1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
|
import numpy as np
import pandas as pd
from libpysal.graph import Graph
from libpysal.graph._utils import _percentile_filtration_grouper
from numpy.typing import NDArray
from packaging.version import Version
from pandas import DataFrame, Series
from ..diversity import shannon_diversity, simpson_diversity
try:
from numba import njit
HAS_NUMBA = True
except (ModuleNotFoundError, ImportError):
HAS_NUMBA = False
from libpysal.common import jit as njit
from libpysal.graph._utils import (
_compute_stats,
_limit_range,
)
__all__ = [
"mean_deviation",
"describe_agg",
"describe_reached_agg",
"values_range",
"theil",
"simpson",
"shannon",
"gini",
"percentile",
]
def _get_grouper(y, graph):
return y.take(graph._adjacency.index.codes[1]).groupby(
graph._adjacency.index.codes[0]
)
@njit
def _interpolate(values, q):
weights = values[:, 0]
group = values[:, 1]
nan_tracker = np.isnan(group)
if nan_tracker.all():
return np.array([float(np.nan) for _ in q])
group = group[~nan_tracker]
sorter = np.argsort(group)
group = group[sorter]
weights = weights[~nan_tracker][sorter]
xs = np.cumsum(weights) - 0.5 * weights
xs = xs / weights.sum()
ys = group
interpolate = np.interp(
[x / 100 for x in q],
xs,
ys,
)
return interpolate
def _percentile_limited_group_grouper(y, group_index, q=(25, 75)):
"""Carry out a filtration of group members based on \\
quantiles, specified in ``q``"""
grouper = y.reset_index(drop=True).groupby(group_index)
if HAS_NUMBA:
to_keep = grouper.transform(
_limit_range, q[0], q[1], engine="numba"
).values.astype(bool)
else:
to_keep = grouper.transform(
lambda x: _limit_range(x.values, x.index, q[0], q[1])
).values.astype(bool)
filtered_grouper = y[to_keep].groupby(group_index[to_keep])
return filtered_grouper
def describe_agg(
y: NDArray[np.float64] | Series,
aggregation_key: NDArray[np.float64] | Series,
q: tuple[float, float] | list[float] | None = None,
statistics: list[str] | None = None,
) -> DataFrame:
"""Describe the distribution of values within the groups of an aggregation.
The desired statistics to compute can be passed to ``statistics``.
By default the statistics calculated are count,
sum, mean, median, std, nunique, mode.
Adapted from :cite:`hermosilla2012` and :cite:`feliciotti2018`.
Notes
-----
The numba package is used extensively in this function to accelerate the computation
of statistics. Without numba, these computations may become slow on large data.
Parameters
----------
y : Series | numpy.array
A Series or numpy.array containing values to analyse.
aggregation_key : Series | numpy.array
The unique ID that specifies the aggregation
of ``y`` objects to groups.
q : tuple[float, float] | None, optional
Tuple of percentages for the percentiles to compute. Values must be between 0
and 100 inclusive. When set, values below and above the percentiles will be
discarded before computation of the average. The percentiles are computed for
each neighborhood. By default None.
statistics : list[str]
A list of stats functions to pass to groupby.agg.
Returns
-------
DataFrame
Examples
--------
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> streets = geopandas.read_file(path, layer="streets")
>>> buildings["street_index"] = momepy.get_nearest_street(buildings, streets)
>>> buildings.head()
uID geometry street_index
0 1 POLYGON ((1603599.221 6464369.816, 1603602.984... 0.0
1 2 POLYGON ((1603042.88 6464261.498, 1603038.961 ... 33.0
2 3 POLYGON ((1603044.65 6464178.035, 1603049.192 ... 10.0
3 4 POLYGON ((1603036.557 6464141.467, 1603036.969... 8.0
4 5 POLYGON ((1603082.387 6464142.022, 1603081.574... 8.0
>>> momepy.describe_agg(buildings.area, buildings["street_index"]).head() # doctest: +SKIP
count mean median std min max sum nunique mode
street_index
0.0 9.0 366.827019 339.636871 266.747247 68.336193 800.045495 3301.443174 9.0 68.336193
1.0 1.0 618.447036 618.447036 NaN 618.447036 618.447036 618.447036 1.0 618.447036
2.0 12.0 504.523575 535.973108 318.660691 92.280807 1057.998520 6054.282903 12.0 92.280807
5.0 5.0 1150.865099 1032.693716 580.660030 673.015192 2127.752228 5754.325496 5.0 673.015192
6.0 7.0 662.179187 662.192603 291.397747 184.798661 1188.294675 4635.254306 7.0 184.798661
The result can be directly assigned a columns of the ``streets`` GeoDataFrame.
