File: _dimension.py

package info (click to toggle)
python-momepy 0.8.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 51,428 kB
  • sloc: python: 11,098; makefile: 35; sh: 11
file content (619 lines) | stat: -rw-r--r-- 19,255 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
import math

import numpy as np
import pandas as pd
import shapely
from geopandas import GeoDataFrame, GeoSeries
from libpysal.graph import Graph
from numpy.typing import NDArray
from pandas import DataFrame, Series

__all__ = [
    "volume",
    "floor_area",
    "courtyard_area",
    "longest_axis_length",
    "perimeter_wall",
    "street_profile",
    "weighted_character",
]

try:
    from numba import njit

    HAS_NUMBA = True
except (ModuleNotFoundError, ImportError):
    HAS_NUMBA = False
    from libpysal.common import jit as njit


def volume(
    area: NDArray[np.float64] | Series,
    height: NDArray[np.float64] | Series,
) -> NDArray[np.float64] | Series:
    """
    Calculates volume of each object in given GeoDataFrame based on its height and area.

    .. math::
        area * height

    Parameters
    ----------
    area : NDArray[np.float64] | Series
        array of areas
    height : NDArray[np.float64] | Series
        array of heights

    Returns
    -------
    NDArray[np.float64] | Series
        array of a type depending on the input

    Examples
    --------
    >>> import pandas as pd
    >>> area = pd.Series([100, 30, 40, 75, 230])
    >>> height = pd.Series([22, 6.5, 12, 9, 4.5])
    >>> momepy.volume(area, height)
    0    2200.0
    1     195.0
    2     480.0
    3     675.0
    4    1035.0
    dtype: float64
    """
    return area * height


def floor_area(
    area: NDArray[np.float64] | Series,
    height: NDArray[np.float64] | Series,
    floor_height: float | NDArray[np.float64] | Series = 3,
) -> NDArray[np.float64] | Series:
    """Calculates floor area of each object based on height and area.

    The number of
    floors is simplified into the formula: ``height // floor_height``. B
    y default one floor is approximated to 3 metres.

    .. math::
        area * \\frac{height}{floor_height}


    Parameters
    ----------
    area : NDArray[np.float64] | Series
        array of areas
    height : NDArray[np.float64] | Series
        array of heights
    floor_height : float | NDArray[np.float64] | Series, optional
        float denoting the uniform floor height or an aarray reflecting the building
        height by geometry, by default 3

    Returns
    -------
    NDArray[np.float64] | Series
        array of a type depending on the input

    Examples
    --------
    >>> import pandas as pd
    >>> area = pd.Series([100, 30, 40, 75, 230])
    >>> height = pd.Series([22, 6.5, 12, 9, 4.5])
    >>> momepy.floor_area(area, height)
    0    700.0
    1     60.0
    2    160.0
    3    225.0
    4    230.0
    dtype: float64

    If you know average height of floors per each building, you can pass it directly:

    >>> floor_height = pd.Series([3.2, 3, 4, 3, 4.5])
    >>> momepy.floor_area(area, height, floor_height=floor_height)
    0    600.0
    1     60.0
    2    120.0
    3    225.0
    4    230.0
    dtype: float64
    """
    return area * (height // floor_height)


def courtyard_area(geometry: GeoDataFrame | GeoSeries) -> Series:
    """Calculates area of holes within geometry - area of courtyards.

    Parameters
    ----------
    geometry : GeoDataFrame | GeoSeries
        A GeoDataFrame or GeoSeries containing polygons to analyse.

