A GeoDataFrame containing a street network.
    buildings : GeoDataFrame
        A GeoDataFrame containing buildings.
    id_name : str
        The name of the unique blocks ID column to be generated.
    unique_id : str
        The name of the column with the unique ID. If there is none, it can be
        generated with :func:`momepy.unique_id`. This should be the same for
        cells and buildings; ID's should match.

    Attributes
    ----------
    blocks : GeoDataFrame
        A GeoDataFrame containing generated blocks.
    buildings_id : Series
        A Series derived from buildings with block ID.
    tessellation_id : Series
        A Series derived from morphological tessellation with block ID.
    tessellation : GeoDataFrame
        A GeoDataFrame containing original tessellation.
    edges : GeoDataFrame
        A GeoDataFrame containing original edges.
    buildings : GeoDataFrame
        A GeoDataFrame containing original buildings.
    id_name : str
        The name of the unique blocks ID column.
    unique_id : str
        The name of the column with unique ID.

    Examples
    --------
    >>> blocks = mm.Blocks(tessellation_df, streets_df, buildings_df, 'bID', 'uID')
    >>> blocks.blocks.head()
        bID	geometry
    0	1.0	POLYGON ((1603560.078648818 6464202.366899694,...
    1	2.0	POLYGON ((1603457.225976106 6464299.454696888,...
    2	3.0	POLYGON ((1603056.595487018 6464093.903488506,...
    3	4.0	POLYGON ((1603260.943782872 6464141.327631323,...
    4	5.0	POLYGON ((1603183.399594798 6463966.109982309,...
    """

    def __init__(self, tessellation, edges, buildings, id_name, unique_id):
        self.tessellation = tessellation
        self.edges = edges
        self.buildings = buildings
        self.id_name = id_name
        self.unique_id = unique_id

        if id_name in buildings.columns:
            raise ValueError(
                f"'{id_name}' column cannot be in the buildings GeoDataFrame."
            )

        cut = gpd.overlay(
            tessellation,
            gpd.GeoDataFrame(geometry=edges.buffer(0.001)),
            how="difference",
        )
        cut = cut.explode(ignore_index=True)
        weights = libpysal.weights.Queen.from_dataframe(
            cut, silence_warnings=True, use_index=False
        )
        cut["component"] = weights.component_labels
        buildings_c = buildings.copy()
        buildings_c.geometry = buildings_c.representative_point()  # make points
        centroids_temp_id = gpd.sjoin(
            buildings_c,
            cut[[cut.geometry.name, "component"]],
            how="left",
            predicate="within",
        )

        cells_copy = tessellation[[unique_id, tessellation.geometry.name]].merge(
            centroids_temp_id[[unique_id, "component"]], on=unique_id, how="left"
        )
        blocks = cells_copy.dissolve(by="component").explode(ignore_index=True)
        blocks[id_name] = range(len(blocks))
        blocks = blocks[[id_name, blocks.geometry.name]]

        centroids_w_bl_id2 = gpd.sjoin(
            buildings_c, blocks, how="left", predicate="within"
        )

        self.buildings_id = centroids_w_bl_id2[id_name]

        cells_m = tessellation[[unique_id]].merge(
            centroids_w_bl_id2[[unique_id, id_name]], on=unique_id, how="left"
        )

        self.tessellation_id = cells_m[id_name]
        self.tessellation_id.index = self.tessellation.index

        self.blocks = blocks


@deprecated("get_nearest_street")
def get_network_id(left, right, network_id, min_size=100, verbose=True):
    """
    Snap each element (preferably building) to the closest
    street network segment and save its ID. Also, adds network ID to elements.

    Parameters
    ----------
    left : GeoDataFrame
        A GeoDataFrame containing objects to snap.
    right : GeoDataFrame
        A GeoDataFrame containing a street network with unique network IDs.
        If there is none, it can be generated with :func:`momepy.unique_id`.
    network_id : str, list, np.array, pd.Series (default None)
        The name of the streets dataframe column, ``np.array``, or ``pd.Series``
        with network unique IDs.
    min_size : int (default 100)
        A minimum size should be a valuee such that if you build a box centered in each
        building centroid with edges of size ``2*min_size``, you know a priori that at
        least one segment is intersected with the box.
    verbose : bool (default True)
        If ``True``, shows progress bars in loops and indication of steps.