To eliminate the effect of outliers, you can take into account only values within a
specified percentile range (``q``). At the same time, you can specify only a subset
of statistics to compute:
>>> momepy.describe_agg(
... buildings.area,
... buildings["street_index"],
... q=(10, 90),
... statistics=["mean", "std"],
... ).head()
mean std
street_index
0.0 347.580212 219.797123
1.0 618.447036 NaN
2.0 476.592190 206.011102
5.0 984.519359 203.718644
6.0 652.432194 32.829824
""" # noqa: E501
if Version(pd.__version__) <= Version("2.1.0"):
raise ImportError("pandas 2.1.0 or newer is required to use this function.")
# series indice needs renaming, since multiindices
# without explicit names cannot be joined
if isinstance(y, np.ndarray):
y = pd.Series(y)
if isinstance(aggregation_key, np.ndarray):
aggregation_key = pd.Series(aggregation_key)
# aggregate data
if q is None:
grouper = y.groupby(aggregation_key)
else:
grouper = _percentile_limited_group_grouper(y, aggregation_key, q=q)
stats = _compute_stats(grouper, to_compute=statistics)
# fill only counts with zeros, other stats are NA
if "count" in stats.columns:
stats.loc[:, "count"] = stats.loc[:, "count"].fillna(0)
return stats
def describe_reached_agg(
y: NDArray[np.float64] | Series,
graph_index: NDArray[np.float64] | Series,
graph: Graph,
q: tuple[float, float] | list[float] | None = None,
statistics: list[str] | None = None,
) -> DataFrame:
"""Describe the distribution of values reached on a neighbourhood graph.
Given a neighborhood graph or a grouping, computes the descriptive statistics
of values reached. Optionally, the values can be limited to a certain
quantile range before computing the statistics.
The statistics calculated are count, sum, mean, median, std, nunique, mode.
The desired statistics to compute can be passed to ``statistics``
The neighbourhood is defined in ``graph``. If ``graph`` is ``None``,
the function will assume topological distance ``0`` (element itself)
and ``result_index`` is required in order to arrange the results.
If ``graph``, the results are arranged according to the spatial weights ordering.
Adapted from :cite:`hermosilla2012` and :cite:`feliciotti2018`.
Notes
-----
The numba package is used extensively in this function to accelerate the computation
of statistics. Without numba, these computations may become slow on large data.
Parameters
----------
y : Series | numpy.array
A Series or numpy.array containing values to analyse.
graph_index : Series | numpy.array
The unique ID that specifies the aggregation
of ``y`` objects to ``graph`` groups.
graph : libpysal.graph.Graph (default None)
A spatial weights matrix of the element ``y`` is grouped into.
q : tuple[float, float] | None, optional
Tuple of percentages for the percentiles to compute. Values must be between 0
and 100 inclusive. When set, values below and above the percentiles will be
discarded before computation of the average. The percentiles are computed for
each neighborhood. By default None.
statistics : list[str]
A list of stats functions to pass to groupby.agg.
Returns
-------
DataFrame
Examples
--------
>>> from libpysal import graph
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> streets = geopandas.read_file(path, layer="streets")
>>> buildings["street_index"] = momepy.get_nearest_street(buildings, streets)
>>> buildings.head()
uID geometry street_index
0 1 POLYGON ((1603599.221 6464369.816, 1603602.984... 0.0
1 2 POLYGON ((1603042.88 6464261.498, 1603038.961 ... 33.0
2 3 POLYGON ((1603044.65 6464178.035, 1603049.192 ... 10.0
3 4 POLYGON ((1603036.557 6464141.467, 1603036.969... 8.0
4 5 POLYGON ((1603082.387 6464142.022, 1603081.574... 8.0
>>> queen_contig = graph.Graph.build_contiguity(streets, rook=False)
>>> queen_contig
<Graph of 35 nodes and 148 nonzero edges indexed by
[0, 1, 2, 3, 4, ...]>
>>> momepy.describe_reached_agg(
... buildings.area,
... buildings["street_index"],
... queen_contig,
... ).head() # doctest: +SKIP
count mean median std min max sum nunique mode
0 43.0 643.595418 633.692589 412.563790 53.851509 2127.752228 27674.602973 43.0 53.851509
1 41.0 735.058515 662.921280 381.827737 51.246377 2127.752228 30137.399128 41.0 51.246377
2 50.0 636.304006 625.190488 450.182157 53.851509 2127.752228 31815.200298 50.0 53.851509
3 6.0 405.782514 370.352071 334.848563 57.138700 863.828420 2434.695086 6.0 57.138700
4 1.0 683.514930 683.514930 NaN 683.514930 683.514930 683.514930 1.0 683.514930
The result can be directly assigned a columns of the ``streets`` GeoDataFrame.