    Returns
    -------
    Series

    Examples
    --------
    >>> path = momepy.datasets.get_path("bubenec")
    >>> buildings = geopandas.read_file(path, layer="buildings")
    >>> ca = momepy.courtyard_area(buildings)
    >>> ca
    0      0.0
    1      0.0
    2      0.0
    3      0.0
    4      0.0
        ...
    139    0.0
    140    0.0
    141    0.0
    142    0.0
    143    0.0
    Name: courtyard_area, Length: 144, dtype: float64

    Verify that at least some buildings have courtyards:

    >>> ca.sum()
    np.float64(353.33274206543274)
    """
    return Series(
        shapely.area(
            shapely.polygons(shapely.get_exterior_ring(geometry.geometry.array))
        )
        - geometry.area,
        index=geometry.index,
        name="courtyard_area",
    )


def longest_axis_length(geometry: GeoDataFrame | GeoSeries) -> Series:
    """Calculates the length of the longest axis of object.

    Axis is defined as a
    diameter of minimal bounding circle around the geometry. It does
    not have to be fully inside an object.

    .. math::
        \\max \\left\\{d_{1}, d_{2}, \\ldots, d_{n}\\right\\}

    Parameters
    ----------
    geometry : GeoDataFrame | GeoSeries
        A GeoDataFrame or GeoSeries containing polygons to analyse.

    Returns
    -------
    Series

    Examples
    --------
    >>> path = momepy.datasets.get_path("bubenec")
    >>> buildings = geopandas.read_file(path, layer="buildings")
    >>> momepy.longest_axis_length(buildings)
    0       40.265562
    1      191.254382
    2       37.247151
    3       47.022428
    4       37.170142
            ...
    139     11.587272
    140     27.747002
    141     52.566435
    142     11.091309
    143     15.472821
    Name: geometry, Length: 144, dtype: float64
    """
    return shapely.minimum_bounding_radius(geometry.geometry) * 2


def perimeter_wall(
    geometry: GeoDataFrame | GeoSeries, graph: Graph | None = None, buffer: float = 0.01
) -> Series:
    """Calculate the perimeter wall length of the joined structure.

    Parameters
    ----------
    geometry : GeoDataFrame | GeoSeries
        A GeoDataFrame or GeoSeries containing polygons to analyse.
    graph : Graph | None, optional
        Graph encoding Queen contiguity of ``geometry``. If ``None`` Queen contiguity is
        built on the fly.
    buffer: float
        Buffer value for the geometry. It can be used
        to account for topological problems.

    Returns
    -------
    Series

    Examples
    --------
    >>> path = momepy.datasets.get_path("bubenec")
    >>> buildings = geopandas.read_file(path, layer="buildings")
    >>> momepy.perimeter_wall(buildings)
    0      137.186310
    1      663.342296
    2      663.342296
    3      663.342296
    4      663.342296
            ...
    139     42.839590
    140     78.562927
    141    147.342182
    142    118.354123
    143    342.909172
    Name: perimeter_wall, Length: 144, dtype: float64

    By default, ``momepy`` calculates a Queen contiguity graph to determine connected
    components. Alternatively, you can pass that yourself. This can be useful when
    the graph is already computed or when you need to use a different method due to
    topological issues.

    >>> from libpysal import graph
    >>> strict_contig = graph.Graph.build_contiguity(
    ...     buildings, rook=False, strict=True,
    ... )
    >>> momepy.perimeter_wall(buildings, graph=strict_contig)
    0      137.186310
    1      663.342296
    2      663.342296
    3      663.342296
    4      663.342296
            ...
    139     42.839590
    140     78.562927
    141    147.342182
    142    118.354123
    143    342.909172
    Name: perimeter_wall, Length: 144, dtype: float64
    """

    if graph is None:
        graph = Graph.build_contiguity(geometry, rook=False)

    isolates = graph.isolates

    # measure perimeter walls of connected components while ignoring isolates
    blocks = geometry.drop(isolates)
    component_perimeter = (
        blocks[[blocks.geometry.name]]
        .set_geometry(blocks.buffer(buffer))  # type: ignore
        .dissolve(by=graph.component_labels.drop(isolates))
        .exterior.length
    )

    # combine components with isolates
    results = Series(np.nan, index=geometry.index, name="perimeter_wall")
    results.loc[isolates] = geometry.geometry[isolates].exterior.length
    results.loc[results.index.drop(isolates)] = component_perimeter.loc[
        graph.component_labels.loc[results.index.drop(isolates)]
    ].values

    return results


def weighted_character(
    y: NDArray[np.float64] | Series, area: NDArray[np.float64] | Series, graph: Graph
) -> Series:
    """Calculates the weighted character.