    Returns
    -------
    elements_nID : Series
        A Series containing network ID for elements.

    Examples
    --------
    >>> buildings_df['nID'] = momepy.get_network_id(buildings_df, streets_df, 'nID')
    Generating centroids...
    Generating rtree...
    Snapping: 100%|██████████| 144/144 [00:00<00:00, 2718.98it/s]
    >>> buildings_df['nID'][0]
    1

    See also
    --------
    momepy.get_network_ratio
    momepy.get_node_id
    """
    infty = 1000000000000
    left = left.copy()
    right = right.copy()

    if not isinstance(network_id, str):
        right["mm_nid"] = network_id
        network_id = "mm_nid"

    buildings_c = left.copy()

    buildings_c[buildings_c.geometry.name] = buildings_c.centroid  # make centroids

    idx = right.sindex

    # TODO: use sjoin nearest once done
    result = []
    for p in tqdm(
        buildings_c.geometry,
        total=buildings_c.shape[0],
        desc="Snapping",
        disable=not verbose,
    ):
        pbox = (p.x - min_size, p.y - min_size, p.x + min_size, p.y + min_size)
        hits = list(idx.intersection(pbox))
        d = infty
        nid = None
        for h in hits:
            new_d = p.distance(right.geometry.iloc[h])
            if d >= new_d:
                d = new_d
                nid = right[network_id].iloc[h]
        if nid is None:
            result.append(np.nan)
        else:
            result.append(nid)

    series = pd.Series(result, index=left.index)

    if series.isnull().any():
        warnings.warn(
            message=(
                "Some objects were not attached to the network. Set larger "
                f"`min_size``. {sum(series.isnull())} affected elements."
            ),
            category=UserWarning,
            stacklevel=2,
        )
    return series


@deprecated("get_nearest_node")
def get_node_id(
    objects,
    nodes,
    edges,
    node_id,
    edge_id=None,
    edge_keys=None,
    edge_values=None,
    verbose=True,
):
    """
    Snap each building to the closest street network node on the closest network edge.
    Adds node ID to objects (preferably buildings). Gets ID of edge
    (:func:`momepy.get_network_id` or :func:`get_network_ratio`), and determines
    which of its end points is closer to the building centroid. Pass either ``edge_id``
    with a single value or ``edge_keys`` and ``edge_values`` with ratios.

    Parameters
    ----------
    objects : GeoDataFrame
        A GeoDataFrame containing objects to snap.
    nodes : GeoDataFrame
        A GeoDataFrame containing street nodes with unique node IDs.
        If there is none, it can be generated by :func:`momepy.unique_id`.
    edges : GeoDataFrame
        A GeoDataFrame containing street edges with unique edge IDs and IDs
        of start and end points of each segment. Start and endpoints are default
        outcome of :func:`momepy.nx_to_gdf`.
    node_id : str, list, np.array, pd.Series
        The name of the ``nodes`` dataframe column, ``np.array``,
        or ``pd.Series`` with a unique ID.
    edge_id : str (default None)
        The name of the objects dataframe column with unique edge IDs
        (like an outcome of :func:`momepy.get_network_id`).
    edge_keys : str (default None)
        The name of the objects dataframe column with ``edgeID_keys``
        (like an outcome of :func:`momepy.get_network_ratio`).
    edge_values : str (default None)
        The name of the objects dataframe column with ``edgeID_values``
        (like an outcome of :func:`momepy.get_network_ratio`).
    verbose : bool (default True)
        If ``True``, shows progress bars in loops and indication of steps.

    Returns
    -------
    node_ids : Series
        A Series containing node the ID for objects.
    """
    nodes = nodes.set_index(node_id)

    if not isinstance(node_id, str):
        nodes["mm_noid"] = node_id
        node_id = "mm_noid"

    results_list = []
    if edge_id is not None:
        edges = edges.set_index(edge_id)
        centroids = objects.centroid
        for eid, centroid in tqdm(
            zip(objects[edge_id], centroids, strict=True),
            total=objects.shape[0],
            disable=not verbose,
        ):
            if pd.isna(eid):
                results_list.append(pd.NA)
            else:
                edge = edges.loc[eid]
                start_id = edge.node_start
                start = nodes.loc[start_id].geometry
                sd = centroid.distance(start)
                end_id = edge.node_end
                end = nodes.loc[end_id].geometry
                ed = centroid.distance(end)
                if sd > ed:
                    results_list.append(end_id)
                else:
                    results_list.append(start_id)