To eliminate the effect of outliers, you can take into account only values within a
specified percentile range (``q``). At the same time, you can specify only a subset
of statistics to compute:
>>> momepy.describe_reached_agg(
... buildings.area,
... buildings["street_index"],
... queen_contig,
... q=(10, 90),
... statistics=["mean", "std"],
... ).head()
mean std
0 619.104840 250.369496
1 721.441808 216.516469
2 597.379925 297.213321
3 378.431992 274.631290
4 683.514930 NaN
""" # noqa: E501
if Version(pd.__version__) <= Version("2.1.0"):
raise ImportError("pandas 2.1.0 or newer is required to use this function.")
# series indice needs renaming, since multiindices
# without explicit names cannot be joined
if isinstance(y, np.ndarray):
y = pd.Series(y, name="obs_index")
else:
y = y.rename_axis("obs_index")
if isinstance(graph_index, np.ndarray):
graph_index = pd.Series(graph_index, name="neighbor")
else:
graph_index = graph_index.rename("neighbor")
# aggregate data
df_multi_index = y.to_frame().set_index(graph_index, append=True).swaplevel()
combined_index = graph.adjacency.index.join(df_multi_index.index).dropna()
if q is None:
grouper = y.loc[combined_index.get_level_values(-1)].groupby(
combined_index.get_level_values(0)
)
else:
grouper = _percentile_filtration_grouper(y, combined_index, q=q)
stats = _compute_stats(grouper, statistics)
result = pd.DataFrame(
np.full((graph.unique_ids.shape[0], stats.shape[1]), np.nan),
index=graph.unique_ids,
)
result.loc[stats.index.values] = stats.values
result.columns = stats.columns
# fill only counts with zeros, other stats are NA
if "count" in result.columns:
result.loc[:, "count"] = result.loc[:, "count"].fillna(0)
result.index.name = None
return result
def values_range(
y: Series | NDArray[np.float64], graph: Graph, q: tuple | list = (0, 100)
) -> Series:
"""Calculates the range of values within neighbours defined in ``graph``.
Adapted from :cite:`dibble2017`.
Notes
-----
The index of ``y`` must match the index along which the ``graph`` is
built.
Parameters
----------
y : Series
A DataFrame or Series containing the values to be analysed.
graph : libpysal.graph.Graph
A spatial weights matrix for the data.
q : tuple, list, optional (default (0,100)))
A two-element sequence containing floats between 0 and 100 (inclusive)
that are the percentiles over which to compute the range.
The order of the elements is not important.
Returns
-------
Series
A Series containing resulting values.
Examples
--------
>>> from libpysal import graph
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> buildings.head()
uID geometry
0 1 POLYGON ((1603599.221 6464369.816, 1603602.984...
1 2 POLYGON ((1603042.88 6464261.498, 1603038.961 ...
2 3 POLYGON ((1603044.65 6464178.035, 1603049.192 ...
3 4 POLYGON ((1603036.557 6464141.467, 1603036.969...
4 5 POLYGON ((1603082.387 6464142.022, 1603081.574...
Define spatial graph:
>>> knn5 = graph.Graph.build_knn(buildings.centroid, k=5)
>>> knn5
<Graph of 144 nodes and 720 nonzero edges indexed by
[0, 1, 2, 3, 4, ...]>
Range of building area within 5 nearest neighbors:
>>> momepy.values_range(buildings.area, knn5)
focal
0 559.745602
1 444.997770
2 10651.932677
3 365.239452
4 339.585788
...