    Character weighted by the area of the objects within neighbors defined in ``graph``.
    Results are index based on ``graph``.

    .. math::
        \\frac{\\sum_{i=1}^{n} {character_{i} * area_{i}}}{\\sum_{i=1}^{n} area_{i}}

    Adapted from :cite:`dibble2017`.

    Notes
    -----
    The index of ``y`` and ``area`` must match the index along which the ``graph`` is
    built.

    Parameters
    ----------
    y : NDArray[np.float64] | Series
        The character values to be weighted.
    area : NDArray[np.float64] | Series
        The area values to be used as weightss
    graph : libpysal.graph.Graph
        A spatial weights matrix for values and areas.

    Returns
    -------
    Series
        A Series containing the resulting values.

    Examples
    --------
    Area-weighted elongation within 5 nearest neighbors:

    >>> from libpysal import graph
    >>> path = momepy.datasets.get_path("bubenec")
    >>> buildings = geopandas.read_file(path, layer="buildings")
    >>> buildings.head()
       uID                                           geometry
    0    1  POLYGON ((1603599.221 6464369.816, 1603602.984...
    1    2  POLYGON ((1603042.88 6464261.498, 1603038.961 ...
    2    3  POLYGON ((1603044.65 6464178.035, 1603049.192 ...
    3    4  POLYGON ((1603036.557 6464141.467, 1603036.969...
    4    5  POLYGON ((1603082.387 6464142.022, 1603081.574...

    Measure elongation (or anything else):

    >>> elongation = momepy.elongation(buildings)
    >>> elongation.head()
    0    0.908244
    1    0.581318
    2    0.726527
    3    0.838840
    4    0.727294
    Name: elongation, dtype: float64

    Define spatial graph:

    >>> knn5 = graph.Graph.build_knn(buildings.centroid, k=5)
    >>> knn5
    <Graph of 144 nodes and 720 nonzero edges indexed by
     [0, 1, 2, 3, 4, ...]>

    Measure the area-weighted character:

    >>> momepy.weighted_character(elongation, buildings.area, knn5)
    focal
    0      0.808190
    1      0.817309
    2      0.627589
    3      0.794769
    4      0.806403
             ...
    139    0.780744
    140    0.875046
    141    0.753670
    142    0.440000
    143    0.901127
    Name: sum, Length: 144, dtype: float64
    """

    stats = graph.describe(y * area, statistics=["sum"])["sum"]
    agg_area = graph.describe(area, statistics=["sum"])["sum"]

    return stats / agg_area


def street_profile(
    streets: GeoDataFrame,
    buildings: GeoDataFrame,
    distance: float = 10,
    tick_length: float = 50,
    height: None | Series = None,
) -> DataFrame:
    """Calculates the street profile characters.

    This functions returns a DataFrame with widths, standard deviation of width,
    openness, heights, standard deviation of height and
    ratio height/width. The algorithm generates perpendicular lines to the ``streets``
    dataframe features every ``distance`` and measures values on intersections with
    features of ``buildings``. If no feature is reached within ``tick_length`` its value
    is set as width (being a theoretical maximum).

    Derived from :cite:`araldi2019`.

    Parameters
    ----------
    streets : GeoDataFrame
        A GeoDataFrame containing streets to analyse.
    buildings : GeoDataFrame
        A GeoDataFrame containing buildings along the streets.
        Only Polygon geometries are currently supported.
    distance : int (default 10)
        The distance between perpendicular ticks.
    tick_length : int (default 50)
        The length of ticks.
    height: pd.Series (default None)
        The ``pd.Series`` where building height are stored. If set to ``None``,
        height and ratio height/width will not be calculated.