    elif edge_keys is not None and edge_values is not None:
        for edge_i, edge_r, geom in tqdm(
            zip(
                objects[edge_keys], objects[edge_values], objects.geometry, strict=True
            ),
            total=objects.shape[0],
            disable=not verbose,
        ):
            edge = edges.iloc[edge_i[edge_r.index(max(edge_r))]]
            start_id = edge.node_start
            start = nodes.loc[start_id].geometry
            sd = geom.distance(start)
            end_id = edge.node_end
            end = nodes.loc[end_id].geometry
            ed = geom.distance(end)
            if sd > ed:
                results_list.append(end_id)
            else:
                results_list.append(start_id)

    series = pd.Series(results_list, index=objects.index)
    return series


def get_network_ratio(df, edges, initial_buffer=500):
    """
    Link polygons to network edges based on the proportion of overlap (if a cell
    intersects more than one edge). Useful if you need to link enclosed tessellation to
    street network. Ratios can be used as weights when linking network-based values
    to cells. For a purely distance-based link use :func:`momepy.get_network_id`.
    Links are based on the integer position of edge (``iloc``).

    Parameters
    ----------
    df : GeoDataFrame
        A GeoDataFrame containing objects to snap (typically enclosed tessellation).
    edges : GeoDataFrame
        A GeoDataFrame containing a street network.
    initial_buffer : float
        The initial buffer used to link non-intersecting cells.

    Returns
    -------
    result : DataFrame
        The resultant DataFrame.

    See also
    --------
    momepy.get_network_id
    momepy.get_node_id

    Examples
    --------
    >>> links = mm.get_network_ratio(enclosed_tessellation, streets)
    >>> links.head()
      edgeID_keys                              edgeID_values
    0        [34]                                      [1.0]
    1     [0, 34]  [0.38508998545027145, 0.6149100145497285]
    2        [32]                                        [1]
    3         [0]                                      [1.0]
    4        [26]                                        [1]
    """

    (df_ix, edg_ix), dist = edges.sindex.nearest(
        df.geometry, max_distance=initial_buffer, return_distance=True
    )

    touching = dist < 0.1

    intersections = (
        df.iloc[df_ix[touching]]
        .intersection(edges.buffer(0.0001).iloc[edg_ix[touching]], align=False)
        .reset_index()
    )

    mask = intersections.area > 0.0001

    df_ix_touching = df_ix[touching][mask]
    lengths = intersections[mask].area
    grouped = lengths.groupby(df_ix_touching)
    totals = grouped.sum()
    ints_vect = []
    for name, group in grouped:
        ratios = group / totals.loc[name]
        ints_vect.append(
            {edg_ix[touching][item[0]]: item[1] for item in ratios.items()}
        )

    ratios = pd.Series(ints_vect, index=df.index[list(grouped.groups.keys())])

    near = []
    df_ix_non = df_ix[~touching]
    grouped = pd.Series(dist[~touching]).groupby(df_ix_non)
    for _, group in grouped:
        near.append({edg_ix[~touching][group.idxmin()]: 1.0})

    near = pd.Series(near, index=df.index[list(grouped.groups.keys())])

    ratios = pd.concat([ratios, near])

    nans = df[~df.index.isin(ratios.index)]
    if not nans.empty:
        df_ix, edg_ix = edges.sindex.nearest(
            nans.geometry, return_all=False, max_distance=None
        )
        additional = pd.Series([{i: 1.0} for i in edg_ix], index=nans.index)

        ratios = pd.concat([ratios, additional])

    result = pd.DataFrame()
    result["edgeID_keys"] = ratios.apply(lambda d: list(d.keys()))
    result["edgeID_values"] = ratios.apply(lambda d: list(d.values()))

    return result


def enclosures(
    primary_barriers,
    limit=None,
    additional_barriers=None,
    enclosure_id="eID",
    clip=False,
):
    """
    Generate enclosures based on passed barriers. Enclosures are areas enclosed from
    all sides by at least one type of a barrier. Barriers are typically roads,
    railways, natural features like rivers and other water bodies or coastline.
    Enclosures are a result of polygonization of the  ``primary_barrier`` and ``limit``
    and its subdivision based on additional_barriers.