139 769.179096
140 721.444718
141 996.921755
142 119.708607
143 798.344284
Length: 144, dtype: float64
To eliminate the effect of outliers, you can take into account only values within a
specified percentile range (``q``).
>>> momepy.values_range(buildings.area, knn5, q=(25, 75))
focal
0 258.656230
1 113.990829
2 2878.811586
3 92.005635
4 87.637833
...
139 587.139513
140 325.726611
141 621.315615
142 34.446110
143 488.967863
Length: 144, dtype: float64
"""
stats = percentile(y, graph, q=q)
return stats[max(q)] - stats[min(q)]
def theil(y: Series, graph: Graph, q: tuple | list | None = None) -> Series:
"""Calculates the Theil measure of inequality of values within neighbours defined in
``graph``.
Uses ``inequality.theil.Theil`` under the hood. Requires '`inequality`' package.
.. math::
T = \\sum_{i=1}^n \\left(
\\frac{y_i}{\\sum_{i=1}^n y_i} \\ln \\left[
N \\frac{y_i} {\\sum_{i=1}^n y_i}
\\right]
\\right)
Notes
-----
The index of ``y`` must match the index along which the ``graph`` is
built.
Parameters
----------
y : Series
A DataFrame or Series containing the values to be analysed.
graph : libpysal.graph.Graph
A spatial weights matrix for the data.
q : tuple, list, optional (default (0,100)))
A two-element sequence containing floats between 0 and 100 (inclusive)
that are the percentiles over which to compute the range.
The order of the elements is not important.
Returns
-------
Series
A Series containing resulting values.
Examples
--------
>>> from libpysal import graph
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> buildings.head()
uID geometry
0 1 POLYGON ((1603599.221 6464369.816, 1603602.984...
1 2 POLYGON ((1603042.88 6464261.498, 1603038.961 ...
2 3 POLYGON ((1603044.65 6464178.035, 1603049.192 ...
3 4 POLYGON ((1603036.557 6464141.467, 1603036.969...
4 5 POLYGON ((1603082.387 6464142.022, 1603081.574...
Define spatial graph:
>>> knn5 = graph.Graph.build_knn(buildings.centroid, k=5)
>>> knn5
<Graph of 144 nodes and 720 nonzero edges indexed by
[0, 1, 2, 3, 4, ...]>
Theil index of building area within 5 nearest neighbors:
>>> momepy.theil(buildings.area, knn5)
focal
0 0.106079
1 0.023256
2 0.800522
3 0.016015
4 0.013829
...
139 0.547522
140 0.041755
141 0.098827
142 0.159690
143 0.068131
Length: 144, dtype: float64
To eliminate the effect of outliers, you can take into account only values within a
specified percentile range (``q``).
>>> momepy.theil(buildings.area, knn5, q=(25, 75))
focal
0 1.144550e-02
1 3.121656e-06
2 1.295882e-02
3 1.772730e-07
4 2.913017e-06
...
139 5.402548e-01
140 6.658486e-03
141 3.330720e-02
142 1.433583e-03
143 2.096421e-02
Length: 144, dtype: float64
"""
try:
from inequality.theil import Theil
except ImportError as err:
raise ImportError("The 'inequality' package is required.") from err
if q:
grouper = _percentile_filtration_grouper(y, graph._adjacency.index, q=q)
else:
grouper = _get_grouper(y, graph)
result = grouper.apply(lambda x: Theil(x.values).T)
result.index = graph.unique_ids
return result
def simpson(
y: Series,
graph: Graph,
binning: str = "HeadTailBreaks",
gini_simpson: bool = False,
inverse: bool = False,
categorical: bool = False,
**classification_kwds,
) -> Series:
"""Calculates the Simpson's diversity index of values within neighbours defined in
``graph``.
Uses ``mapclassify.classifiers`` under the hood for binning.
Requires ``mapclassify>=.2.1.0`` dependency.
.. math::
\\lambda=\\sum_{i=1}^{R} p_{i}^{2}
Adapted from :cite:`feliciotti2018`.
Notes
-----
The index of ``y`` must match the index along which the ``graph`` is
built.