    Returns
    -------
    DataFrame

    Examples
    --------
    >>> path = momepy.datasets.get_path("bubenec")
    >>> buildings = geopandas.read_file(path, layer="buildings")
    >>> streets = geopandas.read_file(path, layer="streets")
    >>> streets.head()
                                                geometry
    0  LINESTRING (1603585.64 6464428.774, 1603413.20...
    1  LINESTRING (1603268.502 6464060.781, 1603296.8...
    2  LINESTRING (1603607.303 6464181.853, 1603592.8...
    3  LINESTRING (1603678.97 6464477.215, 1603675.68...
    4  LINESTRING (1603537.194 6464558.112, 1603557.6...

    >>> result = momepy.street_profile(streets, buildings)
    >>> result.head()
           width  openness  width_deviation
    0  47.905964  0.946429         0.020420
    1  42.418068  0.615385         2.644521
    2  32.131831  0.608696         2.864438
    3  50.000000  1.000000              NaN
    4  50.000000  1.000000              NaN

    If you know height of each building, you can pass that along to get back
    more information:

    >>> import numpy as np
    >>> import pandas as pd
    >>> rng = np.random.default_rng(seed=42)
    >>> height = pd.Series(rng.integers(low=9, high=30, size=len(buildings)))
    >>> result = momepy.street_profile(streets, buildings, height=height)
    >>> result.head()
           width  openness  width_deviation     height  height_deviation  hw_ratio
    0  47.905964  0.946429         0.020420  12.666667          4.618802  0.264407
    1  42.418068  0.615385         2.644521  21.500000          6.467869  0.506859
    2  32.131831  0.608696         2.864438  17.555556          4.901647  0.546360
    3  50.000000  1.000000              NaN        NaN               NaN       NaN
    4  50.000000  1.000000              NaN        NaN               NaN       NaN
    """

    # filter relevant buildings and streets
    inp, res = shapely.STRtree(streets.geometry).query(
        buildings.geometry, predicate="dwithin", distance=tick_length // 2
    )
    buildings_near_streets = np.unique(inp)
    streets_near_buildings = np.unique(res)
    relevant_buildings = buildings.iloc[buildings_near_streets].reset_index(drop=True)
    relevant_streets = streets.iloc[streets_near_buildings].reset_index(drop=True)
    if height is not None:
        height = height.iloc[buildings_near_streets].reset_index(drop=True)

    # calculate street profile on a subset of the data
    partial_res = _street_profile(
        relevant_streets,
        relevant_buildings,
        distance=distance,
        tick_length=tick_length,
        height=height,
    )

    # return full result with defaults
    final_res = pd.DataFrame(np.nan, index=streets.index, columns=partial_res.columns)
    final_res.iloc[streets_near_buildings[partial_res.index.values]] = (
        partial_res.values
    )
    ## streets with no buildings get the theoretical width and max openness
    final_res.loc[final_res["width"].isna(), "width"] = tick_length
    final_res.loc[final_res["openness"].isna(), "openness"] = 1

    return final_res


def _street_profile(
    streets: GeoDataFrame,
    buildings: GeoDataFrame,
    distance: float = 10,
    tick_length: float = 50,
    height: None | Series = None,
) -> DataFrame:
    """Helper function that actually calculates the street profile characters."""

    ## generate points for every street at `distance` intervals
    segments = streets.segmentize(distance)
    coords, coord_indxs = shapely.get_coordinates(segments, return_index=True)
    starts = ~pd.Series(coord_indxs).duplicated(keep="first")
    ends = ~pd.Series(coord_indxs).duplicated(keep="last")
    end_markers = starts | ends

    ## generate tick streings
    njit_ticks = generate_ticks(coords, end_markers.values, tick_length)
    ticks = shapely.linestrings(njit_ticks.reshape(-1, 2, 2))