    Parameters
    ----------
    primary_barriers : GeoDataFrame, GeoSeries
        A GeoDataFrame or GeoSeries containing primary barriers.
        (Multi)LineString geometry is expected.
    limit : GeoDataFrame, GeoSeries, shapely geometry (default None)
        A GeoDataFrame, GeoSeries or shapely geometry containing external limit
        of enclosures, i.e. the area which gets partitioned. If ``None`` is passed,
        the internal area of ``primary_barriers`` will be used.
    additional_barriers : GeoDataFrame
        A GeoDataFrame or GeoSeries containing additional barriers.
        (Multi)LineString geometry is expected.
    enclosure_id : str (default 'eID')
        The name of the ``enclosure_id`` (to be created).
    clip : bool (default False)
        If ``True``, returns enclosures with representative point within the limit
        (if given). Requires ``limit`` composed of Polygon or MultiPolygon geometries.

    Returns
    -------
    enclosures : GeoDataFrame
       A GeoDataFrame containing enclosure geometries and ``enclosure_id``.

    Examples
    --------
    >>> enclosures = mm.enclosures(streets, admin_boundary, [railway, rivers])
    """
    if limit is not None:
        if isinstance(limit, BaseGeometry):
            limit = gpd.GeoSeries([limit], crs=primary_barriers.crs)
        if limit.geom_type.isin(["Polygon", "MultiPolygon"]).any():
            limit_b = limit.boundary
        else:
            limit_b = limit
        barriers = pd.concat([primary_barriers.geometry, limit_b.geometry])
    else:
        barriers = primary_barriers
    unioned = barriers.union_all() if GPD_GE_10 else barriers.unary_union
    polygons = polygonize(unioned)
    enclosures = gpd.GeoSeries(list(polygons), crs=primary_barriers.crs)

    if additional_barriers is not None:
        if not isinstance(additional_barriers, list):
            raise TypeError(
                "`additional_barriers` expects a list of GeoDataFrames "
                f"or GeoSeries. Got {type(additional_barriers)}."
            )
        additional = pd.concat([gdf.geometry for gdf in additional_barriers])

        if GPD_GE_013:
            inp, res = enclosures.sindex.query(
                additional.geometry, predicate="intersects"
            )
        else:
            inp, res = enclosures.sindex.query_bulk(
                additional.geometry, predicate="intersects"
            )
        unique = np.unique(res)

        new = []

        for i in unique:
            poly = enclosures.array[i]  # get enclosure polygon
            crossing = inp[res == i]  # get relevant additional barriers
            buf = shapely.buffer(poly, 0.01)  # to avoid floating point errors
            crossing_ins = shapely.intersection(
                buf, additional.array[crossing]
            )  # keeping only parts of additional barriers within polygon
            union = shapely.union_all(
                np.append(crossing_ins, shapely.boundary(poly))
            )  # union
            polygons = shapely.get_parts(shapely.polygonize([union]))  # polygonize
            within = shapely.covered_by(
                polygons, buf
            )  # keep only those within original polygon
            new += list(polygons[within])

        final_enclosures = pd.concat(
            [
                gpd.GeoSeries(enclosures).drop(unique),
                gpd.GeoSeries(new, crs=primary_barriers.crs),
            ]
        ).reset_index(drop=True)

        final_enclosures = gpd.GeoDataFrame(
            {enclosure_id: range(len(final_enclosures))}, geometry=final_enclosures
        )

    else:
        final_enclosures = gpd.GeoDataFrame(
            {enclosure_id: range(len(enclosures))}, geometry=enclosures
        )

    if clip and limit is not None:
        if not limit.geom_type.isin(["Polygon", "MultiPolygon"]).all():
            raise TypeError(
                "`limit` requires a GeoDataFrame or GeoSeries with Polygon or "
                "MultiPolygon geometry to be used with `clip=True`."
            )
        if GPD_GE_013:
            _, encl_index = final_enclosures.representative_point().sindex.query(
                limit.geometry, predicate="contains"
            )
        else:
            _, encl_index = final_enclosures.representative_point().sindex.query_bulk(
                limit.geometry, predicate="contains"
            )
        keep = np.unique(encl_index)
        return final_enclosures.iloc[keep]

    return final_enclosures