Parameters
----------
y : Series
A DataFrame or Series containing the values to be analysed.
graph : libpysal.graph.Graph
A spatial weights matrix for the data.
binning : str (default 'HeadTailBreaks')
One of mapclassify classification schemes. For details see
`mapclassify API documentation <http://pysal.org/mapclassify/api.html>`_.
gini_simpson : bool (default False)
Return Gini-Simpson index instead of Simpson index (``1 - λ``).
inverse : bool (default False)
Return Inverse Simpson index instead of Simpson index (``1 / λ``).
categorical : bool (default False)
Treat values as categories (will not use ``binning``).
**classification_kwds : dict
Keyword arguments for the classification scheme.
For details see `mapclassify documentation <https://pysal.org/mapclassify>`_.
Returns
-------
Series
A Series containing resulting values.
Examples
--------
>>> from libpysal import graph
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> buildings.head()
uID geometry
0 1 POLYGON ((1603599.221 6464369.816, 1603602.984...
1 2 POLYGON ((1603042.88 6464261.498, 1603038.961 ...
2 3 POLYGON ((1603044.65 6464178.035, 1603049.192 ...
3 4 POLYGON ((1603036.557 6464141.467, 1603036.969...
4 5 POLYGON ((1603082.387 6464142.022, 1603081.574...
Define spatial graph:
>>> knn5 = graph.Graph.build_knn(buildings.centroid, k=5)
>>> knn5
<Graph of 144 nodes and 720 nonzero edges indexed by
[0, 1, 2, 3, 4, ...]>
Simpson index of building area within 5 nearest neighbors:
>>> momepy.simpson(buildings.area, knn5)
focal
0 1.00
1 0.68
2 0.36
3 0.68
4 0.68
...
139 0.68
140 0.44
141 0.44
142 1.00
143 0.52
Length: 144, dtype: float64
In some occasions, you may want to override the binning method:
>>> momepy.simpson(buildings.area, knn5, binning="fisher_jenks", k=8)
focal
0 0.28
1 0.68
2 0.36
3 0.68
4 0.68
...
139 0.44
140 0.28
141 0.28
142 1.00
143 0.20
Length: 144, dtype: float64
See also
--------
momepy.simpson_diversity : Calculates the Simpson's diversity index of data.
"""
if not categorical:
try:
from mapclassify import classify
except ImportError as err:
raise ImportError(
"The 'mapclassify >= 2.4.2` package is required."
) from err
bins = classify(y, scheme=binning, **classification_kwds).bins
else:
bins = None
def _apply_simpson_diversity(values):
return simpson_diversity(
values,
bins,
categorical=categorical,
)
result = graph.apply(y, _apply_simpson_diversity)
if gini_simpson:
result = 1 - result
elif inverse:
result = 1 / result
return result
def shannon(
y: Series,
graph: Graph,
binning: str = "HeadTailBreaks",
categorical: bool = False,
categories: list | None = None,
**classification_kwds,
) -> Series:
"""Calculates the Shannon index of values within neighbours defined in
``graph``.
Uses ``mapclassify.classifiers`` under the hood
for binning. Requires ``mapclassify>=.2.1.0`` dependency.
.. math::
H^{\\prime}=-\\sum_{i=1}^{R} p_{i} \\ln p_{i}
Notes
-----
The index of ``y`` must match the index along which the ``graph`` is
built.
Parameters
----------
y : Series
A DataFrame or Series containing the values to be analysed.
graph : libpysal.graph.Graph
A spatial weights matrix for the data.
binning : str (default 'HeadTailBreaks')
One of mapclassify classification schemes. For details see
`mapclassify API documentation <http://pysal.org/mapclassify/api.html>`_.
categorical : bool (default False)
Treat values as categories (will not use binning).
categories : list-like (default None)
A list of categories. If ``None``, ``values.unique()`` is used.
**classification_kwds : dict
Keyword arguments for classification scheme
For details see `mapclassify documentation <https://pysal.org/mapclassify>`_.
Returns
-------
Series
A Series containing resulting values.
Examples
--------
>>> from libpysal import graph
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> buildings.head()
uID geometry
0 1 POLYGON ((1603599.221 6464369.816, 1603602.984...
1 2 POLYGON ((1603042.88 6464261.498, 1603038.961 ...
2 3 POLYGON ((1603044.65 6464178.035, 1603049.192 ...
3 4 POLYGON ((1603036.557 6464141.467, 1603036.969...
4 5 POLYGON ((1603082.387 6464142.022, 1603081.574...