    ## find the length of intersection of the nearest building for every tick
    inp, res = buildings.geometry.sindex.query(ticks, predicate="intersects")
    intersections = shapely.intersection(ticks[inp], buildings.geometry.array[res])
    distances = shapely.distance(intersections, shapely.points(coords[inp // 2]))

    # streets which intersect buildings have 0 distance to them
    distances[np.isnan(distances)] = 0
    min_distances = pd.Series(distances).groupby(inp).min()
    dists = np.full((len(ticks),), np.nan)
    dists[min_distances.index.values] = min_distances.values

    ## generate tick values and groupby street
    tick_coords = np.repeat(coord_indxs, 2)
    ## multiple agg to avoid custom apply
    left_ticks = (
        pd.Series(dists[::2])
        .groupby(tick_coords[::2])
        .mean()
        .replace(np.nan, tick_length // 2)
    )
    right_ticks = (
        pd.Series(dists[1::2])
        .groupby(tick_coords[1::2])
        .mean()
        .replace(np.nan, tick_length // 2)
    )
    w = left_ticks + right_ticks

    grouper = pd.Series(dists).groupby(tick_coords)
    openness_agg = grouper.agg(["size", "count"])
    # proportion of NAs
    o = (openness_agg["size"] - openness_agg["count"]) / openness_agg["size"]
    # needs to be seperate to pass ddof
    wd = grouper.std(ddof=0)

    final_result = pd.DataFrame(
        np.nan, columns=["width", "openness", "width_deviation"], index=streets.index
    )
    final_result["width"] = w
    final_result["openness"] = o
    final_result["width_deviation"] = wd

    ## if heights are available add heights stats to the result
    if height is not None:
        min_heights = height.loc[res].groupby(inp).min()
        tick_heights = np.full((len(ticks),), np.nan)
        tick_heights[min_heights.index.values] = min_heights.values
        heights_res = pd.Series(tick_heights).groupby(tick_coords).agg(["mean", "std"])
        final_result["height"] = heights_res["mean"]
        final_result["height_deviation"] = heights_res["std"]
        final_result["hw_ratio"] = final_result["height"] / final_result[
            "width"
        ].replace(0, np.nan)

    return final_result


# angle between two points
@njit
def _get_angle_njit(x1, y1, x2, y2):
    """
    pt1, pt2 : tuple
    """
    x_diff = x2 - x1
    y_diff = y2 - y1
    return math.degrees(math.atan2(y_diff, x_diff))


# get the second end point of a tick
# p1 = bearing + 90
@njit
def _get_point_njit(x1, y1, bearing, dist):
    bearing = math.radians(bearing)
    x = x1 + dist * math.cos(bearing)
    y = y1 + dist * math.sin(bearing)
    return np.array((x, y))


@njit
def generate_ticks(list_points, end_markers, tick_length):
    ticks = np.empty((len(list_points) * 2, 4), dtype=float)

    for i in range(len(list_points)):
        tick_pos = i * 2
        end = end_markers[i]
        pt = list_points[i]

        if end:
            ticks[tick_pos, :] = np.array([pt[0], pt[1], pt[0], pt[1]])
            ticks[tick_pos + 1, :] = np.array([pt[0], pt[1], pt[0], pt[1]])
        else:
            next_pt = list_points[i + 1]
            njit_angle1 = _get_angle_njit(pt[0], pt[1], next_pt[0], next_pt[1])
            njit_end_1 = _get_point_njit(
                pt[0], pt[1], njit_angle1 + 90, tick_length / 2
            )
            njit_angle2 = _get_angle_njit(njit_end_1[0], njit_end_1[1], pt[0], pt[1])
            njit_end_2 = _get_point_njit(
                njit_end_1[0], njit_end_1[1], njit_angle2, tick_length
            )
            ticks[tick_pos, :] = np.array([njit_end_1[0], njit_end_1[1], pt[0], pt[1]])
            ticks[tick_pos + 1, :] = np.array(
                [njit_end_2[0], njit_end_2[1], pt[0], pt[1]]
            )

    return ticks