Define spatial graph:
>>> knn5 = graph.Graph.build_knn(buildings.centroid, k=5)
>>> knn5
<Graph of 144 nodes and 720 nonzero edges indexed by
[0, 1, 2, 3, 4, ...]>
Shannon index of building area within 5 nearest neighbors:
>>> momepy.shannon(buildings.area, knn5)
focal
0 -0.000000
1 0.500402
2 1.054920
3 0.500402
4 0.500402
...
139 0.500402
140 0.950271
141 0.950271
142 -0.000000
143 0.673012
Length: 144, dtype: float64
In some occasions, you may want to override the binning method:
>>> momepy.shannon(buildings.area, knn5, binning="fisher_jenks", k=8)
focal
0 1.332179
1 0.500402
2 1.054920
3 0.500402
4 0.500402
...
139 0.950271
140 1.332179
141 1.332179
142 -0.000000
143 1.609438
Length: 144, dtype: float64
"""
if not categories:
categories = y.unique()
if not categorical:
try:
from mapclassify import classify
except ImportError as err:
raise ImportError(
"The 'mapclassify >= 2.4.2` package is required."
) from err
bins = classify(y, scheme=binning, **classification_kwds).bins
else:
bins = categories
def _apply_shannon(values):
return shannon_diversity(values, bins, categorical, categories)
return graph.apply(y, _apply_shannon)
def gini(y: Series, graph: Graph, q: tuple | list | None = None) -> Series:
"""Calculates the Gini index of values within neighbours defined in ``graph``.
Uses ``inequality.gini.Gini`` under the hood. Requires '`inequality`' package.
Notes
-----
The index of ``y`` must match the index along which the ``graph`` is
built.
Parameters
----------
y : Series
A DataFrame or Series containing the values to be analysed.
graph : libpysal.graph.Graph
A spatial weights matrix for the data.
q : tuple, list, optional (default (0,100)))
A two-element sequence containing floats between 0 and 100 (inclusive)
that are the percentiles over which to compute the range.
The order of the elements is not important.
Returns
-------
Series
A Series containing resulting values.
Examples
--------
>>> from libpysal import graph
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> buildings.head()
uID geometry
0 1 POLYGON ((1603599.221 6464369.816, 1603602.984...
1 2 POLYGON ((1603042.88 6464261.498, 1603038.961 ...
2 3 POLYGON ((1603044.65 6464178.035, 1603049.192 ...
3 4 POLYGON ((1603036.557 6464141.467, 1603036.969...
4 5 POLYGON ((1603082.387 6464142.022, 1603081.574...
Define spatial graph:
>>> knn5 = graph.Graph.build_knn(buildings.centroid, k=5)
>>> knn5
<Graph of 144 nodes and 720 nonzero edges indexed by
[0, 1, 2, 3, 4, ...]>
Gini index of building area within 5 nearest neighbors:
>>> momepy.gini(buildings.area, knn5)
focal
0 0.228493
1 0.102110
2 0.605867
3 0.085589
4 0.080435
...
139 0.525724
140 0.156737
141 0.239009
142 0.259808
143 0.204820
Length: 144, dtype: float64
To eliminate the effect of outliers, you can take into account only values within a
specified percentile range (``q``).
>>> momepy.gini(buildings.area, knn5, q=(25, 75))
focal
0 0.073817
1 0.001264
2 0.077521
3 0.000321
4 0.001264
...
139 0.505618
140 0.055096
141 0.130501
142 0.025522
143 0.110987
Length: 144, dtype: float64
"""
try:
from inequality.gini import Gini
except ImportError as err:
raise ImportError("The 'inequality' package is required.") from err
if y.min() < 0:
raise ValueError(
"Values contain negative numbers. Normalise data before"
"using momepy.Gini."
)
if q:
grouper = _percentile_filtration_grouper(y, graph._adjacency.index, q=q)
else:
grouper = _get_grouper(y, graph)
result = grouper.apply(lambda x: Gini(x.values).g)
result.index = graph.unique_ids
return result
def percentile(
y: Series,
graph: Graph,
q: tuple | list = [25, 50, 75],
) -> DataFrame:
"""Calculates linearly weighted percentiles of ``y`` values using
the neighbourhoods and weights defined in ``graph``.
The specific interpolation method implemented is "hazen".
Parameters
----------
y : Series
A Series containing the values to be analysed.
graph : libpysal.graph.Graph
A spatial weights matrix for the data.
q : array-like (default [25, 50, 75])
The percentiles to return.
Returns
-------
Dataframe
A Dataframe with columns as the results for each percentile
Examples
--------
>>> from libpysal import graph
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> buildings.head()
uID geometry
0 1 POLYGON ((1603599.221 6464369.816, 1603602.984...
1 2 POLYGON ((1603042.88 6464261.498, 1603038.961 ...
2 3 POLYGON ((1603044.65 6464178.035, 1603049.192 ...
3 4 POLYGON ((1603036.557 6464141.467, 1603036.969...
4 5 POLYGON ((1603082.387 6464142.022, 1603081.574...
Define spatial graph:
>>> knn5 = graph.Graph.build_knn(buildings.centroid, k=5)
>>> knn5
<Graph of 144 nodes and 720 nonzero edges indexed by
[0, 1, 2, 3, 4, ...]>
Percentiles of building area within 5 nearest neighbors:
>>> momepy.percentile(buildings.area, knn5).head()
25 50 75
focal
0 347.252959 427.819360 605.909188
1 621.834862 641.629131 735.825691
2 622.262074 903.746689 3501.073660
3 621.834862 641.629131 713.840496
4 621.834862 641.987211 709.472695
Optionally, you can specify which percentile values shall be computed.
>>> momepy.percentile(buildings.area, knn5, q=[10, 90]).head()
10 90
focal
0 123.769329 683.514930
1 564.160901 1009.158671
2 564.160901 11216.093578
3 564.160901 929.400353
4 564.160901 903.746689
"""
weights = graph._adjacency.values
vals = y.loc[graph._adjacency.index.get_level_values(1)]
vals = np.vstack((weights, vals)).T
vals = DataFrame(vals, columns=["weights", "values"])
grouper = vals.groupby(graph._adjacency.index.get_level_values(0))
q = tuple(q)
stats = grouper.apply(lambda x: _interpolate(x.values, q))
result = DataFrame(np.stack(stats), columns=q, index=stats.index)
result.loc[graph.isolates] = np.nan
return result
def mean_deviation(y: Series, graph: Graph) -> Series:
"""Calculate the mean deviation of each ``y`` value and its graph neighbours.
.. math::
\\frac{1}{n}\\sum_{i=1}^n dev_i=\\frac{dev_1+dev_2+\\cdots+dev_n}{n}
Parameters
----------
y : Series
A Series containing the values to be analysed.
graph : libpysal.graph.Graph
Graph representing spatial relationships between elements.
Returns
-------
Series
Examples
--------
>>> from libpysal import graph
>>> path = momepy.datasets.get_path("bubenec")
>>> buildings = geopandas.read_file(path, layer="buildings")
>>> buildings.head()
uID geometry
0 1 POLYGON ((1603599.221 6464369.816, 1603602.984...
1 2 POLYGON ((1603042.88 6464261.498, 1603038.961 ...
2 3 POLYGON ((1603044.65 6464178.035, 1603049.192 ...
3 4 POLYGON ((1603036.557 6464141.467, 1603036.969...
4 5 POLYGON ((1603082.387 6464142.022, 1603081.574...
Define spatial graph:
>>> knn5 = graph.Graph.build_knn(buildings.centroid, k=5)
>>> knn5
<Graph of 144 nodes and 720 nonzero edges indexed by
[0, 1, 2, 3, 4, ...]>
Mean deviation of building area and area of 5 nearest neighbors:
>>> momepy.mean_deviation(buildings.area, knn5)
0 281.179149
1 10515.948995
2 2240.706061
3 230.360732
4 68.719810
...
139 259.180720
140 517.496703
141 331.849751
142 25.297225
143 654.691897
Length: 144, dtype: float64
"""
inp = graph._adjacency.index.get_level_values(0)
res = graph._adjacency.index.get_level_values(1)
itself = inp == res
inp = inp[~itself]
res = res[~itself]
left = y.loc[inp].reset_index(drop=True)
right = y.loc[res].reset_index(drop=True)
deviations = (left - right).abs()
vals = deviations.groupby(inp).mean()
result = Series(np.nan, index=y.index)
result.loc[vals.index] = vals.values
return result
|